
Continuous Arvand: Motion Planning with Monte Carlo Random Walks

Weifeng Chen and Martin Müller
Department of Computing Science

University of Alberta
{weifeng3,mmueller}@ualberta.ca

Abstract

Sampling-based approaches such as Probabilistic
Roadmaps and Rapidly-exploring Random Trees are
very popular in motion planning. Monte Carlo Random
Walks (MRW) are a quite different sampling method.
They were implemented in the Arvand family of plan-
ners, which have been successful in classical planning
with its discrete state spaces and actions. The work de-
scribed here develops an MRW approach for domains
with continuous state and action spaces, as encoun-
tered in motion planning. Several new algorithms based
on MRW are introduced, implemented in the Continu-
ous Arvand system, and compared with existing motion
planning approaches in the Open Motion Planning Li-
brary (OMPL).

1 Introduction

Motion planning refers to breaking down a movement task
into discrete motions that satisfy movement constraints. For
example, to pick up an object in an environment, the arm of
the robot must move to the target location by using its exist-
ing actuators, and without colliding with other objects. Mo-
tion planning has many applications including robot naviga-
tion, manipulation, animating digital characters, automotive
assembly and video game design (LaValle 2006).

Among the many approaches to the motion planning
problem, sampling based methods have been very popu-
lar. A large number of these methods sample randomly
from the state space, which is usually called configuration
space, or short C-space, in motion planning. The Proba-
bilistic Roadmaps (PRM) (Kavraki et al. 1996) algorithm
constructs a roadmap, which connects random milestones,
in order to approximate the connectivity of the configu-
ration space. RRT (LaValle and Kuffner 2001) gradually
builds a tree that expands effectively in C-space. EST (Hsu,
Latombe, and Motwani 1997) attempts to detect the less ex-
plored area of the space through the use of a grid imposed
on a projection of C-space.

In contrast to sampling from C-space directly, KPIECE
(Şucan and Kavraki 2010) is a tree-based planner that ex-
plores a continuous space from the given starting point.
KPIECE uses a multi-level grid-based discretization for
guidance. Given a projection of state space, KPIECE sam-
ples cell chains in each iteration when building the exploring

tree. The goal of KPIECE is to estimate the coverage of the
state space by looking at the coverage of the different cells,
and reduce the time used for forward propagation.

Two main criteria for motion planning are feasibility and
optimality of plans. The motion planners mentioned above
all return the first feasible plan they find. In contrast, plan-
ners such as RRT* keep improving their best plan over time,
and some are proven to be asymptotically optimal (Karaman
and Frazzoli 2011).

Monte Carlo Random Walks (MRW) are the basis for
a successful family of algorithms for classical determin-
istic planning with discrete states and actions (Nakhost
and Müller 2009; Nakhost, Hoffmann, and Müller 2012;
Nakhost and Müller 2013). The method uses random explo-
ration of the local neighbourhood of a search state. Different
MRW variants have been implemented in the Arvand plan-
ning systems. The current work applies MRW to continu-
ous planning, using a local sampling forward search frame-
work which, like KPIECE, does not require sampling glob-
ally from C-space.

Component Classical planning Motion planning
State space discrete continuous

Goal checker deterministic approximate

Action execution instant gradual

Random walk
sample action
→ new state

sample state
→ new motion

Heuristic
Instance-specific,
e.g. Fast Forward

C-space-specific, e.g.
geometric distance

Table 1: Main differences between using MRW in classical
and motion planning.

The high-level view of MRW for continuous planning is
similar to classical planning: Random walks are used to ex-
plore the neighbourhood of a state and to escape from local
minima. A heuristic function which estimates goal distance
is used to evaluate sampled states. The main differences be-
tween MRW for classical and continuous planning lie in the
mechanisms for action selection and action execution within
the random walks. In classical planning, for each state s in
a random walk, the successor state s′ is found by randomly
sampling and executing a legal action in s. In contrast, in
continuous planning random actions are not generated di-



rectly. Instead, a nearby successor state s′ is sampled locally
from the state space, and the motion planner is invoked to try
to generate a valid motion from s to s′. In classical planning,
actions take effect instantly. The solution to a planning prob-
lem is simply an action sequence that achieves a goal condi-
tion. In continuous planning, each motion action takes time
to complete. A solution is a sequence of valid, collision-free
motions that get “close enough” to a goal. Table 1 summa-
rizes some main differences of applying MRW to classical
and motion planning.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the main ideas of MRW planning and
their application to continuous planning, including different
restart strategies and variants for bidirectional search and
continuous plan improvement. Section 3 describes the im-
plementation of MRW planning algorithms in the Contin-
uous Arvand system. Section 4 evaluates the performance
of the new planners on planning benchmarks from OMPL
(Şucan, Moll, and Kavraki 2012). Section 5 is dedicated to
concluding remarks and some potential directions for future
work.

2 Applying MRW to Continuous Planning

Arvand (Nakhost and Müller 2009; Nakhost, Hoffmann, and
Müller 2012; Nakhost and Müller 2013) is a successful fam-
ily of stochastic planners in classical planning. These plan-
ners use Monte Carlo random walks to explore the neigh-
bourhood of a search state. In this work, a similar approach
is developed for continuous planning, and implemented in
the Continuous Arvand system.

Monte Carlo Random Walk Planning

A MRW algorithm uses the following key ingredients:

• A heuristic function h to evaluate the goal distance for
the endpoints of random walks. Strong heuristics lead to
better performance.

• A global restart strategy is used to escape from local min-
ima and plateaus.

• A local restart strategy is used for exploration.

In MRW, given a current state s, a number of random
walks sample a relatively large set of states S in the neigh-
bourhood of s: the endpoints of each walk. All states in S
are evaluated by the heuristic function h. Finally, a new state
s ∈ S with minimum h-value is selected as the next current
state, concluding one search step, and the process repeats
from there. The length of each random walk is decided by
the local restart strategy, and could be fixed or variable. Dif-
ferent choices will be discussed below. If the best observed
h-value does not improve after a number of search steps,
as controlled by the global restart strategy, the search will
restart. A good global restart strategy can quickly escape
from local minima, and recover from areas of the state space
where the heuristic evaluation is poor. The MRW approach
does not rely on any assumptions about local properties of
the search space or heuristic function. It locally explores the
state space before it commits to an action sequence that leads
to the best explored state.

MRW Algorithm

Algorithm 1, slightly adapted from (Nakhost and Müller
2009), shows an outline of MRW planning. This high-level
outline is nearly identical for classical and for continuous
planning. The only change is that a goal condition G is re-
placed by a goal region G.

The algorithm uses a forward-chaining search in the state
space of the problem to find a solution. The chain of states
leads from initial state s0 to goal state sn. Each transition
sj → sj+1 is generated by MRW exploring the neighbour-
hood of sj . If the best h-value does not improve after a given
number of search episodes, MRW simply restarts from s0.

Algorithm 1 Monte Carlo Random Walk Planning

Input Initial State s0, goal region G
Output A solution plan

s← s0
hmin ← h(s0)
counter ← 0
while s does not satisfy G do

if counter > MAX EPISODES then
s← s0 {restart from initial state}
counter ← 0

end if
s← randomWalk(s,G)
if h(s) < hmin then
hmin ← h(s)
counter ← 0

else
counter ← counter + 1

end if
end while
return the plan reaching the state s

Pure Random Walks

The main motivation for MRW planning is to better explore
the local neighbourhood, compared to the greedy search al-
gorithms which have been the standard in classical planning.
The simplest MRW approach uses a fixed number of pure
random walks to sample the neighborhood of a state s. Al-
gorithm 2 shows a pure random walk method similar to the
one in (Nakhost and Müller 2009), but adapted to the case
of continuous planning. In classical planning, a random le-
gal action is sampled given a current state s′ in a random
walk, and then applied to reach the next state s′′. For contin-
uous planning, instead of an action, the next state is sam-
pled from a region of the state space near s′. Before s′′

can succeed s′ as the current state, a check is performed to
make sure there is a valid motion from s′ to s′′. A random
walk stops either when a goal state is directly reachable, or
when the number of consecutive motions reaches a bound
LENGTH WALK. The end state of each random walk is eval-
uated by the heuristic h. The algorithm terminates when ei-
ther a goal state is reached, or NUM WALK walks have been
completed. The function returns the state smin with min-
imum h-value among all reached endpoints, and the state



sequence leading to it. If no improvement was found, the
algorithm simply returns s.

The chosen limits on the length and number of random
walks have a huge impact on the performance of this algo-
rithm. Good choices depend on the planning problem. While
they are constant in the basic algorithm shown here, the
next subsection discusses different adaptive global and lo-
cal restart strategies, which are used by Arvand and can be
applied in continuous planning as well.

Algorithm 2 Pure Random Walks.

Input current state s, goal region G and state space S
Output smin

1: hmin ←∞
2: smin ← NULL
3: g ← sampleFromGoalRegion(G)
4: for i← 1 to NUM WALK do
5: s′ ← s
6: for j ← 1 to LENGTH WALK do
7: if validMotion(s′, g) then
8: return g
9: end if

10: repeat
11: s′′ ← uniformlySampleFromNear(s′, S)
12: until validMotion(s′, s′′)
13: s′ ← s′′

14: end for
15: if h(s′) < hmin then
16: smin ← s′

17: hmin ← h(s′)
18: end if
19: end for
20: if smin = NULL then
21: return s
22: else
23: smin

24: end if

Global and Local Restart Strategy

MRW parameters such as the number and length of ran-
dom walks, and the maximum number of search episodes,
are tedious to set by hand. Nakhost and Müller (2009;
2013) introduce several global and local restart strategies.

Random Walk Length While the simplest approach is to
use fixed length random walks, a better strategy in classical
planning uses an initial length bound, and successively in-
creases it if the best seen h-value does not improve quickly
enough. If the algorithm encounters better states frequently
enough, the length bound remains the same. A third strat-
egy uses a local restarting rate to terminate a random walk
with a fixed probability rl after each motion. In this case, the
length of walks is geometrically distributed with mean 1/rl.

Number of Random Walks The first version of Arvand
used a fixed number of random walks in each search step,
then progressed greedily to the best evaluated endpoint. This

approach was later replaced by a number of adaptive meth-
ods (Nakhost and Müller 2009; 2013). A simple strategy fol-
lowed here is to have only one random walk in a local search
(Nakhost, Hoffmann, and Müller 2012), which is faster than
choosing from among several walks, at the cost of solution
quality.

Number of Search Episodes and Global Restarting The
simplest global restart strategy restarts from initial state s0
whenever the h-value fails to improve for a fixed number tg
of random walks. An adaptive global restart (AGR) algo-
rithm is described in (Nakhost and Müller 2013).

Path Pool

Most versions of Arvand require very little memory. A
path pool can store a number of random walks and utilize
them for improving later searches (Nakhost, Hoffmann, and
Müller 2012). The techniques of On-Path Search Continua-
tion (OPSC) and Smart Restarts (SR) are based on a fixed-
capacity pool which stores the most promising episodes en-
countered so far. OPSC randomly picks a state along the ex-
isting path to start a new search episode, instead of always
starting from an endpoint. SR is used for global restart: in-
stead of always restarting from s0, the search restarts from a
random state on a random path in the pool.

This current work only uses the path pool idea and pur-
sued a different approach: to start a new search episode, a
path p from the pool is either selected with the minimum
h-value or randomly picked with a distribution; then a fixed
fraction of the pool contents is replaced by newly generated
random walks which extend p. Algorithm 3 shows details.
The algorithm begins with an empty pool at each global (re-
)start. A fixed number n, for example 10% of the pool size,
is chosen for addition/replacement. n random walks are per-
formed from start state s0 and stored in the pool. During the
search after (re-)start, one path in the pool is selected and ex-
panded by local exploration to generate n new paths. If the
pool is full, n randomly selected existing paths are replaced
by new paths. Each path in the pool is a state sequence from
s0 to an endpoint sj . If a solution is found during expansion,
the plan is returned immediately.

Algorithm 3 Expand

Input current state s, goal state g, existing path p, number
of new paths n, pool P

Output n new paths added to P , returns whether a solution
was found
for n iterations do

new walk← randomWalk(s, g)
new path← p+ new walk
store(P , new path)
if solution found then

return true
end if

end for
return false



Bidirectional Arvand

Motion planners such as RRT and KPIECE have bidirec-
tional variants with good performance. Bidirectional Arvand
uses similar approach to solve planning problems. It main-
tains both a forward and a backward path pool. Explorations
start from both the start state s0 and a goal state g0, and try to
connect two search frontiers. For each pair of paths (pf , pb)
in the two pools, the heuristic distance of their endpoints is
stored. If the size of each pool is m, the time complexity of
replacing n paths in the pool in each episode and updating
the heuristic values is O(nm).

Algorithm 4 shows the outline of bidirectional Arvand.
In each search episode, search starts from the endpoint of
one chosen path, treats the endpoint of the other chosen path
as the search goal, and tries to connect them. In the code,
h(fPool , bPool ) = minf∈fPool ,b∈bPool h(f, b).

Algorithm 4 Bidirectional Arvand

Input current state s0, goal state g0, number of new paths n
Output A solution path

1: hmin ←∞
2: init ← true
3: repeat
4: if counter > MAX EPISODES or init then
5: counter ← 0
6: fPool,bPool← ∅
7: p← NULL
8: expand(s0, g0, p, n, fPool)
9: s← closest endpoint towards g0 in fPool

10: expand(s, s0, p, n, bPool)
11: current ← fPool
12: init ← false
13: end if
14: reserve(n, current) {reserve room for n new paths}
15: s, g ← argminf∈fPool,b∈bPool h(f, b)
16: p← complete path towards s
17: expand(s, g, p, n, current) {try to connect two paths}
18: if h(fPool, bPool) < hmin then
19: hmin ← h(fPool , bPool )
20: counter ← 0
21: else
22: counter ← counter + 1
23: end if
24: switch forward and backward search direction
25: until a solution is found
26: return solution path

Improving Plan Quality

The algorithms described above stop immediately after a
solution is found. Arvand*, shown in Algorithm 5, is an
optimizing version of Continuous Arvand, which keeps
restarting even after the first valid plan is found. Arvand*
uses post-processing techniques, such as shortcutting and
smoothing, to simplify each newly found solution. The
shortest solution after postprocessing is returned.

Algorithm 5 Arvand*

Input current state s0, goal region G
Output A solution path with shortest length

solmin ← NULL
while keep going() do
sol ← monteCarloRandomWalk(s0, G)
sol ← simplify(sol)
if solmin = NULL or length(sol) < length(solmin)
then
solmin ← sol

end if
end while
return solmin

3 Implementation - the Continuous Arvand

System
Continuous Arvand implements a framework for MRW mo-
tion planning, and several different planners. The program
is built on top of OMPL, the Open Motion Planning Library
(Şucan, Moll, and Kavraki 2012). OMPL provides imple-
mentations of all motion planning primitives such as dis-
tance heuristics, collision detection, and random state sam-
pling. The heuristic in Continuous Arvand is the distance
function provided by OMPL, which differs depending on the
type of state space. For instance, for state space SO(3,R)
the distance is the angle between quaternions, while R3 uses
euclidean distance. The simplify(path) post-processing func-
tion provided by OMPL is used in all experiments to shorten
the solutions.

(a) Maze (b) Barriers

(c) Abstract (d) Apartment

Figure 1: Planning scenarios

Six motion planners were implemented: Arvand fixed
and Arvand extend are based on the techniques introduced



in (Nakhost and Müller 2009), while Arvand2 and Ar-
vand2 AGR use ideas from (Nakhost and Müller 2013).
BArvand and Arvand* are the bidirectional and optimizing
variants of Arvand described in Section 2.

Arvand fixed is the simplest implementation and uses
constant parameters for global restart rate tg, and num-
ber and length of random walks. In the experiments below,
tg = 20, NUM WALK = 20, and LENGTH WALK is tuned
to find the best setting for each planning scenario, in the
range from 10 to 800. Tuning these parameters is incon-
venient and time consuming. The other versions of Arvand
try to automatically adapt the setting for these variables. For
Arvand extend, NUM WALK = 800, and LENGTH WALK
= 10 initially, and is multiplied by a factor of 2 whenever
the h-value does not improve over 100 walks. In Arvand2,
NUM WALK = 1 and a local restarting rate of rl = 0.01
is used to control the random walk length. Arvand2 AGR is
similar to Arvand2, but adds adaptive global restarts. BAr-
vand is the bidirectional version of Arvand. In experiments,
the size of the forward and backward pools is 100 each, and
the setting of other parameters is as in Arvand fixed. Ar-
vand* uses the same settings as Arvand2 AGR, but keeps
running to improve solutions until a given time limit is
reached.

4 Experiments
In this section, the five planners Arvand fixed, Ar-
vand extend, Arvand2, Arvand2 AGR and BArvand are
compared with a selection of the best-performing plan-
ners available in OMPL: RRT (LaValle and Kuffner 2001),
KPIECE (Şucan and Kavraki 2010), EST (Hsu, Latombe,
and Motwani 1997), PDST (Ladd and Kavraki 2005), and
PRM (Kavraki et al. 1996). Arvand* is tested against RRT*
(Karaman and Frazzoli 2011), which is an asymptotically-
optimal incremental sampling-based motion planning algo-
rithm.

Experiments used 13 built-in benchmark scenarios from
OMPL: Maze, Barriers, Abstract, Apartment, BugTrap,
RandomPolygons, UniqueSolutionMaze, Cubicles, Alpha,
Easy, Home, Pipedream ring and Spirelli. These scenarios
are chosen as they can be solved by most available plan-
ners in reasonable time (less than 10 minutes). Four of them
are shown in Figure 1. We grouped these scenarios into four
categories: easy problems (Maze, BugTrap, RandomPoly-
gons, Easy), intermediate problems (Alpha, Barriers, Apart-
ment), intermediate problems with long detour (UniqueSo-
lutionMaze, Cubicles, Pipedream ring, Abstract) and hard
problems (Home, Spirelli). The configuration space used in
these problems is either SE(2) or SE(3). We used the rec-
ommended time limit provided in OMPL for each scenario
in our experiments.

All experiments were run on a machine with 8-core CPU
Intel Xeon E5420 @ 2.5GHz and 8GB memory. Results for
each planner are averaged over 20 runs per scenario. The
metrics of memory use (MB), path length, simplified path
length, planning time and simplification time (in seconds)
are considered.

Tables 3-16 show the benchmark results. For the met-
ric of memory use, almost all Arvand versions always use

less memory than all the other planners. One exception is
the BArvand version in scenario Cubicles, which used more
memory to maintain two path pools as this scenario has long
detours, and BArvand needs much longer paths to reach the
goal.

Considering the path length, Arvand2 and Arvand2 AGR
always output solutions with huge path lengths. The reason
is that these two Arvand versions do not run multiple random
walks and choose the best one. Therefore they run faster but
produce much longer paths. However, after post-processing,
the simplified path length is good enough to compete with
other planners. In scenarios Maze, RandomPolygons, Apart-
ment and Easy, Arvand fixed and Arvand extend are com-
parable to other planners on original path length. In scenario
Cubicles, these two planners are worse by a factor of 3 to 8.
BArvand usually does not provide a competitive initial path
length, but it performs very well after simplification. For in-
stance, BArvand outperforms all other planners in scenarios
Alpha and Barriers.

The total time in the experiments consists of planning
time plus simplification time. The simplification time is in-
significant: it is usually below 0.1s for all planners, and
never reached 0.5s in any of the experiments. Therefore,
only the total time is shown in the tables.

Among all Arvand versions, Arvand fixed and Ar-
vand extend are slower because they run many random
walks in one episode. This causes them to time out in
scenarios UniqueSolutionMaze, Home and Spirelli. Ar-
vand fixed times out in more scenarios: Cubicles, Alpha,
and Pipedream ring. Arvand2 and Arvand2 AGR are com-
petitive in terms of planning time for the easy planning
problems Maze and BugTrap. They also do well in the in-
termediate problems Cubicles, Pipedream ring and Apart-
ment. BArvand performs well in most scenarios. It is the
best planner in scenario Apartment, always takes a reason-
able amount of time when comparing among all Arvand ver-
sions, and produces competitive short solutions.

For intermediate problems with long detours, almost all
Arvand results are poor. The reason is that Arvand uses a
heuristic to guide the exploration, and a detour requires the
exploration to go multiple steps against the heuristic. Since
Arvand2 and Arvand2 AGR only run one random walk per
episode, the planning time is not bad. However, Arvand ver-
sions Arvand fixed and Arvand extend choose the heuristi-
cally best random walk among several walks. They have lit-
tle chance to go against the heuristic for several successive
steps, and need much more time to find a solution, or even
time out. The only competitive results on these planning sce-
narios is for BArvand in scenario Abstract.



Figure 2: Plan improvement over time for Arvand* and
RRT*. Average over 10 runs.

The performance of the optimizing planners RRT* and
Arvand* within the recommended time limit is shown in Ta-
ble 16. On the main metric of simplified path length, RRT*
is always better than Arvand*, and Arvand* comes close to
the performance of RRT* only in scenarios Alpha and Easy.

The picture can change with longer time limits. Figure 2
compares the plan improvement over time for the two plan-
ners in scenario Alpha. While the initial solution found by
Arvand* is of rather poor quality, its path length decreases
rapidly over time and becomes better than RRT* in this ex-
ample. At the current time, this is an isolated positive result
and it is not clear whether it generalizes to other scenarios.

For generating Figure 2, since the intermediate paths
when RRT* is optimizing its plan are not accessible, RRT*
is run separately for different time limits. Each data point is
averaged over 10 runs.

As a final example, Table 2 shows the importance of
choosing the right parameters for MRW with fixed settings.
The example is from scenario Barriers, as solved by Ar-
vand fixed with different parameter settings. For setting 1,
the length of random walks is 20, the number of walks per
episode is 20, and the maximum number of episodes is 10;
for setting 2, the length of random walks is 1000, the num-
ber of walk per episode is 50, and the maximum number of
episodes is 100. In this planning scenario, setting 1 has bet-
ter performance.

Solution Path Planning Time
Setting 1 1205.7 8.7s

Setting 2 2063.8 24.1s

Table 2: Influence of parameter setting on performance.

5 Conclusions and Future Work

The algorithms developed in this paper apply the Monte
Carlo Random Walk method to motion planning. Global and
local restart strategies in this method have huge impact on
performance. Our work is still preliminary, but the results

are already interesting. Continuous Arvand works well for
problems that do not require long detours for which the dis-
tance heuristic is misleading. The algorithms use much less
memory than other planners, which makes them attractive
for embedded applications with limited resources.

Portfolio planning (Gomes and Selman 2001) combines
several algorithms into a portfolio and runs them in sequence
or in parallel. This is a very successful approach in classical
planning. The ArvandHerd system, winner of the parallel
satisficing track of the 2011 and 2014 International Planning
Competitions, is such a portfolio which combines (classical)
Arvand with another state of the art planner, LAMA (Valen-
zano et al. 2012; 2014). Our results indicate that adding
Continuous Arvand to a motion planning portfolio will very
likely strengthen its performance.

The current versions of Continuous Arvand do not work
well on planning problems with long forced detours that go
against the heuristic. Improving the performance on these
kinds of problems is the most important task for future
work. Some existing MRW techniques from classical plan-
ning, such as On-Path Search Continuation (OPSC) and
Smart Restarts (SR) (Nakhost, Hoffmann, and Müller 2012),
are not yet used in the Continuous Arvand implementa-
tion. Adaptive local restarting (Nakhost and Müller 2013)
is a technique used to estimate the best parameter for local
restarting. In addition of only evaluating the endpoint of a
random walk, Arvand could benefit from the heuristic eval-
uation of the intermediate states along the walk (Nakhost,
Hoffmann, and Müller 2012). Finally, there is work to do to
research the many different ways of using memory, such as
different strategies for using path pools, adding a tree as in
RRT, or a UCT-like approach.

References

Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence 126(1):43–62.

Hsu, D.; Latombe, J.-C.; and Motwani, R. 1997. Path plan-
ning in expansive configuration spaces. In IEEE Robotics
and Automation, volume 3, 2719–2726. IEEE.

Karaman, S., and Frazzoli, E. 2011. Sampling-based al-
gorithms for optimal motion planning. The International
Journal of Robotics Research 30(7):846–894.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Robotics and
Automation 12(4):566–580.

Ladd, A. M., and Kavraki, L. E. 2005. Motion planning
in the presence of drift, underactuation and discrete system
changes. In Robotics: Science and Systems, 233–240.

LaValle, S. M., and Kuffner, J. J. 2001. Randomized ki-
nodynamic planning. The International Journal of Robotics
Research 20(5):378–400.

LaValle, S. M. 2006. Planning algorithms. Cambridge
University Press.

Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In IJCAI, volume 9, 1766–1771.



Nakhost, H., and Müller, M. 2013. Towards a second gener-
ation random walk planner: an experimental exploration. In
Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence, 2336–2342. AAAI Press.

Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In McCluskey, L.; Williams, B.; Reinaldo Silva, J.;
and Bonet, B., eds., ICAPS, 181–189. AAAI Press.

Şucan, I. A., and Kavraki, L. E. 2010. Kinodynamic motion
planning by interior-exterior cell exploration. In Algorithmic
Foundation of Robotics VIII. Springer. 449–464.

Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4):72–82. http://ompl.kavrakilab.

org.

Valenzano, R.; Nakhost, H.; Müller, M.; Sturtevant, N.; and
Schaeffer, J. 2012. ArvandHerd: Parallel planning with a
portfolio. In De Raedt, L., ed., ECAI, volume 242 of Fron-
tiers in Artificial Intelligence and Applications, 786–791.
IOS Press.

Valenzano, R.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. 2014. Arvandherd 2014. In Vallati, M.;
Chrpa, L.; and McCluskey, T., eds., The Eighth International
Planning Competition, 1–5. University of Huddersfield.



Planner Memory Path length Simplified path length Total time

KPIECE 1.26 285.35 149.64 0.49
EST 2.27 189.72 118.11 1.58
PDST 16.64 195.17 117.50 0.59
RRT 0.89 152.16 125.07 0.59
PRM 1.64 134.95 116.70 1.10

Arvand fixed 0.36 120.68 88.72 5.39
Arvand extend 0.47 187.00 105.30 7.16
Arvand2 0.98 4,630.43 139.96 1.74
Arvand2 AGR 2.04 10,739.10 153.31 1.75
BArvand 0.52 364.63 108.33 0.70

Table 3: Scenario Maze, time limit = 20s.

Planner Memory Path length Simplified path length Total time

KPIECE 2.71 3,410.69 1,738.58 0.61
EST 6.11 2,130.88 1,544.93 2.37
PDST 29.83 3,058.34 2,078.17 0.91
RRT 243.23 1,723.06 1,519.71 1.20

Arvand fixed 0.40 1,468.52 1,075.18 15.93
Arvand extend 0.70 4,253.87 1,416.57 28.52
Arvand2 1.65 35,791.87 1,623.66 4.10
Arvand2 AGR 3.14 111,872.24 1,714.82 3.49
BArvand 4.48 7,690.83 864.12 5.36

Table 4: Scenario Barriers, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE 19.87 3,180.60 1,070.92 14.53
EST 17.18 1,567.90 855.60 16.59
PDST 199.83 2,764.19 1,228.19 14.71
RRT 153.39 1,256.63 949.70 29.57
PRM 160.16 805.39 706.16 258.84

Arvand fixed 0.88 1,388.88 647.05 166.39
Arvand extend 2.05 10,127.76 887.14 96.83
Arvand2 2.46 23,285.37 786.86 133.29
Arvand2 AGR 21.16 904,221.82 998.34 36.69
BArvand 0.59 1,395.73 589.79 11.02

Table 5: Scenario Abstract, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE 10.43 1,133.78 452.93 17.25
EST 3.79 716.99 444.24 12.95
PDST 92.36 920.69 437.46 19.85
RRT 3.35 523.93 425.96 8.30
PRM 50.04 485.74 409.94 102.30

Arvand fixed 0.36 529.79 428.66 38.09
Arvand extend 0.52 859.32 437.66 96.77
Arvand2 0.63 2,859.56 431.09 9.17
Arvand2 AGR 0.72 4,233.13 458.73 12.35
BArvand 2.41 2,436.83 445.05 10.78

Table 6: Scenario Apartment, time limit = 300s.



Planner Memory Path length Simplified path length Total time

KPIECE 4.62 446.65 170.58 0.33
EST 2.73 286.95 162.31 0.41
PDST 17.22 303.57 175.14 0.26
RRT 2.50 254.89 177.31 0.33
PRM 9.73 163.42 140.59 3.42

Arvand fixed time out
Arvand extend 0.79 867.29 165.84 4.94
Arvand2 1.91 10,514.92 167.31 0.73
Arvand2 AGR 2.78 16,058.34 160.42 0.77
BArvand 3.74 1,210.20 162.08 1.28

Table 7: Scenario BugTrap, time limit = 20s.

Planner Memory Path length Simplified path length Total time

KPIECE 0.94 310.00 133.65 0.11
EST 0.75 228.59 130.62 0.31
PDST 1.60 196.65 133.00 0.06
RRT 0.57 155.47 130.49 0.05
PRM 0.55 149.82 133.57 0.10

Arvand fixed 0.34 189.09 123.66 4.20
Arvand extend 0.43 290.43 127.64 2.26
Arvand2 0.79 2,192.15 137.73 0.18
Arvand2 AGR 0.86 2,137.46 132.41 0.14
BArvand 0.63 404.06 124.78 0.21

Table 8: Scenario RandomPolygons, time limit = 20s.

Planner Memory Path length Simplified path length Total time

KPIECE 3.29 663.00 393.32 1.33
EST 18.46 491.09 367.62 3.71
PDST 202.19 483.52 337.94 5.63
RRT 2.99 399.27 344.27 2.77
PRM 3.09 340.60 328.99 2.31

Arvand fixed time out
Arvand extend time out
Arvand2 2.55 8,134.98 346.50 6.66
Arvand2 AGR 6.13 42,158.52 341.17 7.73
BArvand 7.81 1,092.37 352.22 4.63

Table 9: Scenario UniqueSolutionMaze, time limit = 20s.



Planner Memory Path length Simplified path length Total time

KPIECE 6.25 6,592.95 2,606.57 1.14
EST 10.96 3,888.98 2,450.79 6.81
PDST 55.02 4,805.96 2,555.92 2.41
RRT 0.91 3,242.16 2,587.69 0.60
PRM 12.34 2,512.20 2,292.76 5.33

Arvand fixed time out
Arvand extend 1.14 20,054.38 2,481.16 46.52
Arvand2 2.16 61,197.39 2,442.39 1.95
Arvand2 AGR 3.01 85,836.54 2,423.80 1.81
BArvand 48.50 34,533.70 2,454.40 7.59

Table 10: Scenario Cubicles, time limit = 60s.

Planner Memory Path length Simplified path length Total time

KPIECE 0.61 1,614.49 637.16 2.79
EST 0.78 938.13 550.47 4.12
PDST 19.65 1,569.88 576.56 2.04
RRT 17.15 949.06 583.25 4.12
PRM time out

Arvand fixed time out
Arvand extend 3.19 2,000.73 496.25 25.07
Arvand2 3.45 17,592.26 563.81 8.75
Arvand2 AGR 3.67 19,263.26 622.31 6.12
BArvand 3.45 6,947.17 481.80 18.85

Table 11: Scenario Alpha, time limit = 60s.

Planner Memory Path length Simplified path length Total time

KPIECE 2.41 1,140.28 234.30 0.63
EST 2.94 593.66 236.81 0.64
PDST 6.05 595.02 233.84 0.17
RRT 8.41 347.84 209.43 0.15
PRM 8.63 508.85 250.27 0.46

Arvand fixed 0.39 369.39 205.96 0.56
Arvand extend 0.43 594.30 204.28 0.73
Arvand2 0.92 33,561.37 216.11 1.19
Arvand2 AGR 2.49 126,037.08 208.22 1.10
BArvand 4.48 8,522.32 236.58 0.90

Table 12: Scenario Easy, time limit = 20s.



Planner Memory Path length Simplified path length Total time

KPIECE time out
EST 303.22 4,127.54 2,364.86 31.00
PDST 3,229.55 3,955.31 1,908.11 128.53
RRT 3,581.81 2,585.87 2,141.99 26.56
PRM 3,584.59 1,825.84 1,637.01 59.76

Arvand fixed time out
Arvand extend time out
Arvand2 time out
Arvand2 AGR time out
BArvand time out

Table 13: Scenario Home, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE 21.54 242.65 98.14 62.14
EST 19.45 161.73 89.26 2.52
PDST 22.73 241.60 108.95 1.03
RRT 23.45 157.41 105.98 2.02
PRM 223.71 128.58 86.23 90.12

Arvand fixed time out
Arvand extend 2.91 385.03 131.80 75.86
Arvand2 3.18 1,564.64 116.08 1.53
Arvand2 AGR 3.30 1,862.63 104.08 1.42
BArvand 3.97 957.35 133.25 14.39

Table 14: Scenario Pipedream ring, time limit = 300s.

Planner Memory Path length Simplified path length Total time

KPIECE time out
EST time out
PDST time out
RRT 2,229.50 203.22 166.05 102.99
PRM time out

Arvand fixed time out
Arvand extend time out
Arvand2 time out
Arvand2 AGR 1.41 3,043.27 222.48 78.68
BArvand 0.51 480.48 166.80 157.13

Table 15: Scenario Spirelli, time limit = 180s.



Problem Planner Memory Path length Simplified path length

Alpha
RRTstar 324.36 358.81 328.52
Arvandstar 37.63 5,890.36 358.97

Barriers
RRTstar 510.36 822.51 806.70
Arvandstar 120.97 51,703.69 1,294.87

Easy
RRTstar 266.48 208.19 203.44
Arvandstar 55.46 62,327.05 211.09

Pipedream ring
RRTstar 471.33 84.77 77.14
Arvandstar 82.89 375.72 99.38

Spirelli
RRTstar 8.52 118.59 114.89
Arvandstar 0.70 2,877.63 193.00

Abstract
RRTstar 236.63 600.64 569.85
Arvandstar 298.18 438,366.05 862.49

Apartment
RRTstar 57.75 404.29 382.32
Arvandstar 4.42 2,062.75 432.15

BugTrap
RRTstar 29.55 124.66 121.78
Arvandstar 51.72 7,040.70 163.44

Cubicles
RRTstar 18.38 1,916.82 1,833.96
Arvandstar 60.56 45,079.29 2,378.78

Maze
RRTstar 9.71 71.51 69.69
Arvandstar 19.45 829.89 102.78

RandomPolygons
RRTstar 16.51 108.78 106.53
Arvandstar 37.21 646.64 127.31

UniqueSolutionMaze
RRTstar 11.35 280.85 277.49
Arvandstar 15.93 25,511.39 345.38

Table 16: Comparing RRT* and Arvand*, with the same time limits as in previous tables.


