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Random walks are a relatively new component used
in several state of the art satisficing planners. Empiri-
cal results have been mixed: while the approach clearly
outperforms more systematic search methods such as
weighted A* on many planning domains, it fails in
many others. So far, the explanations for these empir-
ical results have been somewhat ad hoc. This paper
proposes a formal framework for comparing the per-
formance of random walk and systematic search meth-
ods. Fair homogenous and Infinitely Regressable ho-
mogenous graphs are proposed as graph classes that
represents characteristics of the state space of proto-
typical planning domains, and is simple enough to al-
low a theoretical analysis of the performance of both
random walk and systematic search algorithms. This
gives well-founded insights into the relative strength
and weaknesses of these approaches. The close relation
of the models to some well-known planning domains
is shown through simplified but semi-realistic planning
domains that fulfill the constraints of the models.

One main result is that in contrast to systematic
search methods, for which the branching factor plays
a decisive role, the performance of random walk meth-
ods is determined to a large degree by the Regress Fac-
tor, the ratio between the probabilities of progressing
towards and regressing away from a goal with an ac-
tion. The performance of random walk and systematic
search methods can be compared by considering both
branching and regress factors of a state space.

1. Random Walks in Planning

Random walks, which are paths through a
search space that follow successive randomized

state transitions, are a main building block of
prominent search algorithms such as Stochastic
Local Search techniques for SAT [1,2] and Monte
Carlo Tree Search in game playing and puzzle solv-
ing [3,4,5,6].

Inspired by these methods, several recent sat-
isficing planners also utilize random walk (RW)
techniques. Identidem [7] performs a hill climb-
ing search that uses random walks to escape
from plateaus or saddle points. All visited states
are evaluated using a heuristic function. Random
walks are biased towards states with lower heuris-
tic value. Roamer [8] enhances its best-first search
(BFS) with random walks, aiming to escape from
search plateaus where the heuristic is uninforma-
tive.

Arvand [9] takes a more radical approach: it re-
lies exclusively on a set of random walks to de-
termine the next state in its local search. For effi-
ciency, it only evaluates the endpoints of those ran-
dom walks. Arvand also learns to bias its random
walks towards more promising actions over time,
by using the techniques of Monte Carlo Deadlock
Avoidance (MDA) and Monte Carlo with Helpful
Actions (MHA). In the Arvand-RC system [10],
local search is enhanced by the technique of Smart
Restarts, and applied to solving Resource Con-
strained Planning (RCP) problems. Arvand-LS is
a hybrid system which combines random walks
with a local greedy best first search [11].

Compared to all other tested planners, Arvand-
RC performs much better in RCP problems [10],
which test the ability of planners in dealing with
scarce resources. In IPC domains, RW-based plan-
ners tend to excel on domains with many paths
to the goal. Scaling studies in [11] show that RW
planners can solve much larger problem instances
than other state of the art planners in the do-
mains of Transport, Elevators, Openstacks, and
Visitall. However, these planners perform poorly
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in Sokoban, Parking, and Barman, puzzles with a
small solution density in the search space.

While the success of RW methods in related re-
search areas such as SAT and Monte Carlo Tree
Search serves as a good general motivation for try-
ing them in planning, it does not provide an ex-
planation for why RW planners perform well. Pre-
vious work has highlighted three main advantages
of random walks for planning:

– Random walks are more effective than sys-
tematic search approaches for escaping from
regions where heuristics provide no guidance
[7,8,9].

– Increased sampling of the search space by
random walks adds a beneficial exploration
component to balance the exploitation of the
heuristic in planners [9].

– Combined with proper restarting mechanisms,
random walks can avoid most of the time
wasted by systematic search in dead ends.
Through restarts, random walks can rapidly
back out of unpromising search regions [7,9].

These explanations are intuitively appealing,
and give a qualitative explanation for the observed
behavior on planning benchmarks such as IPC and
IPC-2011-LARGE [11]. Typically, random walk
planners are evaluated by measuring their cover-
age, runtime, or plan quality in such benchmarks.

1.1. Studying Random Walk Methods

There are many feasible approaches for gaining
a deeper understanding of these methods.

– Scaling studies, as in Xie et al. [11].
– Algorithms combining RW with other search

methods, as in [8,12].
– Experiments on small finite instances where it

is possible to “measure everything” and com-
pare the choices made by different search al-
gorithms.

– Direct measurements of the benefits of RW,
such as faster escape from plateaus of the
heuristic.

– A theoretical study of how RW and other
search algorithms behave on idealized classes
of planning problems which are amenable to
such analysis.

The current paper pursues the latter approach.
The main goal is a careful theoretical investigation
of the first advantage claimed above - the question
of how RW manage to escape from plateaus faster
than other planning algorithms.

1.2. A First Motivating Example

As an example, consider the following well-
known plateau for the FF heuristic, hFF , discussed
in [13]. This heuristic estimates the goal distance
by solving a relaxed planning problem in which all
the negative effects of actions are ignored. Con-
sider a transportation domain in which trucks are
used to move packages between n locations con-
nected in a single chain c1, · · · , cn. The goal is to
move one package from cn to c1. Figure 1 shows
the results of a basic scaling experiment on this
domain with n = 10 locations, varying the num-
ber of trucks T from 1 to 20. All trucks start at
c2. The results compare basic Monte Carlo Ran-
dom Walks (MRW) from Arvand-2011 and basic
Greedy Best First Search (GBFS) from LAMA-
2011. Figure 1 shows how the runtime of GBFS
grows quickly with the number of trucks T until
it exceeds the memory limit of 64 GB. This is ex-
pected since the effective branching factor grows
with T . However, the increasing branching factor
has only little effect on MRW: the runtime grows
only linearly with T .

1.3. Choice of Basic Search Algorithms

All the examples in this paper use state of the
art implementations of basic, unenhanced search
methods. GBFS as implemented in LAMA-2011
represents systematic search methods, and the
MRW implementation of Arvand-2011 represents
random walk methods. Both programs use hFF for
their evaluation. All other enhancements such as
preferred operators in LAMA and Arvand, multi-
heuristic search in LAMA, and MHA in Arvand
are switched off.

The reasons for selecting this setup are:

1. A focus on theoretical models that can ex-
plain the substantially different behavior of
random walk and systematic search methods.
Using simple search methods allows a close
alignment of experiments with theoretical re-
sults.
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2. Enhancements may benefit both methods in
different ways, or be only applicable to one
method, so may confuse the picture.

3. A main goal here is to understand the behav-
ior of these two search paradigms in regions
where there is a lack of guiding information,
such as plateaus. Therefore, in some exam-
ples even a blind heuristic is used. While en-
hancements can certainly have a great influ-
ence on search parameters such as branch-
ing factor, regress factor, and search depth,
the fundamental differences in search behav-
ior will likely persist across such variations.

1.4. Contributions

This paper improves and extends the results
reported at the SOCS 2012 conference [14]. The
main contributions are:

Regress factor and goal distance for random
walks: The key property introduced to analyze ran-
dom walks is the regress factor rf , the ratio of two
probabilities: progressing towards a goal and re-
gressing away from it. Besides rf , the other key
variable affecting the average runtime of basic ran-
dom walks on a graph is the largest goal distance D

in the whole graph, which appears in the exponent
of the expected runtime.

Fair Homogenous graph model: In the homoge-
nous graph model, the regress factor of a node de-
pends only on its goal distance and in a fair graph
a ranom step changes the goal distance at most by
one unit. Theorem 3 shows that the runtime of RW
mainly depends on rf . As an example, the state
space of Gripper [15] is close to a fair homogenous
graph.

Bounds for other graphs: Theorem 4 extends the
theory to compute upper bounds on the expected
runtime for graphs which are not homogeneous,
but for which bounds on the progress and regress
chances are known.

Strongly homogenous graph model: In strongly
homogenous graphs, almost all nodes share the
same rf . Theorem 5 explains how rf and D affect
the hitting time. A transport example is used for
illustration.

Model for Restarting Random Walks: For large
values of D, restarting random walks (RRW) can
offer a substantial performance advantage. At each
search step, with probability r a RRW restarts
from a fixed initial state s. Theorem 6 gives the ex-

Fig. 1. Average runtime of GBFS and MRW varying the
number of trucks (x-axis) in Transport domain. Missing
data means memory limit exceeded.

pected runtime of RRW on Homogenous Graphs,
relaxing the fairness condition. Furthermore, The-
orem 7 proves that the expected runtime of RRW
depends only on the goal distance of s, not on D.

Extension to infinitely regressable and non-fair
graphs: In infinitely regressable graphs and non-
fair graphs, a random step can arbitrarily increase
the goal distance. The main contributions here are
Lemma 2 and Theorem 6.

Compared to the conference version, the cur-
rent paper introduces the extension to infinitely
regressable and non-fair graphs. It also contributes
more elegant, simpler proofs of Lemma 1 and The-
orem 4.

2. Background and Notation

Notation follows standard references such as
[16]. Throughout the paper, the notation P (e)

denotes the probability of an event e occuring,
G = (V, E) is a directed graph, and u, v ∈ V are
vertices.

Definition 1 (Markov Chain). The discrete-time
random process X0, . . . , XN defined over a set of
states S is Markov(S, P) iff P (Xn = jn|Xn−1 =

jn−1, . . . , X0 = j0) = P (Xn = jn|Xn−1 = jn−1). In
the matrix P(pij), pij = P (Xn = jn|Xn−1 = in−1)

are the transition probabilities of the chain. In
time-homogenous Markov chains as used in this
paper, P does not depend on n.

Definition 2 (Distance dG). dG(u, v) is the length
of a shortest path from u to v in G. The dis-
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tance dG(v) of a single vertex v is the length of
a longest shortest path from a node in G to v:
dG(v) = maxx∈V dG(x, v).

Definition 3 (Successors). The successors of u ∈ V

is the set of all vertices in distance 1 of u:
SG(u) = {v|v ∈ V ∧ dG(u, v) = 1}.

Definition 4 (Random Walk). A random walk on G

is a Markov chain Markov(V, P) where puv = 1
|SG(u)|

if (u, v) ∈ E, and puv = 0 if (u, v) /∈ E.

The restarting random walk model used here is
a random walk which restarts from a fixed initial
state s with probability r at each step, and uni-
formly randomly chooses among neighbour states
with probability 1− r.

Definition 5 (Restarting Random Walk). Let s ∈
V be the initial state, and r ∈ [0, 1]. A restarting
random walk RRW (G, s, r) is a Markov chain MG

with states V and transition probabilities puv:

puv =

8>>>>>>>>><>>>>>>>>>:

1− r

|SG(u)| if (u, v) ∈ E, v 6= s

r +
1− r

|SG(u)| if (u, v) ∈ E, v = s

0 if (u, v) /∈ E, v 6= s

r if (u, v) /∈ E, v = s

A RW is the special case of RRW with r = 0.

Definition 6 (Hitting Time). Let M = X0, X1, . . . , XN

be Markov(S, P), and u, v ∈ S. Let Huv = min{t ≥
0 : Xt = v ∧ X0 = u}. Then the hitting time huv

is the expected number of steps in a random walk
on G starting from u which reaches v for the first
time: huv = E[Huv]. Therefore, hvv = 0.

Definition 7 (Unit Progress Time). The unit
progress time uuv is the expected number of steps
in a random walk after reaching u for the first time
until it first gets closer to v. Let R = RRW (G, s, r).
Let Uuv = min{t ≥ Hsu : dG(Xt, v) = dG(u, v) − 1}.
Then uuv = E[Uuv].

Definition 8 (Progress, Regress, Infinite Regress
and Stalling Chance; Regress Factor). Let X : V →
V be a random variable with the following proba-
bility mass function:

P (X(u) = v) =

8><>:
1

|SG(u)| if (u, v) ∈ E

0 if (u, v) /∈ E

(1)

Let Xu be short for X(u). The progress chance
pc(u, v), regress chance rc(u, v), infinite regress
chance irc(u, v) and stalling chance sc(u, v) of u re-
garding v, are respectively: the probabilities of get-
ting closer, further away, infinitly further away or
staying at the same distance to v after one random
step at u.

pc(u, v) = P (dG(Xu, v) = dG(u, v)− 1)

rc(u, v) = P (dG(Xu, v) > dG(u, v))

irc(u, v) = P (dG(Xu, v) = ∞)

sc(u, v) = P (dG(Xu, v) = dG(u, v))

The regress factor of u regarding v is rf(u, v) =
rc(u,v)
pc(u,v)

if pc(u, v) 6= 0, and undefined otherwise.

In a Markov Chain, the probability transitions
play a key role in determining the hitting time. In
all the models considered here, the movement in
the chain corresponds to moving between different
goal distances. Therefore it is natural to choose
progress and regress chances as the main proper-
ties.

Theorem 1. [16] Let M be Markov(V, P). Then for
all u, v ∈ V ,

huv = 1 +
X
x∈V

puxhxv,

(2)

Theorem 2. Let s, u, v ∈ V , R = RRW (G, s, r),
Vd = {x : x ∈ V ∧ dG(x, v) = d}, and Pd(x)

be the probability of x being the first node in
Vd reached by R. Then the hitting time huv =PdG(u,v)

d=1

P
x∈Vd

Pd(x)uxv.

Proof. Let the random variable Huv denote the
number of steps that R performs since it visits u

(for the first time) until it reaches v (for the first
time since visiting u), and the random variable Xd

denote the first vertex at goal distance d that R

reaches after visiting u (Figure 2 shows a schematic
represention of these variables). Then

Huv =

dG(u,v)X
d=1

X
x∈Vd

1{Xd}(x)Uxv (3)

where Uxv is a random variable measuring the
length of the fragment of the walk starting from x
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dG(u,v) 

d 

Uxv 

Huv 

Xd=x Xd-1 u s v 

Fig. 2. An illustration of the proof for Theorem 2. Circles
represent nodes.

and ending in a smaller goal distance for the first
time, and 1{Xd}(x) is an indicator random variable
which returns 1 if Xd = x and 0 if Xd 6= x. Since
1{Xd} and Uxv are independent,

E[Huv] =

dG(u,v)X
d=1

X
x∈Vd

E[1{Xd}(x)]E[Uxv]

huv =

dG(u,v)X
d=1

X
x∈Vd

Pd(x)uxv

2.1. Heuristic Functions, Plateaus, Exit Points
and Exit Time

What is the connection between the models in-
troduced here and plateaus in planning? Using the
notation of [17], let the heuristic value h(u) of ver-
tex u be the estimated length of a shortest path
from u to a goal vertex v. A plateau P ⊆ V is a
connected subset of states which share the same
heuristic value hP . A state s is an exit point of P

if s ∈ SG(p) for some p ∈ P , and h(s) < hP . The
exit time of a random walk on a plateau P is the
expected number of steps in the random walk until
it first reaches an exit point. The problem of find-
ing an exit point in a plateau is equivalent to the
problem of finding a goal in the graph consisting
of P plus all its exit points, where the exit points
are goal states. The expected exit time from the
plateau equals the hitting time of this problem. In
practice, the search time of planners is often dom-
inated by periods spent in such attempted escapes
from plateaus and local minima.

x 

i 

j 

pd qd 

1-pd-qd 

Vd Vd+1 Vd-1 

ud+1 uxv 

Fig. 3. An illustration of the behaviour of random walks
after visiting a node x at the goal distance d.

3. Fair Homogenous Graphs

A fair homogeneous (FH) graph G is the main
state space model introduced here. Homogenuity
means that both progress and regress chances are
constant for all nodes at the same goal distance.
Fairness means that an action can change the goal
distance by at most one.

Definition 9 (Homogenous Graph). For v ∈ V , G

is v-homogeneous iff there exist two real functions
pcG(x, d) and rcG(x, d), mapping V×{0, 1, . . . , dG(v)}
to the range [0, 1], such that for any two vertices
u, x ∈ V with dG(u, v) = dG(x, v) the following two
conditions hold:

1. If dG(u, v) 6= 0, then
pcG(u, v) = pcG(x, v) = pcG(v, dG(u, v)).

2. rcG(u, v) = rcG(x, v) = rcG(v, dG(u, v)).

G is homogeneous iff it is v-homogeneous for all
v ∈ V . pcG(x, d) and rcG(x, d) are called progress
chance and regress chance of G regarding x. The
regress factor of G regarding x is defined by
rfG(x, d) = rcG(x, d)/pcG(x, d).

Definition 10 (Fair Graph). G is fair for v ∈ V

iff for all u ∈ V , for all x ∈ SG(u), |dG(u, v) −
dG(x, v)| ≤ 1. G is fair if it is fair for all v ∈ V .

Lemma 1. Let G = (V, E) be FH and v ∈ V . Then
for all x ∈ V , hxv depends only on the goal distance
d = dG(x, v), not on the specific choice of x, so
hxv = hd.

Proof. Let pd = pcG(v, d), qd = rcG(v, d), cd =

scG(v, d), D = dG(v), and Vd = {x : x ∈ V ∧
dG(x, v) = d}. If d > 0, then each x ∈ Vd is con-
nected to at least one node at goal distance d− 1.
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Thus, pd > 0. The main proof step uses induc-
tion from d + 1 to d to show that for all x ∈ Vd,
uxv = ud. To prove the induction step, assume for
all x′ ∈ Vd+1, ux′v = ud+1. The base case for d = D

will be shown at the end of the proof since it uses a
similar setup as the induction step. After visiting
x ∈ Vd one of the following three cases happens for
the random walk(Figure 3):

– with probability pd it performs a (d− 1)-visit.
– with probability qd it regresses to the goal dis-

tance d + 1 and after on average ud+1 step it
hits i ∈ Vd.

– with probability 1−pd−qd it stalls at the same
goal distance d hitting j ∈ Vd.

Therefore for d < D,

uxv = qd(ud+1 + uiv) + (1− pd − qd)ujv + 1

The following shows for all i, j ∈ Vd, uxv = ud.
Let α = arg maxk∈Vd

(ukv) and β = arg mink∈Vd
(ukv).

Then,

uαv = qd(ud+1 + uIv) + (1− pd − qd)uJv + 1

≤ qd(ud+1 + uαv) + (1− pd − qd)uαv + 1

≤ qd

pd
ud+1 +

1

pd

Furthermore,

uβv = qd(ud+1 + uIv) + (1− pd − qd)uJv + 1

≥ qd(ud+1 + uβv) + (1− pd − qd)uβv + 1

≥ qd

pd
ud+1 +

1

pd

Therefore,

qd

pd
ud+1 +

1

pd
≤ uβv ≤ uxv ≤ uαv ≤

qd

pd
ud+1 +

1

pd

uxv =
qd

pd
ud+1 +

1

pd
= ud (4)

For the base case d = D, for all x ∈ VD

uxv = (1− pD)uIv + 1

uαv ≤
1

pD

uβv ≥
1

pD

uxv =
1

pD
= uD

The lemma now follows from Theorem 2:

hxv =

dG(x,v)X
d=1

X
k∈Vd

Pd(k)ukv =

dG(x,v)X
d=1

ud = hd

Theorem 3. Let G = (V, E) be FH, v ∈ V , pi =

pcG(v, i), qi = rcG(v, i), and dG(v) = D. Then for
all x ∈ V ,

hxv =

dG(x,v)X
d=1

0@βD

D−1Y
i=d

λi +

D−1X
j=d

 
βj

j−1Y
i=d

λi

!1A
where for all 1 ≤ d ≤ D, λd =

qd
pd

, and βd = 1
pd

.

Proof. According to Lemma 1 and Theorem 1,

h0 = 0

hd = pdhd−1 + qdhd+1 + cdhd + 1 (0 < d < D)

hD = pDhD−1 + (1− pD)hD + 1

Let ud = hd − hd−1, then

ud = λdud+1 + βd (0 < d < D)

uD = βD

By induction on d, for d < D

ud = βD

D−1Y
i=d

λi +

D−1X
j=d

 
βj

j−1Y
i=d

λi

!
(5)

This is trivial for d = D−1. Assume that Equation
5 holds for d + 1. Then by Equation 5 for hxv,

ud = λd

0@βD

D−1Y
i=d+1

λi +

D−1X
j=d+1

 
βj

j−1Y
i=d+1

λi

!1A+ βd

= βD

D−1Y
i=d

λi + λd

D−1X
j=d+1

 
βj

j−1Y
i=d+1

λi

!
+ βd

= βD

D−1Y
i=d

λi +

D−1X
j=d+1

 
βj

j−1Y
i=d

λi

!
+ βd

d−1Y
i=d

λi

= βD

D−1Y
i=d

λi +

D−1X
j=d

 
βj

j−1Y
i=d

λi

!

hxv =

dG(x,v)X
d=1

0@βD

D−1Y
i=d

λi +

D−1X
j=d

 
βj

j−1Y
i=d

λi

!1A
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Robot Gripper pc rc rf b d

A full 1
2

1
2

1 1 4|A| + 2

A empty
|A|

|A|+1
1

|A|+1
1

|A| |A| 4|A| − 1

B full 1
2

1
2

1 1 4|A| + 1

B empty 1
|B|+1

|B|
|B|+1

|B| |B| 4|A|

Table 1

Random walks in One-handed Gripper. |A| and |B| denote
the number of balls in A and B.
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Fig. 4. The average number of generated states varying the
number of balls (x-axis) in Gripper domain.

The largest goal distance D and the regress fac-
tors λi = qi/pi are the main determining factors
for the expected runtime of random walks in ho-
mogenous graphs.

3.1. Example domain: One-handed Gripper

Consider a one-handed gripper domain, where
a robot must move n balls from room A to B by
using the actions of picking up a ball, dropping its
single ball, or moving to the other room. The states
of the search space fall into four categories shown
in Table 1. The search space is fair homogenous:
any two states with the same goal distance d have
the same distribution of balls in the rooms and
also belong to the same category. The graph is fair
since no action changes the goal distance by more
than one. The expected hitting time is given by
Theorem 3.

Figure 4 plots the predictions of Theorem 3 to-
gether with the results of a scaling experiment,
varying n for both random walks and greedy best
first search. To simulate the behaviour of both al-
gorithms in plateaus with a lack of heuristic guid-
ance, a blind heuristic is used which returns 0

for the goal and 1 otherwise. Search stops at a
state with a heuristic value lower than that of the
initial state. Because of the blind heuristic, the
only such state is the goal state. The prediction
matches the experimental results extremely well.
Random walks outperform greedy best first search.
The regress factor rf never exceeds b, and is signif-
icantly smaller in states with the robot at A and
an empty gripper - almost one quarter of all states.

3.2. Biased Action Selection for Random Walks

Regress factors can be changed by biasing the
action selection in the random walk. It seems nat-
ural to first select an action type uniformly ran-
domly, then ground the chosen action. In gripper,
this means choosing among the balls in the same
room in case of the pick up action.

With this biased selection, the search space be-
comes fair homogenous with q = p = 1

2
. The exper-

imental results and theoretical prediction for such
walks are included in Figure 4. The hitting time
grows only linearly with n. It is interesting that
this natural way of biasing random walks is able
to exploit the symmetry inherent in the gripper
domain.

4. Extension to Bounds for Other Graphs

While many planning problems cannot be ex-
actly modelled as FH graphs, these models can still
be used to obtain upper bounds on the hitting time
in any fair graph G which models a plateau. Con-
sider a corresponding FH graph G′ with progress
and regress chances at each goal distance d respec-
tively set to the minimum and maximum progress
and regress chances over all nodes at goal distance
d in G. Then the hitting times for G′ will be an
upper bound for the hitting times in G. In G′, pro-
gressing towards the goal is at most as probable as
in G.

Theorem 4. Let G = (V, E) be a fair directed graph,
s, v ∈ V , and D = dG(v). Let pmin(d) and qmax(d)

be the minimum progress and maximum regress
chance among all nodes at distance d of v. Let
G′ = (V ′, E′) be an FH graph, v′, s′ ∈ V ′, dG′(v′) =

D, pcG′(v′, d) = pmin(d), rcG′(d) = qmax(d), and
scG′(d) = 1−pmin(d)−qmax(d). Then starting at the
same goal distance the hitting time in G′ is an up-
per bound for the hitting time in G, i.e., hsv ≤ h′s′v′
if dG(s, v) = dG′(s′, v′).
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Proof. The first step is to show for all 0 ≤ d ≤
D, scG′(d) ≥ 0. Let qx and px be the regress and
progress chance of node x ∈ V , and Vd = {x|x ∈
V ∧ dG(x, v) = d}, and j = arg maxx∈Vd

(qx). Then,

qmax(d) = qj ≤ 1− pj ≤ 1− pmin(d)

qmax(d) + pmin(d) ≤ 1

scG′(d) ≥ 0.

Assume for all x ∈ Vd, uxv ≤ u′d, where u′d is the
unit progress time at distance d of v′. According
to Theorem 2,

hsv =

dG(s,v)X
d=1

X
x∈Vd

Pd(x)uxv

≤
dG(s,v)X

d=1

X
k∈Vd

Pd(x)u′d

≤
dG(s,v)X

d=1

u′d
X

k∈Vd

Pd(x)

≤
dG′ (s′,v′)X

d=1

u′d

≤ h′d

To prove uxv ≤ u′d by induction, assume for all
x′ ∈ Vd+1, ux′v ≤ u′d+1 (the induction step; again
the base case is shown later). After visiting x ∈ Vd

one of the following three cases happens for the
random walk:

– with probability px it performs a (d− 1)-visit.
– with probability qx it regresses to the goal dis-

tance d+1 and, on average, after at least ud+1

steps it hits i ∈ Vd.
– with probability 1−px−qx it stalls at the same

goal distance d hitting j ∈ Vd.

Then for d < D,

uxv ≤ qx(ud+1 + uiv) + (1− px − qx)ujv + 1.

The following shows that for all i, j ∈ Vd, uxv =

ud. Let α = arg maxi∈Vd
(uiv). Then for d < D,

uαv ≤ qα(u′d+1 + uiv) + (1− pα − qα)ujv + 1

≤ qα(u′d+1 + uαv) + (1− pα − qα)uαv + 1

≤ qα

pα
u′d+1 +

1

pα

≤ qmax(d)

pmin(d)
u′d+1 +

1

pmin(d)

Furthermore, according to Equation 4,

qmax(d)

pmin(d)
u′d+1 +

1

pmin(d)
= ud (6)

Therefore, uxv ≤ uαv ≤ ud. Analogously, for the
base case d = D, for all x ∈ VD

uαv ≤
1

pα
≤ 1

pmin(d)
≤ u′d.

5. Fair Strongly Homogeneous Graphs

A fair strongly homogenous (FSH) graph G is a
FH graph in which pc and rc are constant for all
nodes. FSH graphs are simpler to study and suf-
fice to explain the main properties of FH graphs.
Therefore, this model is used to discuss key issues
such as dependency of the hitting time on largest
goal distance D and the regress factors.

Definition 11 (Strongly Homogeneous Graph).
Given v ∈ V , G is strongly v-homogeneous iff there
exist two real functions pcG(x) and rcG(x) with do-
main V and range [0, 1] such that for any vertex
u ∈ V the following two conditions hold:

1. If u 6= v then pc(u, v) = pcG(v).
2. If d(u, v) < dG(v) then rc(u, v) = rcG(v).

G is strongly homogeneous iff it is strongly v-
homogeneous for all v ∈ V . The functions pcG(x)

and rcG(x) are respectively called the progress and
the regress chance of G regarding x. The regress
factor of G regarding x is defined by rfG(x) =

rcG(x)/pcG(x).

Theorem 5. For u, v ∈ V , let p = pcG(v) 6= 0, q =

rcG(v), c = 1 − p − q, D = dG(v), and d = dG(u, v).
Then the hitting time huv is:

huv =

8<:β0

“
λD − λD−d

”
+ β1d if q 6= p

α0(d− d2) + α1Dd if q = p

(7)

where λ = q
p
, β0 = q

(p−q)2
, β1 = 1

p−q
, α0 = 1

2p
,

α1 = 1
p
.
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The proof follows directly from Theorem 3
above. When q > p, the main determining factors
in the hitting time are the regress factors λ = q/p

and D; the hitting time grows exponentially with
D and polynomially, with degree D, with λ. As long
as λ and D are fixed, changing other structural pa-
rameters such as the branching factor b can only
increase the hitting time linearly. Note that also
for q > p, it does not matter how close the start
state is to the goal. The hitting time mainly de-
pends on D, the largest goal distance in the graph.

5.1. Analysis of the Transport Example

Theorem 5 helps explain the experimental re-
sults in Figure 1. In this example, the plateau
consists of all the states encountered before load-
ing the package onto one of the trucks. Once the
package is loaded, hFF can guide the search di-
rectly towards the goal. Therefore, the exit points
of the plateau are the states in which the package
is loaded onto a truck. Let m < n be the location
of a most advanced truck in the chain. For all non-
exit states of the search space, q ≤ p holds: there
is always at least one action which progresses to-
wards a closest exit point - move a truck from cm

to cm+1. There is at most one action that regresses,
in case m > 1 and there is only a single truck at
cm which moves to cm−1, thereby reducing m.

According to Theorem 4, setting q = p for all
states yields an upper bound on the hitting time,
since increasing the regress factor can only increase
the hitting time. By Theorem 5, −x2

2p
+ ( 2D+1

2p
)x is

an upper bound for the hitting time. If the number
of trucks is multiplied by a factor M , then p will be
divided by at most M , therefore the upper bound is
also multiplied by at most M . The worst case run-
time bound grows only linearly with the number of
trucks. In contrast, systematic search methods suf-
fer greatly from increasing the number of vehicles,
since this increases the effective branching factor
b. The runtime of systematic search methods such
as greedy best first search, A* and IDA* typically
grows as bd when the heuristic is ineffective. Re-
garding the memory usage, since RW in its sim-
plest form only store the current state of the walk,
increasing the number of trucks does not increase
the number of states stored, however, the size of
the state grows linearly.

This effect can be observed in all planning prob-
lems where increasing the number of objects of a

specific type does not change the regress factor.
Examples are the vehicles in transportation do-
mains such as Rovers, Logistics, Transport, and
Zeno Travel, or agents which share similar func-
tionality but do not appear in the goal, such as the
satellites in the satellite domain. All of these do-
mains contain symmetries similar to the example
above, where any one of several vehicles or agents
can be chosen to achieve the goal. Other examples
are “decoy” objects which can not be used to reach
the goal. Actions that affect only the state of such
objects do not change the goal distance, so increas-
ing the number of such objects has no effect on rf
but can increase b. Techniques such as plan space
planning, backward chaining planning, preferred
operators, or explicitly detecting and dealing with
symmetries can often prune such actions.

Theorem 5 suggests that if q > p and the current
state is close to an exit point in the plateau, then
systematic search is more effective, since random
walks move away from the exit with high probabil-
ity. This problematic behavior of RW can be fixed
to some degree by using restarting random walks.

6. Analysis of Restarting Random Walks

While FH graphs provide bounds for RW on
any fair graph, Infinitely Regressable Homogenous
(IRH) graphs provide bounds for RRW on any
strongly homogenous graph. A random step on an
IRH graph either gets closer to the goal, stalls at
the same goal distance or hits a dead end state, a
state with no path to the goal. To keep the anal-
ysis simple, it is assumed that all nodes have at
least one outgoing edge. Therefore, a RW can never
reach a state where no action is available.

Definition 12 (Infinitely Regressable Homogenous
Graph). Given v ∈ V , G is infinitely regressable
(IR) v-homogeneous iff for any vertex u ∈ V there
exists at least one vertex x such that (u, x) ∈ E and
there exist three real functions pcG(.), scG(.), and
ircG(.) with domain V and range [0, 1] such that
for any vertex u ∈ V the following three conditions
hold:

1. If u 6= v then pc(u, v) = pcG(v).
2. irc(u, v) = ircG(v).
3. sc(u, v) = 1− ircG(v)− pcG(v).
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x 

i 

k 

p(1-r) 

c(1-r) 

Vd Vd-1 

uxv 

s 

r 

r 
Dead end 

1-r 

Ud+1 

i(1-r) 

j 

Fig. 5. An illustration of the behaviour of random walks in
an IRH graph.

G is IRH iff for any v ∈ V it is IR v-homogeneous.
The functions pcG(x), scG(x) and ircG(x) are re-
spectively called the progress chance, the stall
chance and the infinite regress chance of G regard-
ing x.

Lemma 2. Let G = (V, E) be an IRH graph. Let
RRW (G, s, r) be a restarting random walk. Then,
for all v, x, x′ ∈ V with dG(x, v) = dG(x′, v) = d and
d ≤ dG(s, v), hxv = hx′v.

Proof. Let p = pcG(v), c = scG(v), and i = ircG(v).
Similar to Lemma 1 by induction on the goal dis-
tance d, we show that for d ≤ dG(s, v), uxv = ud.
Let Vd = {x : x ∈ V ∧ dG(x, v) = d}. Assume for the
induction step that for all x′ ∈ Vd+1, ux′v = ud+1.
Once more, the proof for the base case follows
later. Whenever the random walk transitions to a
deadend, it restarts after on average 1

r
steps (the

expected value of a geometric distribution with the
success probability r). After each restart a random
walk performs on average Ud+1 =

PdG(s,v)

i=d+1 ui steps
to visit a state with the goal distance d (d-visit).
Therefore, after visiting x ∈ Vd one of the following
four cases happens for the random walk (Figure
5):

– with probability r it restarts from s and after
on average Ud+1 steps performs the next d-
visit hitting n ∈ Vd.

– with probability c(1 − r) it stalls at the same
goal distance d hitting j ∈ Vd.

– with probability i(1 − r) it transitions to a
deadend and after on average 1

r
+ Ud+1 steps

it performs the next d-visit hitting k ∈ Vd.

– with probability p(1− r) it performs a (d− 1)-
visit.

Therefore, for d < dG(s, v),

uxv = r(Ud+1 + unv) + c(1− r)ujv+

i(1− r)(
1

r
+ Ud+1 + ukv) + (1− r)

Note that restarting itself is not counted as a ran-
dom walk step. The following shows that the iden-
tity of nodes n, j and k does not matter. Let
α = arg maxx∈Vd

(uxv) and β = arg minx∈Vd
(uxv).

Then,

uαv ≤ r(Ud+1 + uαv) + c(1− r)uαv+

i(1− r)(
1

r
+ Ud+1 + uαv) + (1− r)

≤ (r + i(1− r))Ud+1 + (1− r)(1 + i/r)

(1− r)(1− i− c)

Furthermore,

uβv ≥ r(Ud+1 + uβv) + c(1− r)uβv+

i(1− r)(
1

r
+ Ud+1 + uβv) + (1− r)

≥ (r + i(1− r))Ud+1 + (1− r)(1 + i/r)

(1− r)(1− i− c)

Therefore,

uxv = uαv = uβv = ud

=
(r + i(1− r))Ud+1 + (1− r)(1 + i/r)

(1− r)(1− i− c)

The base case d = dG(s, v) has the same four cases,
except that after restarting, the random walk im-
mediately performs the d-visit at s:

uxv = rusv + c(1− r)ujv+

i(1− r)(
1

r
+ ukv) + (1− r)

uxv = uαv = uβv = ud =
(1 + i/r)

(1− i− c)

The lemma now follows directly from Theorem 2:

hxv =

dG(x,v)X
d=1

X
k∈Vd

Pd(k)ukv =

dG(x,v)X
d=1

ud = hd
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Theorem 6. Let G = (V, E) be an IRH graph, v ∈
V , p = pcG(v) > 0, c = scG(v), and i = ircG(v). Let
R = RRW (G, s, r) with 0 < r < 1. The hitting time
hsv = Θ

`
βλds−1

´
, where β = i+r

rp
, λ = i

p
+ r

(1−r)p
+1

and ds = dG(s, v).

Proof. According to Theorem 1 and Lemma 2,

h0 = 0

hx = rhds + c(1− r)hx+

i(1− r)(
1

r
+ hds) + (1− r) + phx−1

Let ux = hx − hx−1 then

ux = (1− r) (phx−1 − phx−2 + chx − chx−1)

= (1− r)(pux−1 + cux)

=
(1− r)p

1− c + cr
ux−1

Since c = 1− p− i

ux =
(1− r)p

i(1− r) + p(1− r) + r
ux−1

= λ−1ux−1

For x < ds,

ux = λds−xuds

hx =

xX
i=1

ui

= uds

xX
i=1

λds−i

= λds−x(
λx − 1

λ− 1
)uds

The value uds is the progress time from the goal
distance ds. Therefore,

uds = ruds + c(1− r)uds + i(1− r)(
1

r
+ uds) + (1− r)

= (r + (1− r)(1− p)) uds + (i/r + 1)(1− r)

=
i + r

pr

= β

Therefore,

hds = uds + hds−1

hds = β + βλ(
λds−1 − 1

λ− 1
)

hds ∈ Θ
“
βλds−1

”
(8)

The next theorem shows how the results for
IRH graphs can be used to derive bounds for any
strongly homogeneous graph, even if it is not fair.

Theorem 7. Let G = (V, E) be a strongly ho-
mogeneous graph, v ∈ V , p = pcG(v) > 0 and
q = rcG(v). Let R = RRW (G, s, r). The hitting
time hsv ∈ O

`
βλd−1

´
, where λ =

“
q
p

+ r
p(1−r)

+ 1
”
,

β = q+r
pr

and d = dG(s, v).

Proof. For any goal distance x, hx ≤ 1
r

+ hd. This
is because the random walk on average restarts
from s after 1

r
steps. The right hand side of this

inequality is the hitting time of a random walk
stuck in an infinitely large dead end. Therefore,
with the pessimistic assumption that each time the
random walk regresses from the goal the walk is
in a deadend, we can obtain an upper bound for
a homogenous graph using the theorem for IRH
graphs. It is enough to simply replace i with q in
Equation 8.

Therefore, by decreasing r while λ decreases, β

increases. Since the upper bound increases poly-
nomially (the degree depends on d(s, v)) by λ and
only linearly by β, to keep the upper bound low a
small value should be chosen for r, especially when
d(s, v) is large. The r-value which minimizes the
upper bound can be computed from Equation 8.

Comparing the values of λ in the hitting time
of RW and RRW, Equations 8 and 7, the base of
the exponential term for RRW exceeds the regress
factor, the base of the exponential term for RW,
by r

p(1−r)
+ 1. For small r, this is close to 1.

The main advantage of RRW over simple ran-
dom walks is for small d(s, v), since the expo-
nent of the exponential term is reduced from D to
d(s, v)− 1. Restarting is a bit wasteful when d(s, v)

is close to D.
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Fig. 6. The Average number of generated states varying the
goal distance of the starting state (x-axis) and the restart
rate in the Grid domain.

6.1. A Grid Example

Figure 6 shows the results of RRW with restart
rate r ∈ {0, 0.1, 0.01, 0.001} in a variant of the Grid
domain with an n× n grid and a robot that needs
to first pick up a key at location (n, n), then unlock
a door at (0, 0). The robot can only move left, up
or down, except for the top row, where it is also
allowed to move right, but not up.

In this domain, all states before the robot picks
up the key share the same hFF value. Figure 6
shows the average number of states generated un-
til this subgoal is reached, with the robot starting
from different goal distances plotted on the x-axis.
Since the regress factors are not uniform in this
domain, Theorem 7 does not apply directly. Still,
comparing the results of RRW for different r > 0

with simple random walks where r = 0, the exper-
iment confirms the high-level predictions of The-
orem 7: RRW generates slightly more states than
simple random walks when the initial goal distance
is large, d ≥ 14, and r is small enough. RRW is
much more efficient when d is small; for example
it generates three orders of magnitude fewer states
for d = 2, r = 0.01.

7. Related Work

Random walks have been extensively studied in
many different scientific fields including physics,
finance and computer networking [18,19,20]. Lin-
ear algebra approaches to discrete and continuous
random walks are well studied [16,21,22,23]. The

current paper mainly uses methods for finding the
hitting time of simple chains such as birth–death,
and gambler chains [16]. Such solutions can be ex-
pressed easily as functions of chain features.

Properties of random walks on finite graphs have
been studied extensively [24]. One of the most rel-
evant results is the O(n3) hitting time of a random
walk in an undirected graph with n nodes [25].
However, this result does not explain the strong
performance of random walks in planning search
spaces which grow exponentially with the number
of objects. Despite the rich existing literature on
random walks, the application to the analysis of
random walk planning seems to be novel.

8. Discussion and Future Work

Important open questions about the current
work are how well it models real planning prob-
lems such as IPC benchmarks, and real planning
algorithms.
Relation to full planning benchmarks: Can they be
described within these models in terms of bounds
on their regress factor? Can the models be ex-
tended to represent the core difficulties involved
in solving more planning domains? What is the
structure of plateaus within their state spaces, and
how do plateaus relate to the overall difficulty of
solving those instances? Instances with small state
spaces could be completely enumerated and such
properties measured. For larger state spaces, can
measurements of true goal distances be approxi-
mated by heuristic evaluation, by heuristics com-
bined with local search, or by sampling?
Effect of search enhancements: To move from ab-
stract, idealized algorithms towards more realis-
tic planning algorithms, it would be interesting to
study the whole spectrum starting with the ba-
sic methods studied in this paper up to state of
the art planners, switching on improvements one
by one and studying their effects under both RW
and systematic search scenarios. For example, the
RW enhancements MHA and MDA [9] should be
studied.
Hybrid methods: Develop theoretical models for
methods that combine random walks with using
memory and systematic search such as [8,11].
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