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Abstract been given scant attention in the literature (all existing ap-

The need to economize limited resources, such as fuel or
money, is a ubiquitous feature of planning problems. If the
resources cannot be replenished, the planner must make do
with the initial supply. It is then of paramount importance
how constrained the problem is, i.e., whether and to which
extent the initial resource supply exceeds the minimum need.
While there is a large body of literature on numeric planning
and planning with resources, such resource constrainedness
has only been scantily investigated. We herein start to ad-
dress this in more detail. We generalize the previous notion
of resource constrainedness, characterized through a numeric
problem feature C' > 1, to the case of multiple resources. We
implement an extended benchmark suite controlling C. We
conduct a large-scale study of the current state of the art as
a function of C, highlighting which techniques contribute to
success. We introduce two new techniques on top of a re-
cent Monte Carlo Random Walk method, resulting in a plan-
ner that, in these benchmarks, outperforms previous planners
when resources are scarce (C' close to 1). We investigate the
parameters influencing the performance of that planner, and
we show that one of the two new techniques works well also
on the regular IPC benchmarks.

Introduction

Planning is the art of acting intelligently, thus a key aspect of
it is the prudent consumption of resources. Indeed, planning
with resources, and more generally numeric planning, is one
of the most prominent topics in the planning literature (e.g.,
(Koehler 1998; Haslum and Geffner 2001; Fox and Long
2003; Hoffmann 2003; Gerevini, Saetti, and Serina 2003;
Edelkamp 2003; 2004; Coles et al. 2008; Dvorak and Bartak
2010)). Many applications of planning involve controlling
autonomous agents with limited resources such as energy,
fuel, money, and/or time.

Here, we investigate consumable resources (Haslum and
Geffner 2001). These cannot be replenished, i.e., the planner
must make do with the initial supply. That situation occurs
quite frequently. Consider, for example, the energy supply
in underwater robotics, the fuel supply in space travel, fixed
project budgets, and fixed delivery deadlines.

We consider the special case where all resources are con-
sumable. We will refer to this as resource-constrained
planning (RCP). This specific case is still relevant, but has

proaches deal with much more general settings). In par-
ticular, only two previous studies (Hoffmann et al. 2007;
Gerevini, Saetti, and Serina 2008) consider resource con-
strainedness: the amount by which the initial resource sup-
ply exceeds the minimum need. This can be measured in
terms of a constant C' > 1, namely the maximum number
by which we can divide the resource supply without ren-
dering the task unsolvable. The closer C'is to 1, the more
constrained is the problem; C' = 1 enforces minimal re-
source consumption. Obviously, C' links to the complexity
of (approximate) optimization of resource consumption in
the underlying domain. In practice, one would expect plan-
ning to become harder as C' approaches 1. But what is the
state of the art in this situation? Which techniques tend to
work well, and which do not? Can we design tailored tech-
niques without losing performance elsewhere?

The literature hardly answers these questions. In the In-
ternational Planning Competition (IPC) benchmarks, C' is
not a controlled quantity. The single exception is IPC’11
NoMystery contributed as part of (an earlier stage of) this
work. Only two previous works, namely the abovemen-
tioned works by Hoffmann et al. (2007) and Gerevini et al.
(2008), run experiments controlling C'. Each considers only
one domain, with a single resource. Each runs a small selec-
tion of planners, drawing conclusions about which of these
is most effective, but not about how we could design algo-
rithms that work better.

We herein begin to address RCP in more detail. We gen-
eralize its investigation to domains with multiple resources.
We extend the existing suite of RCP benchmarks with con-
trolled C, introducing one new domain, and generalizing
NoMystery to include more than one resource. The bench-
marks and generators are publicly available. Controlling
C requires domain-specific consumption-optimal solvers, to
determine the minimum amount of resources needed. Hence
these new benchmarks contribute considerable implementa-
tion work.

We conduct a large-scale study of the current state of the
art as a function of C'. Amongst other observations, we show
that, despite all the new developments in satisficing plan-
ning, Hoffmann et al.’s and Gerevini et al.’s conclusion about
the performance of planners using delete-relaxation heuris-
tics, which declines dramatically as C' approaches 1, still



holds. Together with the previously observed resource per-
sistence in delete-relaxed plans (Coles et al. 2008) — which
act as if what was once true will remain true forever — this
motivates our attempt to emphasize local search. The work-
ing hypothesis is that adding more exploration of the search
space, as opposed to exploitation of the heuristic, will make
planners less susceptible to errors in that heuristic.

We design two improvements to the local search of Ar-
vand (Nakhost and Miiller 2009), a recent Monte Carlo
Random Walk approach to planning. These improvements,
called smart restarts (SR) and on-path search continuation
(OPSC), aim to improve Arvand’s balance between exploita-
tion and exploration, by trading off previous progress against
the risk of repeating previous mistakes. We call the result-
ing planner Arvand2. In our RCP benchmark suite, Arvand2
almost universally outperforms all other planners when C' is
close to 1. This goes to show that algorithmic improvements
are possible in this specific situation.

To verify whether this improvement comes at the price of
performance losses in other planning domains, we run tests
on the IPC’ 11 benchmarks. On-path search continuation can
be detrimental, while smart restarts improve Arvand’s per-
formance there as well. We study the parameters influenc-
ing Arvand2’s performance, and the effect of interactions
between multiple resources.

We next define RCP and summarize the relevant litera-
ture. We then discuss resource constrainedness C, and de-
scribe our RCP benchmark suite. We explain our enhance-
ments to Arvand, report our experiments, and conclude.

The present paper significantly extends the abstract pub-
lished in (Nakhost, Hoffmann, and Miiller 2010).

Planning with Resources

We define our RCP formalism, and summarize the most rel-
evant prior work in the area. We outline the role of planning
with resources in the IPC benchmarks.

Planning Formalism

A STRIPS planning task is a tuple (P, I, G, A) with a set of
propositions P, initial state I C P, goal G C P, and a set
of actions A. Each a € A is a triple (pre,, add,, del,) of
subsets of P. A state is identified with the set of propositions
s C P that are true in the state. Action a is applicable to s
if pre, C s; the result of executing a is (s \ del,) U add,.
A plan is a sequence of actions in whose iterative execution
from I all actions are applicable, ending in a state s 2 G.
In resource-constrained planning (RCP), STRIPS plan-
ning tasks are extended with a set R of resource identifiers as
well as functions i : R — Q>¢andu : A X R +— Q>o. i(r)
denotes the initial amount of resource r € R, and u(a,r) is
the amount of r consumed when executing action a. Suf-
ficient resource availability is requested by additional re-
source preconditions taking the form s(r) > u(a,r).
Clearly, RCP is related to optimization of resource con-
sumption, as a decision problem. But it is not, in general,
the same thing in practice. In many applications, the pri-
mary objective is to optimize some other criterion, such as
timespan or amount of data collected. The resources then

only serve to encode a fixed budget that the plan has to make
do with. This is the situation we aim at addressing here.

Previous Work

RCP is a special case of planning with resources, which in
general allows resource production in addition to consump-
tion. In turn, planning with resources is a special case of nu-
meric planning. The latter was emphasized in the 2002 IPC
(Fox and Long 2003). A prominent line of planners (Hoff-
mann 2003; Edelkamp 2003; Gerevini, Saetti, and Serina
2003; Edelkamp 2004; Gerevini, Saetti, and Serina 2008)
handling this uses direct extensions of delete-relexation
heuristics, via “numeric relaxed planning graphs”. As ob-
served by Coles et al. (2008), this kind of heuristic suffers
from resource persistence. Relaxed plans act as if resource
values persist forever, and are therefore fundamentally un-
suited for reasoning about resource consumption.
Considering not general numeric planning, but planning
with resources more specifically, Coles et al. address re-
source persistence in their LP-RPG planner. They extend
relaxed planning with more informed numeric reasoning via
linear programming (LP). In a nutshell, the numeric relaxed
planning graph is encoded into MILP, and the LP relaxation
is used to provide informed upper and lower bounds for each
resource. As Coles et al. point out, this is useful to avoid
detrimental phenomena arising from the interaction between
resource producers and consumers. However, as our exper-
iments will show, for tightly constrained RCP this more in-
formed heuristic is unfortunately still not good enough.
Other work on planning with resources makes use of very
different heuristics, based on Graphplan (Koehler 1998) and
the A™ family (Haslum and Geffner 2001). The Filuta sys-
tem (Dvorak and Bartak 2010) uses dedicated reasoners to
resolve resource conflicts during a plan-space search; there
is no heuristic guidance estimating resource consumption.
Regarding local search, obviously the system most
closely related to ours is the one we extend here, Arvand
(Nakhost and Miiller 2009). This relies on the original FF
heuristic (Hoffmann and Nebel 2001), but does not compute
it on every state. Instead, Arvand runs random walks to de-
fine a broader search neigborhood. The heuristic is com-
puted only at the end of each sample, making the sampling
very fast and thus allowing a large amount of exploration.
LPG (Gerevini, Saetti, and Serina 2003) performs local
search in plan space. A recent version of LPG (Gerevini,
Saetti, and Serina 2008) is dedicated to general numeric
planning. Apart from our focus on the much more specific
RCP problem, the main difference to our work is that every
node in LPG’s direct search neighborhood is immediately
evaluated. Thus LPG puts less emphasis on exploration than
Arvand and the Arvand2 planner we propose here.
Identidem (Coles, Fox, and Smith 2007) employs random
samples during FF’s “enforced hill-climbing” search (Hoft-
mann and Nebel 2001). The motivation is to escape local
minima more effectively, in a STRIPS planning setting not
specific to planning with resources. Like for LPG, the main
technical difference to Arvand and Arvand?2 is that, on the
random samples, every state is evaluated with the heuristic.



IPC Benchmarks

Many IPC benchmarks incorporate planning with resources
in some form. However, only few of these are RCP domains
as considered here, namely: IPC’98 Mystery and Mprime
(fuel); IPC’02 Satellite (fuel); IPC’06 TPP (money) and
Trucks (time, i.e., strict delivery deadlines); IPC’ 11 NoMys-
tery (fuel). IPC’02 Rovers has energy consumption, but in-
cludes also a “recharge” operator.

Several other IPC domains feature resource consumption,
yet impose it as an optimization criterion, not as a hard con-
straint. Since this does not force satisficing planners to make
do with a given budget, it is quite different from the situation
we are interested in here. That said, anytime planners may
incrementally reduce resource consumption, and eventually
bring it below the thresholds required. We evaluate this op-
tion, using the latest version of LAMA (Richter, Helmert,
and Westphal 2008), in our experiments.

Resource Constrainedness

We formalize RCP constrainedness in terms of a parame-
ter C'. We describe our benchmark suite controlling C', and
summarize previous findings from doing such control.

Characterizing Resource Constrainedness

For the case of a single resource, R = {r}, considered
in previous work (Hoffmann et al. 2007; Gerevini, Saetti,
and Serina 2008), defining resource constrainedness C' is
straightforward. C' should measure the factor by which the
initial resource supply, i(r), exceeds the minimum need.

This can be derived from the equation % = M, where
M is the minimal resource consumption of any plan for the
task.

In case there are several resources, matters are not that
simple since there is no unique “minimum need”. A small
amount of resource r might be compensated for by a big
amount of resource 7’. In other words, to define a unique
value M, we would need to aggregate resource values (e.g.,
by their sum or maximum). However, there is no one ag-
gregation method that is adequate across all possible do-
mains. The solution we propose is to define C' based on

the notion of pareto-minimality. Reformulating == = M

to max{C | % > M}, we observe that the above defini-
tion corresponds to downscaling i(r) until it hits the pareto
frontier given by the single pareto-minimal solution M. We
generalize this simply by downscaling the whole vector ¢
until it hits the more general pareto frontier.

For assignments M, M’ : R — Qx(, we write M > M’
to denote pointwise domination. M is pareto-minimal if: (a)
the task is solvable when setting 7 := M ; and (b) for any M’
where M > M’, and M (r) > M’(r) for at least one r € R,
setting 7 := M’ renders the task unsolvable. Denoting by
M the set of all pareto-minimal assignments, we define C'
as max{C | IM € M : % > M}. In other words, C
is the largest factor by which we can downscale the initial
resource supply without rendering the task unsolvable.

Computing C for a given planning task is, obviously,
hard. Such computation may be useful (e.g., to config-

ure planners), but is not our focus here. Instead, we wish
to design benchmarks controlling C, in order to investi-
gate how planning algorithms scale in that parameter. Our
methodology for doing so is to implement domain-specific
solvers computing M, i.e., all pareto-minimal resource sup-
plies. Benchmark instances with resource constrainedness
C are obtained by selecting some M € M, and setting
i:=Cx M.

RCP Benchmark Domains Controlling C'

Given the need to develop domain-specific consumption-
optimal solvers, it is not easy to implement benchmarks
controlling C. Our RCP benchmark suite currently con-
sists of three domains, namely NoMystery, TPP, and
Rovers. The generators as well as all test instances used
here are available at http://code.google.com/p/
rcp-benchmark-suite/.

TPP is the same domain as used in IPC’06. An agent with
a given budget needs to buy a set of products from different
markets, selling at different prices. The resource is money.
Gerevini et al. (2008) implemented a generator allowing to
control C, however that generator is not available anymore.
Our test suite contains the original instances.

NoMystery is the same domain as used in [IPC’11. A set
of packages must be transported between nodes in a graph;
actions move trucks along edges, or load/unload packages.
Each truck has its own fuel supply, which it consumes when
moving. In the original generator we provided for IPC’11,
instances were restricted to have only a single truck (and
thus only a single resource). Our extended generator re-
moves this restriction. Our test instances contain two trucks,
which is already quite challenging to solve for the domain-
specific optimal solver as well as for state of the art domain-
independent planners.

Rovers is the domain used in IPC’02, except that we re-
moved the “recharge” operator to fit the domain into the
RCP framework. The goal is to take a number of rock sam-
ples and images, and transfer them to a lander. Each rover
has an energy supply, and all actions consume energy. We
implemented a generator from scratch, allowing an arbitrary
number of rovers. For the same reasons as in NoMystery,
our test instances contain two rovers.

In all three domains, the resource amounts in our test in-
stances (initial supply and per-action consumption) are inte-
ger, since Arvand2 does not handle numeric variables. The
integer values are encoded into STRIPS in the straightfor-
ward fashion, using one proposition per possible value. Ar-
vand2 is not even explicitly aware of the resources. As we
will see, its performance is very good despite this. Every
other planner in our experiments is supplied with the encod-
ing leading to best performance.

Previous Findings when Controlling C'

In previous experiments controlling C, Hoffmann et al.
(2007) use an older version of the NoMystery domain,
whose generator contained bugs, while Gerevini et al. (2008)
use the TPP benchmark described above. Both experi-
ments run satisficing heuristic search planners using relax-
ation heuristics: different versions of FF (Hoffmann 2003),



LPG (Gerevini, Saetti, and Serina 2003), SGPlan, and Mips
(Edelkamp 2003). Both observe that the performance of all
these planners degrades dramatically as C' approaches 1, yet
less so for LPG than for the other planners. The latter obser-
vation is part of the motivation for our work. The similarity
of the heuristics employed — which as observed by Coles et
al. (2008) are not informative here — suggests that the advan-
tage of LPG is mainly due to its local search paradigm. We
show that one can push the performance margins far higher
still, based on highly explorative Monte Carlo search.

Improving Local Search

Arvand (Nakhost and Miiller 2009) is a successful stochastic
planner which evaluates a heuristic function at the endpoints
of random walks. Arvand benefits from a good heuristic,
and can also overcome misleading heuristic values to some
extent, due to the exploration made by the random walks.
Starting at an initial state, at each search step Arvand se-
lects its next state from among all evaluated sample states
in a local neighborhood. Each sample is the endpoint of
a bounded length random walk, consisting of a sequence
of randomly selected applicable actions. After executing a
number of random walks, Arvand transitions to an endpoint
whose heuristic value under the FF heuristic, A, is mini-
mal. Ties are broken randomly. Typically, computing h*
is orders of magnitude more costly than executing a random
action. Therefore Arvand is able to sample from a much
larger and more diverse neighborhood than planners that fo-
cus only on exploiting the heuristic. Arvand searches until
either the goal is reached, or the search gets stuck. The latter
happens if either the best seen heuristic value does not im-
prove over several search steps, or if all random walk end-
points are dead ends: states s with no applicable actions or
with A7 (s) = co. When the search gets stuck, it restarts
from the initial state I, beginning a new search episode.
The Arvand2 planner introduces two improvements on
Arvand which work especially well for RCP: On-Path
Search Continuation (OPSC) and Smart Restarts (SR).

On-Path Search Continuation

Arvand uses what we call End-Point Search Continuation
(EPSC) in this paper: after selecting a sampled endpoint e,
Arvand commits to all the actions on the path to e. The
drawback for RCP is that, if some of the random actions
leading to e consume too many resources and the problem
becomes unsolvable, then all search effort from this point
until the next restart is wasted. This can cause severe search
inefficiencies when resources are tightly constrained.

The new technique of On-Path Search Continuation
(OPSC) avoids commitment to all actions leading to e, while
still benefiting from the guidance of the selected path to e.
Let S = {so, s1, - - -, Sk} be the states visited along the path
from the initial state sy = I to the current endpoint s; = e.
Arvand’s EPSC chooses s as the starting point of all ran-
dom walks within the current search step. OPSC general-
izes this by choosing, for each individual random walk, the
starting point according to some fixed probability distribu-
tion over S. In all the experiments reported here, OPSC

uses a uniform probability distribution over S. The method
for updating S is analogous to EPSC. In each search step,
after running the random walks, OPSC selects an endpoint e
with minimal A¥F value. S is then changed to the path from
Ttoe.

Smart Restarts

The second innovation in Arvand2 is a modified restarting
strategy. Arvand restarts from scratch in every new search
episode, discarding all previous information. However, pre-
vious episodes may contain valuable partial paths, which ul-
timately ended in failure only because of bad actions later
on. Smart Restarts (SR) in Arvand?2 try to preserve informa-
tion by maintaining a fixed-capacity pool of the most promis-
ing episodes so far.! Smart restarts begin at a state along the
trajectory of such an earlier episode, instead of returning to
I every time. The method selects a random episode from
the pool, then selects a random state along that episode as
the next restarting point. If the pool is empty, it selects I.
Let p denote the fixed pool capacity, i.e., the maximum
number of episodes stored in the pool. The “worst” episode
in the pool is replaced whenever the pool is full and a new
“better” episode is discovered. The quality of an episode
is defined as the smallest A" value along its trajectory

(80, -4 8n). Let sy, be the earliest state among those
states with minimum heuristic value. Then the partial trace
(80, - - - » Smin) is the candidate for inclusion into the pool.

The motivation for defining s,,;, as the earliest such state
is that the amount of resources consumed grows monotoni-
cally along an episode.

Restarting from a pool of episodes balances exploration
and exploitation, and therefore can increase the chance to
quickly reach promising regions of the search space. If the
pool capacity p is small, then the search is more greedy and
concentrates on the hitherto best traces. Large pools lead to
more exploration, which intuitively might improve perfor-
mance on hard instances given sufficient time. In contrast,
with limited time, more focus on exploitation should be ben-
eficial.

Arvand?2 does not use smart restarts until an initial number
N of search episodes has been completed. This avoids a
heavy bias towards these early episodes.

Experiments

Based on initial tests, we set N = 50 and p = 50 in Ar-
vand2. All parameters inherited from Arvand are set to their
default values, i.e., we did not fine-tune these. We run tests
on the three RCP domains NoMystery, TPP and Rovers, as
well as on IPC-2011 domains, on a 2.5 GHz machine with 2
GB memory limit. The runtime cut-off was set to 30 minutes
for small instances, and to 40 minutes for large instances
(see below). Results for the randomized planners LPG, Ar-
vand, Arvand2 and their variants are averaged over 10 runs
per instance.

lSolution-guided search (Heckman and Beck 2011)) is a suc-
cessful related algorithm in Scheduling. It differs significantly in
context and technical details.



For the RCP domains, we used several different encod-
ings. The first uses propositions to represent the integer-
valued resource levels; the second uses numeric vari-
ables. For tasks with a single resource r, we created cost-
augmented variants of both, setting the cost of each action
a to its consumption u(a,r). For LAMA, we also sup-
plied an anytime cost-augmented variant, requiring to mini-
mize consumption of , removing the resource preconditions
s(r) > u(a,r) but counting a task as solved only if the re-
turned plan satisfied these. To exploit the ability of LPRPGP
of handling preferences, we also used an encoding where
the resource preconditions are changed to preferences and
a unit cost is assigned to each preference violation; there-
fore, reducing the cost of violations translates to decreasing
the number of actions that over-consume the resources. For
each (planner, domain) pair, we show data for the most ef-
fective encoding for that pair.

A wide range of planners was tested, including Arvand
and Arvand2, as well as two variants Arvand2(SR) and Ar-
vand2(OPSC) which use only one of the two new tech-
niques; FF (Hoffmann and Nebel 2001), the top performer
at IPC’00; LPG (Gerevini, Saetti, and Serina 2003), the top
performer at IPC’02; Fast Downward Autotune 1 (FD-AT1)
and Fast Downward Autotune 2 (FD-AT2) (Helmert 2006),
recent versions of the top performer at IPC’04, whose pa-
rameters were optimized on IPC benchmarks; LAMA2011
(Richter, Helmert, and Westphal 2008), the latest version of
the top performer at IPC’08 and IPC’11; the recent SAT-
based planners M and Mp (Rintanen 2010) which are very
competitive across many domains, and do not suffer from
the weakness of relaxation heuristics in planning with re-
sources; and LPRPGP (Coles et al. 2008; Coles and Coles
2011), the most recent version of the LPRPG planner whose
improved heuristic addresses that weakness.

We also ran several optimal planners, to check whether
these are more effective for small C, as was previously ob-
served by Hoffmann et al. (2007) for their step-optimal SAT-
based numeric planner, num2sat, in a NoMystery test suite.
Other than this, a comparison to the satisficing planners is
not intended and should not be made. We include num?2sat
as well as: Merge-and-Shrink (M&S) (Helmert, Haslum,
and Hoffmann 2007; Nissim, Hoffmann, and Helmert 2011),
a state abstraction heuristic; LM-cut (Helmert and Domsh-
lak 2009), the best known admissible relaxation heuristic;
Selmax (Domshlak, Karpas, and Markovitch 2010), which
uses machine learning to selectively choose a heuristic per-
state; and the optimal version of Fast Downward Autotune
(FD-AT-OPT) (Fawcett et al. 2011).

Our RCP benchmark set consists of 450 instances. These
are obtained from a smaller set of “base” instances, where
C = 1.0. The benchmarks with larger values of C' are gen-
erated by increasing the initial resource supply in these base
instances. This setup ensures that the results across differ-
ent C values are exclusively due to the level of resource
constrainedness. The instances in TPP are the ones orig-
inally designed by Gerevini et al. (2008). The 5 base in-
stances each have 1 agent, 8 markets and 8 products, and
each is modified to obtain instances with C' = 1.1,...,1.5.
In each of NoMystery and Rovers, to demonstrate scaling,

we designed a “small” and a “large” group. The small
groups have 2 resources and 25 base instances, the large
groups have a single resource and 5 base instances. In
the large groups, having several resources was not feasi-
ble for the optimal solvers implemented inside the genera-
tors. Each base instance is modified to obtain instances with
C =1.1,...,1.5,2.0. Small NoMystery instances contain
2 trucks, 9 locations, and 9 packages; large ones use 1 truck,
12 locations, and 15 packages. Small Rovers instances fea-
ture 2 rovers, 11 locations, and 16 objectives; large ones in-
clude 1 rover, 15 locations, and 20 objectives.

The base instances were generated randomly, except that
in the small groups — where there are several resources —
we explored a second interesting problem feature, namely
the distribution of the resource budget. We first generated
5 instances randomly. Then, we selected 5 pareto-optimal
resource allocations for each of these, yielding 25 base in-
stances. The selection was made so that we included: an
allocation in which the total amount of resources is assigned
to one of the trucks/rovers (this is analogous to a problem
with one resource); an allocation that is closest to where the
resources are evenly distributed between trucks/rovers; and
3 others in between these two extremes.

Figure 1 summarizes coverage results in the RCP bench-
marks. Missing data indicates that a planner did not solve
any instance for that domain; the single exception is Ar-
vand2(OPSC), not shown in Figure 1 (a,b,c) because there
it almost coincides with Arvand2. The most effective en-
coding for each planner is: numerical encoding - FF, M,
Mp, LPG, LPRPGP, and num?2sat; propositional encoding
- LM-cut, M&S, Selmax, and FD-AT-OPT. propositional for
small domains, propositional + costs for large domains and
TPP - LAMA, FD-AT1, FD-AT?2, Arvand, and all Arvand2
variations. Exceptions: For LAMA in large-rovers and TPP,
propositional + costs with no hard constraints was best. The
main observations are:

(i) Optimal planners can be effective for scarce resources,
but only in small instances.

(i) The improved heuristic of LPRPGP is not sufficient to
obtain competitive performance here.

(iii) Current satisficing planners excel when resources are
plentiful, but are very limited when these get scarce.
The same holds for M and Mp.

(iv) Stochastic local search can be a powerful tool to attack
RCP. In particular, Arvand2 almost universally outper-
forms other planners when C'is close to 1.

(v) Arvand2 has a consistent and significant advantage
over Arvand, showing the effectiveness of smart
restarts and on-path search continuation.

To see (i), note that none of the optimal planners solved any
instance, in any domain other than small NoMystery. In the
latter domain — compare Figures 1 (e) and (c) — optimal plan-
ners are more effective than satisficing planners, when C' is
close to 1. For M&S, the value of C' has little effect. All op-
timal planners fail as instance size increases (Figure 1 (d)).
Regarding point (ii), LPRPG does not solve any instance
in Rovers, and is quite weak also in NoMystery and TPP.
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Figure 1: Coverage of planners over resource constrainedness C, in (a,b) Rovers, (c,d,e) NoMystery, and (f) TPP. Randomized
planners are run 10 times per instance, where each run counts separately towards coverage.

Point (iii) is obvious in all the plots showing data for satisfic-
ing planners (Figure 1 (a,b,c,d,f)). For the heuristic planners,
this can be expected given the pitfalls of relaxed planning
and was previously observed in much smaller experiments
by Hoffmann et al. (2007) and Gerevini et al. (2008). For M
and Mp, it is quite interesting that their behavior over C' is

similar to that of the heuristic planners. It is not clear to us
what causes this behavior; a plausible explanation could be
that these planners, too, act in a rather greedy way.

Point (iv) is evident from the results of Arvand2 and Ar-
vand, in all the domains. With small C, Arvand2 vastly
outperforms all other planners, by factors of 6 and more in
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Figure 2: Coverage of Arvand2 as a function of different parameters. (a,b,c,d) vary the runtime cut-off, and the pool size p for
smart restarts (x-axis; for p = 0, smart restarts are turned off). (e) and (f) vary the distribution of budget across resources (see

text).

coverage. The only exceptions are LAMA in large Rovers
(Figure 1 (b)); FD-AT2, M, and Mp in small NoMystery
(Figure 1 (¢)); and LPG in TPP (Figure 1 (f)). Of these,
LAMA’s prowess in large Rovers is due to the anytime cost-
augmented encoding, and does not extend to small Rovers

(Figure 1 (a)) with several resources. FD-AT2, M, and Mp
fall behind significantly in large NoMystery (Figure 1 (d)).
LPG is competitive with Arvand2 only in TPP.

Point (v) is also evident. In fact, in these benchmarks,
neither smart restarts nor on-path search continuation ever



Domain Arvand Arvand2(SR) | Arvand2(OPSC) |  Arvand2 LAMA FD-AT1 FD-AT2 M Mp LPRPGP
C T C T C T C T C T C T C T C T C T C T
barman 0% 1800 0% 1800 0% 1800 0% 1800 || 100% 5|100% 256 0% 1800 0% 1800 0% 1800 | 10% 1669
elevators 100% 12 | 100% 12| 25% 1414 | 20% 1478 || 100% 47| 95% 173 | 90% 340 5% 1735 | 65% 633.94| 80% 637
floortile 5% 1783 | 10% 1687 | 10% 1626 5% 1749 || 25% 1372| 20% 1452 45% 996 0% 1800 0% 1800 | 10% 1666
nomystery 95% 164 | 95% 142| 95% 194 | 100% 541 50% 900 | 45% 1023 | 80% 381 | 80% 561 | 75% 456.71| 35% 1192
openstacks 100% 26 | 100% 24 | 100% 92 | 100% 60 || 100% 44| 95% 289 | 50% 1128 0% 1800 0% 1800 | 85% 546
parcprinter 100% 8 | 100% 8 | 100% 21 | 100% 20 || 100% 0| 100% 0| 8% 273|100% 0 | 100% 0.09| 35% 1171
parking 15% 1778 | 15% 1648 0% 1800 0% 1800 || 95% 408 | 65% 1097 | 75% 926 0% 1800 0% 1800 | 35% 1561
pegsol 100% 21 | 100% 63 | 100% 5| 100% 7 || 100% 2 | 100% 0| 100% 14| 85% 330 | 100% 3.97 | 100% 82
scanalyzer 8% 271 90% 207 | 85% 276 | 85% 286 || 100% 21| 100% 102| 90% 202 | 50% 937| 80% 36239 | 90% 192
sokoban 10% 1635| 10% 1665 5% 1711 10% 1705|| 90% 322 | 95% 129| 85% 464 0% 1800 | 10% 1621.62| 45% 1180
tidybot 85% 385| 85% 335 80% 681 | 8% 606 80% 392| 70% 584| 75% 753 0% 1800 | 30% 1268.48 | 95% 221
transport 65% 651 70% 569 | 35% 1219 | 35% 1243 || 85% 523 | 75% 634| 70% 705 0% 1800 5% 1711.42 0% 1800
visitall 65% 28 | 70% 40| 65% 662 | 65% 633 || 100% 42| 10% 1621 | 40% 1128 0% 1800 0% 1800 | 20% 1448
woodworking || 100% 102 | 100% 78 5% 1710 | 15% 1602 || 100% 12| 100% 16| 65% 647 | 100% 1| 100% 1.27 0% 1800
total 66% 619 68% 591 | 50% 944 | 51% 932 || 88% 292| T6% 527 | 68% 697 | 30% 1283 | 40% 1076 | 46% 1083

Table 1: Coverage (C) and average runtime (T; in seconds) in the [PC’11 benchmark domains. For unsolved instances, the
time limit of 30 minutes is inserted into the computation of T.

hurt performance when added to Arvand. Their effective-
ness does depend on the domain, though. In Rovers, it is
slightly better to use smart restarts only (as pointed out,
Arvand2(OPSC) almost coincides with Arvand2 there). In
NoMystery, both techniques contribute to the improvement
over Arvand. In TPP, smart restarts have a beneficial effect
but on-path search continuation is more important by far.

For smart restarts, an influential parameter is the pool ca-
pacity p. Two observations are clear from the data in Fig-
ure 2 (a,b,c,d):

(vi) Pool size induces a sweet-spot behavior in both Ar-
vand2 and Arvand2(SR), especially for small values
of C.

(vii) As the time-out increases, the sweet-spot behavior
tends to become more pronounced, and the best value
for p tends to become larger.

An intuitive explanation for both is that, as previously dis-
cussed, p controls the exploitation-exploration trade-off in
smart restarts. Larger pools yield a more explorative search,
which may pay off by solving more instances — but only if
there is enough time. With limited runtime, a more greedy
search may succeed more often.

Figure 2 (e,f) examines the performance of Arvand2 as a
function of the distribution of the resource budget. On the
x-axis, we distinguish the 5 qualitatively different pareto-
optimal resource allocations described above: x = 1 stands
for an allocation assigning the whole budget to just one of
the two resources, whereas x = 5 stands for an allocation as-
signing the budget as evenly as possible, i.e., minimizing the
difference between the initial resource supplies. In between,
we interpolate such that this difference decreases monoton-
ically with growing x. Each value of x corresponds to 5
base instances, and the data shown are averages. The data is
noisy, but still allows to observe:

(viii) Distributing the resource budget more evenly
results in worse performance, especially with
small C.

An intuitive explanation is that a more even distribution of

the budget implies that the planner needs to reason more
about which resource to use.

Finally, we ran our new planners on the standard IPC’11
benchmarks, to cross-check whether their superior perfor-
mance in RCP is bought at the price of deteriorated perfor-
mance in other settings. All the planners were run under
IPC’11 conditions: 2GB memory and 30 minutes runtime;
Table 1 confirms that smart restarts work well on IPC bench-
marks — Arvand2(SR) has better coverage than Arvand. On-
path search continuation, by contrast, can be detrimental.
The reduction in coverage stems mainly from 4 of the 14
domains.

Conclusion

We all must consume our resources prudently, and so must
planners in a multitude of applications. While this general
issue has long been researched, not much has been done to
specifically address the RCP situation where resources are
scarce and cannot be replenished. Starting to investigate this
more carefully, we have shown that state of the art planners
typically behave very badly. We have demonstrated the po-
tential of local search to improve this, and contributed an
extended test base for future research.

To further improve local search, one might try to aggres-
sively exploit an explicit encoding of resources. The danger
here probably would be to not over-fit the algorithms and
lose too much performance elsewhere. Apart from this, im-
portant topics for future research include: understanding the
behavior of various algorithms, such as M and Mp, better;
investigating whether approaches other than local search can
be tailored to the RCP setting; investigating to what extent
we can devise automatic configuration methods for deciding
whether or not to switch these tailored techniques on. We
hope these will inspire other researchers as well.
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