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An Enhanced Solver for the Game of Amazons

Jiaxing Song and Martin Miiller

Abstract—The game of Amazons is a modern board game with
simple rules and nice mathematical properties. It has a high com-
putational complexity. In 2001, the starting position on a 5x 5
board was proven to be a first player win. The enhanced Amazons
solver presented here extends previous work in the following five
ways: by building more powerful endgame databases, including
a new type of databases for so-called blocker territories, by im-
proving the rules for computing bounds on complex game posi-
tions, by local search to find tighter local bounds, by using ideas
from combinatorial game theory to find wins earlier, and by using
a df-pn based solver. Using the improved solver, the starting posi-
tions for Amazons onthe4 x 5,5 x 4,4 x 6,5 x 6, and 4 x 7 boards
were shown to be first player wins, while 6 x 4 is a second player
win. The largest proof, for the 5 x 6 board, is presented in detail.

Index Terms—- Artificial intelligence, computational and artifi-
cial intelligence, combinatorial mathematics, heuristic algorithms,
search methods, search problems algorithms.

I. INTRODUCTION

A. Games and Artificial Intelligence

INCE the beginnings of Artificial Intelligence (Al) in the
S 1950s, the relationship between games and Al research has
been a reciprocal one. Games have finite state spaces, well de-
fined rules and quantifiable goals. They, therefore, offer ideal
testbeds for Al research. This leads to competitive opponents for
human game players and also often offers interesting insights
into the games.

The game of Amazons is a modern board game with simple
rules yet high complexity [1]. With a typical branching factor in
the hundreds of moves, Amazons is an ideal testbed for selec-
tive search algorithms. Since the board naturally breaks down
into independent subgames as a game proceeds, the game also
provides a nice test domain for applying combinatorial game
theory.

B. Outline

This paper presents several techniques for solving small Ama-
zons boards and applies them to determine the game-theoretic
result on several small rectangular board sizes. It is organized
as follows: Section I motivates Al research in games, intro-
duces the game of Amazons, and summarizes related work and
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the contributions of this paper. Section II describes the method-
ology used for solving Amazons, including essential background
on combinatorial game theory, and introduces tightened and
relaxed bounds on the value of a game. Section III discusses
the three types of local game databases built, with a focus on
the new blocker territory databases. Section 1V gives details
on how bounds on the value of each type of area are com-
puted and combined for solving a full-board Amazons position.
Section V contains experimental results of the solver, including
details of the 5 x 6 solution, results for test cases from harder
board sizes, and statistics on the different types of local areas.
The final Section VI discusses ideas for further improving the
Amazons solver.

C. Contributions

The following are the main contributions of this paper:

* A strong evaluation function for computing correct bounds
on the value of small full-board Amazons positions based
on many types of local analysis.

e A df-pn based solver for Amazons which utilizes the eval-
uation components above and improves search efficiency,
often by orders of magnitude.

* A technique for computing, storing and using databases of
blocker territories.

* Two new static rules for improving the bounds on active
local areas.

* A notation for expressing tightened and relaxed bounds on
the value of a game.

» Techniques for exploiting knowledge about infinitesimals
which often occur in Amazons, including an application of
subzero thermography.

* An extensive empirical evaluation of the new solver.

* Solving the initial positions of Amazons on 4 x5, 5 x 4,
4x6,5x 6 and 4 x 7 boards to be first player wins, and
solving 6 X 4 to be a second player win.

D. The Game of Amazons

The game of Amazons was invented by Walter Zamkauskas
of Argentina in 1988. It is a two-player board game played on
a rectangular board, with standard size 10 x 10!. Each player
controls 4 amazons, or queens, which are placed on the edge
of the board before a game starts. Two players Black and White
move alternately until the player to move has no legal move and
thereby loses the game. White usually plays first. The starting
position of 5 x 6 Amazons is shown in Fig. 1.

A move in Amazons is comprised of two compulsory phases:
queen move and arrow shot. First, a player moves one queen ¢ of

IThroughout the paper, board dimensions are presented in the format width x
height.
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Fig. 1. 5 x 6 Amazons starting position and strong first move.

the player's own color from its origin square to a different des-
tination square in a straight line either horizontally, vertically
or diagonally, with the constraint that it may not cross or enter
a square occupied by an amazon of either color or a burnt-off
square. Next, ¢ has to shoot an arrow, which travels in the exact
same way as a queen, from the square ¢ just moved to. The des-
tination square of the arrow is burnt-off permanently from the
board: no further queen moves or arrow shots can travel over or
land on this square. Since exactly one empty square is burnt off
in each move and at least one empty square is needed to make
amove, an Amazons game is guaranteed to terminate in at most
as many moves as there are empty squares. A strong opening
move for White in 5 X 6 Amazons, shown in Fig. 1, is to move
queen B1 to B4 and shoot to D4, abbreviated as B1-B4 x DA4.
The gray circle in the figure marks the destination square for the
queen, and the gray cross indicates the square to be burnt off.

E. Related Work on Amazons

Amazons has simple rules, but the computational complexity
of all but the most trivial Amazons games is high due to its large
branching factor. For example, the first player has 410 moves
in the 5 X 6 starting position. Even the special case of deciding
whether a queen can make a certain number of moves in one-
player Amazons puzzles is NP-complete [2], and determining
the winner of a generalized Amazons game is PSPACE-com-
plete [3].

Since a board often breaks down into independent subgames
as the game proceeds, Amazons has attracted the attention of
researchers in combinatorial game theory. Berlekamp analyzed
positions with one queen per player on 2 X n boards and deter-
mined their thermographs [4]. Tegos built databases of combi-
natorial game values and defective territories, which cannot be
completely filled, and used them for building a strong Amazons

TABLE I
WINNERS FOR AMAZONS ON SMALL BOARDS. 1 MEANS A FIRST PLAYER WIN,
2 A SECOND PLAYER WIN. NEW RESULTS ARE CIRCLED

width \height || 4 | 5 | 6 | 7
4 2 | O] @] @©
5 D TRONEE
6 ® ? ? 7

player [5]. Snatzke also computed the canonical forms of Ama-
zons positions up to size 2 x 11 by exhaustive search [6], and
both authors identified some interesting positions.

Kloetzer, lida and Bouzy [7], [8] solve local endgames by
several different minimax search methods, and compare algo-
rithms for playing sums of such games. Okada et al. [9] seem?
to approximate a subgame by two integers.

F. State of the Art for Solving Amazons

Only a few results are known for analyzing or solving small
Amazons boards. On boards with width or height less than four,
there is no natural way to place the standard four amazons for
each player. 1 X n Amazons with one queen each is quite trivial.
Letn = b+w+ s+ 2, where s is the number of “shared” empty
points between the black and white amazon, and b and w the
number of empty squares accessible only by black and white,
respectively. If n = 2, then no queen can move and if s = 0,
the game is the number b — w in terms of combinatorial game
theory. Otherwise, each player can move to block the opponent
and claim all the s — 1 remaining shared points, and the game
has the value b —w =+ (s — 1), with mean b — w and temperature
s —1.

Sums of 2 x n positions with one queen per color per subgame
were studied in detail by Berlekamp [4]. For the standard setup
with four queens each, starting on the (1,2)-points in the corner,
4 x 4 Amazons “is a second player win, and can be solved easily
by brute-force search [10].” 5 x 5 is a first player win [11].

Table I summarizes the previously known and new results
about solving Amazons on small boards. First player wins were
found forthe 4 x 5,5 x 4,4 x 6,5 x 6 and 4 x 7 boards, while
6 x 4 turned out to be a second player win. The narrow and high
versions seem much easier to prove as first player wins, since
an effective first blocking move exists. 5 x 4 was much harder
than 4 x 5, and while 4 x 6 is a fairly straightforward win by
blocking, 6 x 4 is a second player win, and it took almost a
full CPU day of computation to refute all 256 possible starting
moves.

To the authors' knowledge, no results on other board sizes,
with other numbers of queens, or with other starting locations
of the queens have been published.

II. BACKGROUND

A. Solving Amazons

1) Simple Bounds: The deciding factor for analyzing an
Amazons position is the difference in the number of moves that
the players can make. If this number is zero, then the last player

2The English summary of this Japanese paper is vague about this point.
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Fig. 2. Board partition.

able to move wins. Simple integer bounds of a game G, as used
in [11], limit the range of the number of moves Black can make
more than White in GG. Simple bounds of a game are written
in the form [lower, upper| where lower is a lower bound on
this number, and upper is an upper bound. Given bounds b, the
notation [(b), u(b) is used to indicate these lower and upper
bound, respectively. For example, if the bounds of a game are
[—3, —1], then Black can make at least —3 and at most —1 more
moves than White (i.e., White has at least 1 and at most 3 more
moves than Black), therefore, White wins.

The following rules [11] relate the winner of a game G to its
simple bounds b = bounds(G):

* black wins if {(b) > 0, or if both I(b) = 0 and it is White

to move;

« white wins if u(b) < 0, or if both u{b) = 0 and it is Black

to move;

* in other cases, bounds & do not provide enough information

to determine the winner of G.

These bounds and rules will be generalized in Section II-D.

2) Amazons Solver Architecture: Since neither arrows nor
queens can pass through a burnt-off square, these squares estab-
lish a barrier between different parts of the board. As the game
progresses and squares are burnt off, the board naturally splits
into independent subgames (or areas). For example, in Fig. 2,
two such areas are delimited by solid lines.

Bounds on the values of independent areas can be computed
individually and summed up into a single global bound, which
can then be used to determine the winner of the whole board
according to the rules above.

3) Board Partition: Intuitively, areas can be found by finding
all the 8-connected components of empty squares and queens of
both players on the board. This basic partition yields the two
areas delimited by solid lines in Fig. 2.

An improved partition can be achieved by using queens of
one color to block the opponent [11]. In the basic partition, if

part of an area is inaccessible to the opponent given that the
player does not move, then this part of the board along with the
blocking queens (called blockers) constitutes a new area, called
a blocker territory. The nonblocker queens are called normal
queens. In the example in Fig. 2, the improved partitions are
delimited by dashed lines. The White queens E5 and 6 and
the Black queen F'2 are blockers. An improved partition splits
an area from the basic partition into multiple smaller areas by
using blockers. A blocker belongs to all the areas it separates,
to illustrate the fact that it can potentially move in any of them.

4) Solver Overview: Algorithm 1 illustrates the abstract
main loop of the solver. Function NextPosition gets the next
position to be evaluated depending on the search algorithm,
such as a most promising node in df-pn. The position is par-
titioned and the bounds of each resulting area are computed.
The computed bounds are summed up into globalBounds,
and UpdateSolver checks whether the winner of this position
can be determined from the generalized rules in Section II-D.
The solver's internal state is updated with that information. For
example, df-pn will update its proof and disproof numbers.
This process is repeated until the starting position is solved or
resources run out.

Algorithm 1 Abstract Solver Main Loop

function SolverMain(root)

while root is not solved do
position« Nextposition()
areas< BoardPartition(position)
ComputeBounds(areas)
globalBounds+ SumBounds(areas)
UpdateSolver(globalBounds)

end while

end function

B. Areas in Amazons

Different detailed analyses of the areas discussed in
Section II-A2 are the main building blocks of the solver. An
area in Amazons is a set of 8-connected squares which can
contain empty squares and queens of either color. While areas
don't contain any burnt-off squares, such squares are often
shown in diagrams to improve readability. An area containing
only queens, or only empty squares, is called a dead area [11],
and is ignored in further analysis since neither player can move
there.

In a basic partition, the resulting areas are all independent
by construction. In an improved partition, areas can overlap
on blockers. Based on whether both players have queens in an
area and whether blockers exist, areas can be classified as ac-
tive, simple territory or blocker territory. The size of an area
is defined as the (width, height) pair of its minimum bounding
rectangle.
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Fig. 3. Area classification example.

1) Active Area: An active area contains at least one queen
of each color and one empty square. For example, Area C in
Fig. 3 is a 2 x 2 active area. Playing in an active area is often
good, as it can give a player the chance to block off more squares
from the opponent. However, in a zugzwang, playing first is a
disadvantage [10].

2) Simple Territory: A simple territory contains queens of
only one color and does not overlap with other areas. For ex-
ample, Area B in Fig. 3 is a 1 x 2 simple territory for White.
Since only one player has moves in a simple territory, its ab-
solute value is an integer, the maximum number of moves that
the owner can make. Determining this value is not trivial, since
territories can be defective and provide fewer moves than the
number of empty squares [10]. Examples are shown in Fig. 7.

3) Blocker Territory: A blocker territory contains queens
of only one color and overlaps with active areas, or with
other blocker territories, on its blockers. For example, Area
A in Fig. 3 is a White blocker territory of size 1 x 2. Like
simple territories, blocker territories are one-player games
with integer value when considered in isolation. However,
sometimes a player can profit from moving into an adjacent
area and (re-)moving the blockade. Such moves are considered
by the solver in its search, but are not used for computing
bounds from blocker territories. See the detailed discussion in
Section IV-B3.

Having blocker territories separated provides an advantage
for both playing and solving the game. From a strategic point of
view, blockers provide a player the advantage of securing terri-
tory-to-be as well as threatening other parts of the board. For the
solver, evaluating the blocker territory separately often yields a
stronger bound that leads to a faster proof. Finally, separating
out blocker territories shrinks the size and thereby simplifies re-
maining active areas.

C. Combinatorial Game Theory Background

Concepts from combinatorial game theory [12], [13], such as
sums of games, canonical form and thermographs, can be used
to help evaluate Amazons positions. Each area corresponds to

a subgame, and each move affects exactly one subgame. Ter-
ritories in Amazons correspond to integers in the theory. Many
other game values occur in active areas, such as fractions, hot
games, and infinitesimals. While the canonical form of an area
contains all information needed to play perfectly in a sum of this
and other areas, the average complexity of the canonical form
grows very rapidly with the size of areas. In contrast, the ther-
mograph of a subgame is of bounded size in practice—fewer
than 20 rational numbers suffice to describe all but extremely
rare cases.

1) Thermographs: A thermograph— Fig. 4(c) shows an ex-
ample—is a data structure consisting of two sets of line seg-
ments, called the left and right scaffold, which describe the
minimax value of a game when played with a tax ¢t > 0, for
Left = Black = positive and Right = White = negative going
first, respectively. The scaffolds meet to form a single mast at
the temperature of the game. In subzero thermography [14] as
used here, the tax can also be negative, down to a value of —1.
This extension of thermography allows stronger comparisons of
games by adding detail about a subgame's behavior at low tem-
peratures, which occur frequently on small Amazons boards.

The current work proposes several ways to use thermographs
of subgames for computing relaxed bounds on the value of a
game, and also by using infinitesimals to improve these bounds
and prove that one player can make the last move. While ther-
mographs of two games can not be added to compute the ther-
mograph of the sum, the bounds derived from them can be
added, and the information about positive or negative infinites-
imal values can be combined, by using the fact that the sum of
positive games is again positive, and the sum of negative games
is negative. The next subsection formalizes such extended use
of bounds.

D. Generalizing Bounds: Tightened and Relaxed Bounds

Combinatorial game theory defines a space of game values
that is much richer than just integers [13]. Relaxed bounds use
two of these concepts, fractions and infinitesimals, as follows:
1) Bounds can be fractions, not just integers. For example,
bounds(G) = [-3/2,5/16] means that G > —3/2 and
G < 5/16 in terms of combinatorial game theory.

2) Both upper and lower bounds can be independently tight-
ened or relaxed .

A tightened bound excludes the number that defines the
bound itself, and is written in standard mathematical notation
using a round bracket. For example, bounds(G) = [-3,—1)
means that the lower bound is G > 3, while the upper bound
is tightened to exclude the value —1, so G < —1. The op-
posite, a relaxed bound, means that the game value can be
infinitesimally outside the bound. A relaxed bound is written by
appending the symbols +¢ or —e to the number. For example,
the relaxed bound bounds(G) = [—3, —1 4 €] means that while
G < —1+eforalle > 0,G < —1 is not proven. —1 + * is an
example of a game which would have such a bound. Similarly,
bounds(G) = [—3 — ¢, —1] means that while G > —3 — € for
all e > 0, G > —3 has not been proven. In contrast to simple
and tightened bounds, a relaxed bound of 0 cannot be used to
establish a win or loss. Both tightened and relaxed bounds can
result from using thermographic databases, and more examples
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of such bounds can be found in Sections II-D1, II-D2, and
IV-B2. Addition of bounds uses the following rules, which are
applied independently to the upper and lower bounds:

1) If at least one of the bounds is relaxed, then the sum is
relaxed. For example, [1,2+ €| +[1 —¢,3] = [2—¢,5+¢]
and (1,2) +[1 —€,3+¢/ =[2—¢,5+¢].

2) Otherwise, if at least one bound is tightened, then the sum
bound is also tightened. For example, [1, 2]+ (1, 3] = (2, 5]
and (1,2) + [1 — ¢,3] = [2 — ¢,5).

3) Otherwise, the bound includes the number and is not re-
laxed. For example, [1,2] + [1,3] = [2, 5].

The following rules can determine the winner of a game G

from its relaxed bounds & = bounds(G):

* Black wins if:

—1(b) > 0;

—1(b) = 0 and the lower bound has been tightened;

—1(b) = 0, the lower bound is not relaxed, and it is White
to move.

o Similarly, White wins if:

—u(b) < 0;

—u(b) = 0 and the upper bound has been tightened,

—u(b) = 0, the upper bound is not relaxed, and it is Black
to move.

In all other cases, bounds & do not provide enough informa-
tion to determine the winner of G. However, in Section IV-C2,
extra rules are developed which look at some of the components
of a sum game in order to recognize more wins.

While the notion of relaxed and tightened bounds is similar to
the concept of confusion interval in combinatorial games [13],
there are three distinct cases for each bound in the current frame-
work.

1) Relaxed Bounds From Thermographs for Hot Games: Hot
games provide extra moves for the player who makes the first
move locally. The left and right stops, the values of the left and
right scaffolds at temperature £ = 0, can be used as bounds on
the value of a game as follows: If the slope of the scaffold is
vertical below ¢ = 0, then the bound is exact. If it is diagonal,
then the game is confused with this value, and the bound must
be relaxed.

For example, Fig. 4 shows an active area a and its thermo-
graph, with a left stop of 2 and right stop of 1 computed at tem-
perature 0. The lower bound of 1 is exact since the thermograph
is vertical at £ = 0, but the upper bound of 2 is relaxed, since
the slope is diagonal there, so bounds(a) = [1,2 + €.

2) Thermograph Bounds for Infinitesimal Games: In infin-
itesimal games, no player can gain additional moves, but in
close games they can be very important for determining who
can make the last move. Infinitesimals can be grouped into four
types depending on which player gets to make the last move. In
positive games, Black gets the last move no matter who goes
first, while in negative games, White does. Games of value 0
are second player wins, while all other infinitesimals are fuzzy,
meaning a first-player win locally. An important property of
subzero thermography is that the type (but not the exact value
except in the case of 0) of an infinitesimal is preserved in its
thermograph. Fig. 5 shows these graphs.

Fig. 4. Active area and its thermograph, with bounds [1, 2 + €].

} )
t=0 s
t=-1
1 t] -1 1 0 1 5

fuzzy negative

0

positive

Fig. 5. The four thermographs of loopfree infinitesimals [14, Fig. 17].

The corresponding relaxed bounds on an infinitesimal & are
[0,0] for G = 0, (0,¢] for G > 0, [—¢,0) for G < 0 and
[—¢, +¢] for fuzzy G.

The simplest fuzzy infinitesimal is * = {0|0}, the game
where either player can move first and move exactly once,
ending the game. Area A in Fig. 11 is an example. * is an idem-
potent under addition, meaning that * + + = Q. This is exploited
in the solver by recognizing games of value * and dealing with
them separately from the rest of the sum, by simply removing
pairs of * from the sum. Other fuzzy infinitesimals are also
counted separately since a single fuzzy infinitesimal is a first
player win. Details on how these facts are used for improved
winner detection are given in Section IV-C2.

III. ENDGAME DATABASES IN Amazons

In board games in general, endgame databases can be ei-
ther full-board or partial-board depending on what informa-
tion is stored. A full-board endgame database contains precom-
puted exact values of game positions. For a convergent game,
where the number of possible full-board states decreases as the
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Fig. 6. Blocker territory database dependency example.

game progresses, such databases reduce the depth of the search.
Large endgame databases have been successfully used to solve
checkers, Nine Men's Morris, Awari and many other games [15].

For divergent games such as Amazons or Go, it makes no
sense to build such full-board databases. However, if the game
board can be split into independent subgames, then partial-board
endgame databases can provide perfect information for at least
some subgames, which helps the overall solving process. An
advantage of partial-board databases is that they can be used
regardless of the full board size, as in Tegos' Amazons-playing
program Antiope [5].

Amazons endgame databases are built for the three different
area types of Section II-B. This section focuses on describing
the new blocker territory databases, since the other two types
have been built and used before.

A. Building Blocker Territory Databases

The computational technique used to generate the blocker ter-
ritory databases is retrograde analysis. This process starts by
generating terminal positions whose values are known statically,
then computes positions that lead to a terminal position directly
by doing a 1-ply lookup. Next, all positions 2 ply away from
terminal positions can be solved by a 1-ply lookup, and so on
until either some stopping criteria such as the memory limit, or
the beginning of the game is reached.

Retrograde analysis for blocker territory databases is com-
plicated by the special behavior of blockers. When a blocker
moves into a blocker territory, it must shoot back to its origin
square in order to prevent the opponent from getting into this
territory. This property is called the blocker constraint. After
this initial move, a blocker turns into a normal queen which can
move and shoot freely. Therefore the values in a blocker terri-
tory database depend on positions where some of the blockers
have become normal queens: the positions in a blocker territory
database of size w x h with B blockers, (2 normal queens and
E < wx h— B— (@ empty squares potentially depend on posi-
tions of the same size with & (0 < b < B) blockers, Q + B — b
normal queens and ¢ (0 < e < E — B + b) empty squares. For
example, Fig. 6 shows that the 3 x 3 blocker territory database
with 2 blockers, 1 normal queen and 6 empty squares depends
on 3 X 3 positions with 1 blocker, 2 normal queens and up to 5
empty squares, as well as on 3 x 3 positions with 0 blockers, 3
normal queens and up to 4 empty squares. Note that each move
by a blocker also burns off a square and thereby reduces the
number of empty points left.

After the databases covering the dependencies are built, ret-
rograde analysis can be applied in the usual way.

B. Databases Used

1) Simple Territory Databases: The simple territory
databases are similar to those of Tegos [5]. However, the

21

Fig. 7. Territory Bounds: Left: Simple territory, bounds [1, 2]. Right: Blocker
territory, bounds [1, 3].

blocker territory database entry format was used for the simple
territory databases rather than /ine segment graphs as in Tegos'
implementation. 48 simple territory databases were computed:
1 xn,2 x nand 3 x n databases for all 2 < n < 6, except for
3 x 6 with 4 queens. The database statistics are summarized in
[16, Table B.1].

2) Active Area Databases: Active area databases use the im-
plementation by Enzenberger which is part of the code base for
the Amazons program Arrow [17]. Each entry stores the position
as in the territory databases and a reference to its corresponding
thermograph [16]. The active area databases are built without
blocker constraints. Therefore, they cannot be used to query a
remaining active area when blocker territories are partitioned
out in an improved partition. All nontrivial 1 X n and 2 X n
databases were built for2 < n < 6,plus3 x nfor3 <n <5,
3 x 6 with at most two queens each, and the four smallest 4 x 4
databases. [16, Table B.2] shows their statistics.

3) Blocker Territory Databases: Similarly, 106 blocker ter-
ritory databases were built and summarized in [16, Table B.3].

IV. IMPROVING AREA AND GLOBAL BOUNDS

This chapter discusses how the bounds of different types of
areas are computed. Section IV-A shows how bounds of each
type of area are initialized by using heuristics, or estimated by
local search. Section IV-B describes how tighter bounds can
be obtained from databases. Section IV-C describes how local
bounds are combined to try to find a winner for a given full board
position.

A. Computing Bounds by Heuristics

1) Simple Territory: Since there is no easy way in general
to determine whether a simple territory can be completely filled
or not (see Section II-B), as in [11] a simple plodding heuristic
is used to quickly compute a basic lower bound p. Then the
bounds of a simple territory with v empty squares are initialized
to [p, v] for Black, and [—v, —p)] for White. The heuristic counts
the number of moves each queen can make by one sampled se-
quence of plodding moves, which move to a neighboring empty
square and shoot back. Each visited empty square is marked and
not used by other queens. For example, the bounds of the posi-
tion shown on the left of Fig. 7 are [1, 2] since the heuristic can
only make 1 move with this Black queen. In this defective terri-
tory, 1 is the true number of moves, but in general the heuristic
just returns a lower bound.

2) Blocker Territory: The bounds of a blocker territory are
initialized in the same way as a simple territory. When filling a
blocker territory, the plodding heuristic starts by using normal
queens, and uses blockers only when necessary.

For example, the position shown on the right in Fig. 7 is
a Black blocker territory with blocker B2. The bounds com-
puted by the heuristic are [1, 3] since the blocker has to shoot
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Fig. 8. New static evaluation Rules 5 and 6 for queens with 1 and 2 AES.

back when it moves, thus blocking its access to the other empty
squares.

3) Active Area: The bounds of an active area with v empty
squares are initialized to [—w,2], then improved by either
static evaluation or local o3 search. Static evaluation improves
bounds by identifying safe moves for the players. This is often
only a small improvement, but is fast enough to compute for all
active areas. Local search computes bounds for an active area
by exhaustive a3 search. For performance reasons, it is only
used for relatively small nondatabase positions.

4) Safe Moves: The concept of safe moves was introduced
in [11] in order to improve bounds on an Amazons area. Safe
moves are guaranteed for a player, since the opponent cannot
eliminate them. Several examples will be shown below.

5) Static Evaluation: A queen needs at least one adjacent
empty square (AES) to make a move. The purpose of static eval-
uation is to find out if there are safe moves for either player.
Bounds are improved according to the following rules:

1) For every Black safe move, the lower bound is increased

by 2;
2) For every White safe move, the upper bound is decreased
by 2.

Each safe move changes a bound by 2 since one safe move for
a player also means one less potential move for the opponent.
For example, if Black has two safe moves and White has one safe
move in an active area with v empty points, then the improved
bounds are [—v + 4,v — 2].

How many safe moves a queen can make depends on its AES
status, the opponent's queen distribution and whose turn it is to
move next. Four rules for finding safe moves were defined in
[11], and are also implemented in this solver. The current work
contributes two new static evaluation rules, Rule 5 and Rule 6,
as follows:

Rule 5 takes the origin square of the opponent queen which
blocks a single AES into account. For example, in Fig. 8 on the
left, the White queen A2 has 1 AES B2 which the Black queen
D2 can block by D2-C3x B2 as shown in the figure. How-
ever, in blocking this AES, Black has to free the White queen
D1, so one safe move can be claimed for the two White queens
combined.

Rule 6 is similar to Rule 5 for a queen with 2 AES. In Fig. 8 on
the right, the White queen D1 has 2 AES and the Black queen A3
can block both by moving to C'1 and shooting to C2. However,
this opens up A3 for White queen B4, and White can claim one
safe move for D1 and B4 combined.

There are potential dependencies amongst safe moves for dif-
ferent queens [11]. Therefore, static evaluation is only applied
at most once for each player in an active area.

6) Local Search: Bounds of an active area can be computed
on the fly by local a8 search. Two such searches are done for

1

A D

---B-

Fig. 9. Blocker territory with 1 normal queen and 1 blocker.

"C

each area, one for each player going first. The search score is the
difference in number of moves on the board between the first
player and the opponent. Passes are allowed for both players
even if they have other legal moves, in order to handle zugzwang
positions correctly. A search ends after two consecutive passes
or when there are no more empty squares.

Let the local search value from the first player's point of view
be v, and v, for White and Black moving first in an active
area A, respectively. Then the bounds of A are set to [v,, —
€,y + €]. For efficiency, local searches are only performed on
nondatabase positions with total number of (queens plus empty
squares) less than 9.

B. Computing Bounds From Databases

1) Simple Territory Databases: When a simple territory is
encountered during a search, it is queried against the simple
territory database with the corresponding size and number of
queens. If the query is successful, its exact value v is returned
and the bounds for this territory are set to [v, v]. As an example,
for the defective territory in Fig. 7 on the left, the query returns
the exact value of 1 and the bounds are set to [1,1].

2) Active Area Databases: An active area encountered
during the search is queried against the active area database
with the corresponding size and number of queens of each
color. If the query succeeds, the thermograph of this area is re-
trieved and (possibly relaxed) bounds for the area are computed
as in Section II-D1.

3) Blocker Territory Databases: Blocker territories are the
result of an improved partition of an active area. In the case
that the original active area is not in the database as a whole,
an improved partition is computed. If no blocker territories can
be partitioned out, then the bounds of this active area are com-
puted as in Section [V-A3. If the improved partition succeeds,
then the bounds of the resulting blocker territories and active
areas are computed separately. A blocker can be used to im-
prove the bounds of at most one area that it is part of. For ex-
ample, Fig. 9 shows a blocker territory delimited by the dashed
line, containing one normal queen A1 and one blocker B2. This
blocker can either be used to help fill the blocker territory, or to
move in the remaining active area.
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In the current implementation, neither active area databases
nor local searches consider the blocker constraint. Bounds on
the remaining active areas are only computed with static eval-
uation as in Section IV-A3, with the additional constraint that
blockers that are used in other areas must not be used to find safe
moves (either by themselves or combined with other queens).
The more blockers can be spared from use in blocker territories,
the better the chances for achieving tighter active area bounds.
For example, in Fig. 9, if the blocker B2 is used for filling the
blocker territory, then it cannot be used to improve the bounds
of the remaining active area r. The bounds of r are therefore
[—4, 2] since White has a safe move. If queen A1 is used to fill
A2, then the blocker B2 can be used to improve the bounds of
r to [—2, 2] because it has a safe move in r.

Unfortunately, in order to reduce the size of blocker terri-
tory databases, the current implementation does not store the
information about which queens are used for filling a territory.
Therefore, a query needs to assume that all blockers and normal
queens are used for filling, even if the territory can be filled with
only a small subset of them, like queen A1 in the example above.

4) Changing the Query Position: To ameliorate this problem,
three heuristics select a subset of all the queens in a blocker
territory B, to create a new query position B’ which reduces
the number of blockers used. The remaining blockers are not
chosen for filling this territory, and are free to be used for other
adjacent areas. One drawback of eliminating queens from the
query position B’ of a blocker territory B is that if B’ is de-
fective, it is not sure whether B is defective or not. In terms
of bounds, bounds(B) = [u{bounds(B’), €], where ¢ is the
number of empty squares in B. If B’ is nondefective, then B is
also shown to be nondefective since it can be filled completely.
For example, if the square C'2 containing a blocker is removed
from the blocker territory in Fig. 10, then this smaller territory
within the solid line becomes defective, so the computed bounds
are [1, 2]. Details of the queen selection process are described
in[16, Ch. 4.2.3].

C. Combining Bounds

After a game position G is partitioned into areas, the
bounds of each area are computed and added to yield a single
global bound. This bound is then checked against the rules in
Section II-D to try to determine the winner of G. For simple ter-
ritories computed by heuristics or from the databases, blocker
territories computed by heuristics or from the databases,
assuming blockers blocking multiple blocker territories are
handled properly as stated in Section IV-B3, and for active
areas computed by static evaluation and local search, the
combination is just bounds summation. Combining active areas
computed from thermographs is more complex since more
detailed information about these games in their thermographs
can be used to achieve better bounds. The handling of these
games is explained in the next two subsections.

1) Handling Hot Game Bounds From Thermographs:
Bounds on a sum game can be improved by simulating a one
move lookahead. If at least one hot game is present, the best
improvement is achieved by assuming that the next player will
move in a hot game with widest bounds b,,, which are bounds
for which the difference u(b,,) — {(b,,) is largest. Then in the
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Fig. 10. Territory becomes defective without the blocker C'2.

sum, b,, can be improved as follows: If Black is to play, raise
the lower bound I(b,,) (which could also be a relaxed bound of
1(b,,) — € or tightened) to u(b,,) — €. Analogously, if White is
to play, lower the upper bound from u(b,,) to {(b,} + €. For
example, if the widest bounds in the sum are [—5, 2], they can
be replaced by [2 — ¢, 2] if it is Black's turn, and by [—5, —5 + €]
if White plays next.

This replacement yields valid global bounds since it corre-
sponds a conservative estimate of the effect of the first player
moving in this subgame and committing to keep replying to op-
ponent's moves here until the stop value is reached. Because of
the minimax principle, a bound computed from restricting the
first player's strategy is a lower bound (from the player's point
of view) on the best result that player can achieve. Using the next
player's privilege of moving first in this way precludes using it
again for infinitesimals, as in the next section.

2) Handling Infinitesimals: In principle, bounds for infinites-
imals can be handled just like other games, according to the
addition rules inSection II-D. However, games of value * and
other fuzzy infinitesimals are collected separately in the solver,
to take advantage of the fact that * + * = 0 and to identify some
more wins as explained below. If the next move privilege was
not used on a hot game, it can potentially be used with an in-
finitesimal to prove more wins. The rules below are for Black,
with the rules for White obtained easily by negating all values
and outcomes. Let b be the bounds on a sum game excluding
infinitesimals, with I(b) = 0, and the lower bound not relaxed.
Then Black as the next player wins if:

* no other infinitesimals exist and there is an odd number of

%S;
* no other infinitesimals exist and there is a single fuzzy in-
finitesimal;
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« all other infinitesimals are positive and there is either an
odd number of *, or a single fuzzy infinitesimal, but not
both.

In all these cases Black wins by playing first in the fuzzy
infinitesimal (which might be a * ) and leaving a game G* > 0
for White.

3) Board Evaluation Examples: A Win by #: Fig. 11 shows
a 6 X 6 Amazons endgame position with 9 empty squares left.
The board is partitioned into 4 active areas and all the areas can
be looked up in the databases. Area A4 is recognized as a *, and
areas B, C, and D are all the integer 0. Therefore, the sum game
is evaluated as 0 + * and the first player, Black in this case, can
win by moving in the #, leaving 0 for White.

Without databases, area A would still be recognized as a x,
but B, C, and D would be searched locally, resulting in each of
them bounded by [—e¢, +¢|. The exact nature of these infinites-
imals would remain unknown, and the winner could not be de-
termined without search.

A Local Search Win: Fig. 12 shows a 6 x 6 Amazons endgame
position with 6 empty squares left. Area B is recognized as a *.
Area (' is a simple territory of value 1. Area A, of size of 3
% 6 with two queens each, is not in the current databases. Local
search results in bounds [—¢, 2 + ¢€]. The global bounds (both
with or without the *) are [—¢,2 + €] +1 = [1 — €,3 + €,
securing a win for Black.

Without local search, Area A has bounds [—2, 2] since both
players have one safe move there. The global bounds become

[-2,2]4+ 1+ # = [—1, 3]+ %, and no winner can be determined
from these bounds.

V. EXPERIMENTS AND RESULTS

A. Solving Test Cases

Two Amazons solvers were developed within the Arrow
framework:ab is a «f3-based solver similar to the one used
in [11], and df-pn is the new df-pn based solver. In the first
experiment, the performance of the solvers and databases was
compared using the same test data as in [11], which contains
positions selected from three test games named f7, f2 and /3.
f1 and f2 are 5 x 5 games and f3 was played on 6 x 6. The
test set is available at [18]. The configuration of the solvers
is as follows: ab uses a hash table with 22° entries and no
databases, and df-pn has a hash table with 232 entries. This is
roughly fair in terms of memory usage since individual table
entries are larger. df-pn is evaluated in all 8 combinations of
including/excluding the three types of databases.

The search results for f7, f2 and f3 are shown in Fig. 13. In
the largest test cases, ab exceeded the time limit of 10000 sec-
onds per search. For each graph, the horizontal axis is labelled
with the test case number for even-numbered test cases. The
number of empty squares in the test cases increases from left to
right. The vertical axis shows the number of nodes searched to
solve each case on a logarithmic scale. df-pn outperforms ab,
sometimes by more than an order of magnitude, in all large test
cases and most small ones. Using the databases sometimes re-
duces the number of nodes by another order of magnitude. Most
df-pn results are clustered into two groups, with the versions
including the combinatorial game databases outperforming the
ones without. In contrast, both types of territory databases yield
only small improvements. This is due in part to the small size
of the board, which does not allow many large territories to be
formed. Most very small territories are already evaluated cor-
rectly by the nondatabase static evaluation.

B. Solving 5 x 6 Amazons: A First Player Win

The df-pn solver with a hash table of 239 entries plus the
databases as specified in Section III-B weakly solved the 5
X 6 starting position shown in Fig. 1 as a first player win. The
first move was fixed as White B1-B4xD4, and all 157 possible
replies for Black were refuted, running them as separate search
tasks but with a shared hash table on one Quad-Core AMD
Opteron(tm) Processor 8384 running at 2.7 GHz. Out of 157
moves, 9 were solved instantly by a 1 ply search through
a transposition table lookup. For example, after the Black
move 2. E5-C5xC4 is refuted by a line starting with White 3.
D1-D3xC2, the Black move 2. E5-C5xC2 can be immediately
refuted by White 3. D1-D3xC4. Both lines lead to the same
position after three moves, swapping who plays the arrow shots
to C2 and C4. A total of 47 Black moves was refuted in under
1 second each. In contrast, the hardest moves 2. E5-E3xE6 and
E5-E3xES took between three and four hours each to refute. A
total of 12 Black moves took over 90 minutes each. A complete
strategy for winning 5 x 6 Amazons was computed and verified
with a proof tree checking program. A typical difficult line in
the proof is shown in Fig. 14. For the entire line, there is only
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Fig. 13. Search results of f7 (top), /2 (middle), /3 (bottom).

one active area of size 5 X 6. In the final position, shown at the
bottom of Fig. 14, White has two blocker territories of value
—1 and —2, respectively, while Black has one blocker territory
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Fig. 14. A sample deep line in the 5 X 6 proof, White moves first and wins.

of value 2. The remaining active area in the top left corner is
evaluated as 0 since both players can find a safe move. The sum
of these subgames is —1, a White win.

C. Solving Early 6 X 5 and 6 X 6 Positions

To further evaluate the performance of static evaluation,
databases and the solver on harder and larger boards, a set of
representative 6 X 5 and 6 X 6 positions was created. For both
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TABLE II
SOLVING 6 X 5 POSITIONS FROM 100 GAMES. COLUMNS SHOW NUMBER OF
POSITIONS SOLVED STATICALLY WITHOUT DATABASES, STATICALLY
WITH DATABASES, AND WITH 500 SECONDS OF DF-PN SEARCH.
RESULTS WITH ALL POSITIONS SOLVED IN BOLD

Move Nr | no DB | DB | search | total games
22 74 74 74 74
21 88 88 88 88
20 82 94 98 98
19 84 95 100 100
18 38 84 100 100
17 56 76 100 100
16 21 49 100 100
15 31 53 100 100
14 13 28 100 100
13 13 26 100 100
12 10 22 100 100
11 9 11 100 100
10 4 100 100

9 1 1 100 100
8 0 1 96 100
7 0 0 91 100
6 0 0 53 100
5 0 0 36 100

board sizes, 100 self-play games were played by Arrow2. These
test sets are available on [18]. Starting from the end of each
game, positions were tested with the static evaluation without
databases, the static evaluation using all databases, and a 500
second df-pn search using all databases and a 2%2 entry hash
table.

Tables II and III show the results on 6 x 5 and 6 X 6 boards,
respectively. On 6 x 5, static evaluation without databases can
solve most positions for moves 19-22, a significant fraction of
positions from move 15-18, and a small number of positions for
moves 11-14, before dropping to almost zero for earlier posi-
tions. With databases, wins are recognized about 2—3 moves ear-
lier, which is a very significant improvement given the exponen-
tial growth of the search tree. With search, 91 of 100 games on
6 x 5 are solved after 7 moves, then performance drops quickly.

On 6 X 6, the picture is similar but the decline of the two static
evaluators is a bit more gradual. 72 of the games are solved by
search after 8 moves. The static evaluators in both sets of games
exhibit a bit of an odd/even effect, since many of these positions
are wins for White, and with White to play the extra knowledge
about first player wins applies.

D. Types of Areas in Search

Fig. 15 illustrates how frequently different types of areas
occur during search on a 5 x 6 board. Statistics are averaged
over 100 self-play games by the Arrow-2 program, with 500
seconds time limit per game. The first diagram shows a sum-
mary of all areas followed by a separate diagram with details of
the active areas. There is a sharp transition between moves 10
and 11, from a single full-board active area to positions where
almost all areas are found in the database.

TABLE III
SOLVING 6 X 6 POSITIONS FROM 100 GAMES

Move Nr | no DB | DB | search | total games
28 24 24 24 24
27 61 61 61 61
26 74 75 76 76
25 92 94 94 94
24 98 99 99 99
23 93 99 100 100
22 94 96 100 100
21 75 90 100 100
20 73 84 100 100
19 65 79 100 100
18 55 72 100 100
17 37 55 100 100
16 28 40 100 100
15 13 25 100 100
14 5 20 100 100
13 1 8 100 100
12 0 12 100 100
11 0 0 99 100
10 0 10 96 100

9 83 100
8 72 100
7 24 100
6 16 100

VI. FUTURE WORK

A. Database Improvements

Currently the territory databases store both defective and
nondefective positions since the current search engines require
knowing a best move for each position. Instead, the solver
could be modified to play out the integer, and possibly other,
parts of the game as an “abstract game” instead of on the real
Amazons board. This would allow to greatly compress the
territory databases by pruning all nondefective positions and
removing the best-move field from the data.

Active area databases could be built with the blocker con-
straint such that the remaining active areas in an improved par-
tition can also be queried, and blocker databases could be aug-
mented to identify the blocking queen(s).

B. Parallel Computing

The solvers described above are single-threaded. For solving
larger problems such as 6 x 6, it makes more sense to have a
multithreaded/distributed solver with a master process/machine
generating unsolved nodes and a farm of slave processes/ma-
chines actually solving them [16].

C. Search Improvements

* Local search improvements. Currently, the local search
module does not use the databases and does not consider
the blocker constraint. Both techniques should speed up
these searches.
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Fig. 15. Area frequency on 5 x 6 board. Top: all types. Below: active areas,

details.

* Proof number initialization. The proof and disproof num-
bers of a newly created node can be initialized to indicate
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how easy or hard it is expected to solve [19]. This could
direct the solver towards easier to prove subtrees.

* Area caching. Caching search results of areas that are not
in the databases but arise frequently in the search could
give the solver a further performance boost.
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