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Abstract. ArvandHerd is a parallel planner that won the multi-
core sequential satisficing track of the 2011 International Planning
Competition (IPC 2011). It assigns processors to run different mem-
bers of an algorithm portfolio which contains several configurations
of each of two different planners: LAMA-2008 and Arvand. In
this paper, we demonstrate that simple techniques for using differ-
ent planner configurations can significantly improve the coverage
of both of these planners. We then show that these two planners,
when using multiple configurations, can be combined to construct
a high performance parallel planner. In particular, we will show
that ArvandHerd can solve more IPC benchmark problems than
even a perfect parallelization of LAMA-2011, which won the sat-
isficing track at IPC 2011. We will also show that the coverage of
ArvandHerd can be further improved if LAMA-2008 is replaced
by LAMA-2011 in the portfolio.

1 Introduction

In recent years, the rate at which processor speed is increasing has
curtailed, while the proliferation and availability of multi-core tech-
nology has substantially increased. This development suggests that to
best utilize modern hardware when constructing automated satisfic-
ing planning systems, it is necessary to consider parallel approaches.

Past work on building parallel planning systems, such as PBNF
[2] and HDA* [12], has generally focused on parallelizing a single
heuristic search algorithm. While these approaches have successfully
improved run-time, satisficing planners that use these or similar tech-
niques on shared memory machines should not be expected to solve
many more problems than their single-core counterparts. This would
be true for even a perfect parallelization of LAMA-2011 [18], the
winner of the single-core sequential satisficing track of IPC 2011,
that runs exactly k times faster than the single-core version when run
on k cores. Given a time limit T , the performance of such a k-core
system can be simulated by running LAMA-2011 for k · T time and
counting any problem solved within this time limit as having been
solved by the k-core parallelization in time T . This simulation indi-
cates that even with such a speedup, coverage only increases slightly.
For example, when given a 6 GB memory limit and a 30 minute
time limit, even the 8-core version of this perfect parallelization of
LAMA-2011 would solve only 6 more problems than the 721 solved
by the standard single-core version when tested on all 790 problems
from the 2006, 2008, and 2011 IPC competitions.

An alternative to parallelizing a single algorithm is to run mem-
bers of an algorithm portfolio in parallel. This involves tackling each
problem using a set of strategies that differ in either their configura-
tion (ie. different parameter values or other settings) or in the under-
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lying algorithm, and running these strategies simultaneously on dif-
ferent cores. This technique is inspired by two considerations. First,
planners are expected to solve problems from a diverse set of do-
mains, and no single algorithm can be expected to dominate all oth-
ers on all domains. Second, this approach offers a simple alternative
to the difficult process of parallelizing a single-core algorithm and it
mostly avoids overhead from communication and synchronization.

Parallelizing a single memory-heavy algorithm in a shared-
memory environment can also be problematic as it is often the avail-
able memory that limits coverage. In these cases, any speedup seen
only causes memory to be exhausted more quickly. This behaviour
is seen in the simulated LAMA-2011 parallelization, as the 8-core
simulation ran out of memory on 52 problems. This means that re-
gardless of how many more cores are used, at most 738 of the 790
problems can be solved using LAMA-2011 without an increase in
memory. However, running a low-memory planner alongside a high-
memory planner in a parallel portfolio can increase the coverage if
the portfolio is selected properly.
ArvandHerd is the first parallel planning system to success-

fully combine disparate planning approaches to create a state-of-the-
art parallel planner for shared memory machines. It won the multi-
core sequential satisficing track of IPC 2011 [4] and was designed
specifically to avoid the inherent limitations of parallelizing a sin-
gle memory-heavy planning algorithm that were described above.
Planners competing in this track were run on a 4-core machine with
a maximum of 30 minutes of run-time and 6 GB of memory. In
ArvandHerd, three cores were used to run a set of configurations of
the linear-space random-walk-based planner Arvand, and the final
processor was used to run the WA*-based LAMA-2008 planner.

This paper extends the description of ArvandHerd that was
given in [20] by providing full documentation of the design choices
made with respect to coverage, and then by analyzing the effective-
ness of these choices. We will demonstrate that each of the Arvand
and LAMA-2008 planners can be enhanced through the use of mul-
tiple configurations and restarts. While these techniques have been
successfully applied in the satisfiability community, we demonstrate
that they are similarly successful in planning. In Arvand, we will
also describe an online learning configuration selection system which
effectively speeds up the search. Finally, we will show that com-
bining these two planners in a parallel portfolio solves more IPC
benchmark problems than several state-of-the-art planners, even if
they could be effectively parallelized.

2 Related Work

Work in the area of parallel planning has typically focused on the
parallelization of heuristic search algorithms. This includes HDA*
[12] and PBNF [2], two recent and successful parallelizations of A*
which exhibit impressive speedups in distributed and shared memory
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systems, respectively. As both algorithms involve parallelizing A*,
they will also have the same memory limitations as A* on shared-
memory machines. As such, these algorithms cannot be expected to
improve the coverage of A* except where search time is limited.

Note, there is nothing precluding the use of the parallel algorithms
in a portfolio. If a parallelized algorithm is included, it can be allotted
several cores on which to run while the remaining cores will run the
rest of the portfolio. Alternatively, the parallelized algorithm can be
run until it hits some resource limit, at which point the remainder of
the portfolio will be run. This approach would benefit from both the
speedups seen with the parallelized algorithm and the coverage im-
provements seen with a portfolio. As such, research into parallelizing
individual search algorithms remains important work.

Using multiple configurations has also previously been shown to
effectively improve the coverage and run-time of several single-agent
search algorithms [21]. These ideas were central in the construction
of ArvandHerd which takes the idea a step further by using multi-
ple planners in addition to multiple configurations.

The portfolio approach was initially shown to effectively trade-
off run-time and risk for heuristic algorithms for computa-
tionally hard problems [11]. At IPC 2011, this approach was
also used successfully in the single-core satisficing track by
Fast-Downward Stone Soup (FDSS) [9], which solved the
second most problems of all competing planners [4]. This planner
employs a variety of planning configurations in sequence, by giving
each a time limit and restarting upon failure with a new configura-
tion. The time limit assigned to each configuration is determined off-
line based upon the coverage that these configurations collectively
achieved on a training set. However, while FDSS configurations dif-
fer in the heuristics used and the search enhancements employed,
they do not differ in their operator ordering, which will be shown to
improve coverage in Section 5.1. All of the configurations are also ei-
ther WA* or hill-climbing based and so this portfolio is not as diverse
as that of ArvandHerd. As a result, it lags behind ArvandHerd
in coverage as we will show in Section 6.1.

Below we also discuss the use of restarts in WA*-based plan-
ners as a way to improve coverage. While LAMA-2008 already uses
restarts, it does so in a very different way: it restarts with a less greedy
configuration whenever a solution is found in an effort to find better
quality solutions [16]. The restarts we consider have been shown to
significantly improve coverage in SAT-solvers due to the long-tailed
distribution of the problem-solving time [5]. The results below sug-
gest that planning domains exhibit a similar property.

In IPC 2011, ArvandHerd solved 236 out of 280 problems [4].
As our focus is on coverage and no other multi-core planner solved
more than 184 problems (by AyAlsoPlan [3]), we do not compare
with any other competition planners below.

3 Parallel Planning with a Portfolio

In order to maximize the coverage of a planning portfolio, the portfo-
lio members should be complementary in terms of their strengths and
weaknesses. This requires diversity in the set of planners selected. If
the portfolio is to be used on a shared-memory machine, then an-
other important design decision relates to the way in which memory
is partitioned between the planners. For example, if a two-planner
portfolio contains two approaches for which lots of memory is es-
sential, the collective coverage may suffer if each planner is assigned
only half of the available memory. Avoiding this behaviour is there-
fore integral for properly selecting a portfolio and was an important
consideration when building ArvandHerd.

3.1 The ArvandHerd Portfolio

LAMA-2008 [17], the winner of the sequential satisficing track of
IPC 2008, was a state-of-the-art planner prior to IPC 2011 making
it a natural selection as a member of the ArvandHerd portfolio.
LAMA-2008 is WA*-based and can be memory-heavy. As such, al-
though the ArvandHerd portfolio contains several configurations
of LAMA-2008, it avoids the memory-partitioning issues mentioned
above by running only a single LAMA-2008 configuration at a time.
The additional LAMA-2008 configurations are only used if the first
runs out of memory, in which case the planner restarts with another
configuration. In Section 5, this planner will be described in more
detail and this restarting procedure will be evaluated.

The ArvandHerd portfolio also contains several configurations
of Arvand [15]. This planner uses a random-walk-based search
which makes it ideal for use alongside LAMA-2008 in a portfolio
for several reasons. First, this approach is very different from WA*
and it can solve some problems that the systematic search of WA* is
unable to handle. Secondly, domains in which Arvand exhibits poor
behaviour are often successfully tackled by WA*-based approaches.
Finally, Arvand has low memory requirements, and so when it is
run alongside LAMA-2008 in a shared-memory system, the major-
ity of the memory can be assigned to LAMA-2008, thereby avoiding
the memory-partitioning issue described above. Arvand will be de-
scribed in further detail in Section 4.

3.2 ArvandHerd Architecture

As both Arvand and LAMA-2008 are built on top of
Fast Downward [6], ArvandHerd is run from a single binary.
ArvandHerd uses Fast Downward’s preprocessor to translate
the PDDL problem description to an SAS+-like representation [7].
This preprocessor has not been parallelized. While doing so would
speed up ArvandHerd, we consider this an orthogonal problem to
that of parallelizing the search component and leave it as future work.
As all planners tested in this paper require this preprocessing step, it
is not counted against the time limits used in the experiments below.

When ArvandHerd begins its search, separate threads are
spawned to run different portfolio members. In a k-core machine set-
ting, k−1 threads will be running a parallelization of Arvand while
the remaining thread runs LAMA-2008.

4 The Arvand Planner

Arvand is a sequential satisficing planner that uses heuristically-
evaluated random walks as the basis for its search [15]. The execu-
tion of Arvand consists of a series of search episodes. In the sim-
plest version of Arvand, each search episode begins with n random
walks, with each walk being a sequence of m legal random actions
originating from the initial state (si), where n and m are parameters.
The heuristic value of the final state reached by each random walk is
also computed using the FF heuristic function [10]. Once all n walks
have been performed, the search jumps to the end of the walk whose
final state, s, has the lowest heuristic value. Arvand then runs a new
set of n random walks, only this time the walks originate from state
s. This is followed by another jump to the end of the most promising
walk from this new set of walks. This process repeats until either a
goal state is found, or some number of jumps are made without any
improvement in the heuristic values being seen. In the latter case, the
current search episode is terminated, and the planner restarts with a
new episode that begins with random walks originating from si.
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Arvand has also been enhanced with smart restarts [14]. For
this technique, the trajectories found during the most effective search
episodes are stored in a walk pool. When a new episode begins, it
then starts from a state randomly selected from a trajectory that itself
was randomly selected from the walk pool, instead of from the initial
state. This technique has been shown to improve Arvand’s cover-
age [14]. Note, smart restarts have been disabled in the experiments
in Sections 4.1 and 4.3 when experimenting with different ways to
use multiple configurations. This was done so as to evaluate these
techniques in isolation of the communication between configurations
that a walk pool allows. However, smart restarts are employed in the
more complete systems evaluated in Sections 4.4 and 6.

4.1 Arvand Configurations

There are a number of parameters in Arvand that can greatly af-
fect its performance on a domain-by-domain basis. Perhaps the most
important of these relates to the biasing of the random action selec-
tion. Arvand allows for random action selection to either be biased
to avoid actions that have previously led to dead-ends (referred to as
MDA) or to be biased towards using preferred operators (referred to
as MHA). These different biasing strategies have been shown to each
be useful for different domains [15].

A set of parameters related to the random walk length can also
greatly affect performance. In Arvand, this length is adjusted online
if little progress is being made in the heuristic values seen during a set
of random walks. The initial walk length, the frequency with which
walks are lengthened, and the factor by which they are lengthened
(called the extending rate) are all parameters affecting this process.

The average performance of six different configurations over 5
runs on each of 480 problems is shown in Table 1. Configurations
are given a maximum of 30 minutes and 2 GB per run. Configura-
tions 1 and 4 correspond to the default configurations that use one of
MDA or MHA. The remaining four configurations are constructed
by modifying these default configurations by either its initial walk
length or its extending rate, but not both, simultaneously.

Table 1. Performance of different Arvand configurations.

Config Bias Type Initial Walk Extending Av. Num
Length Rate Solved

1 MDA 1 1.5 400.8
2 MDA 1 2.0 414.2
3 MDA 10 1.5 397.8
4 MHA 1 1.5 338.8
5 MHA 1 2.0 348.0
6 MHA 10 1.5 386.0

These experiments were performed on a cluster of machines each
with two 2.19 GHz AMD Opteron 248 processors with 1 MB of L2
cache3. The problem set consists of all problems in the 2006 and
2008 planning competitions, except for sokoban from IPC 2008
which was omitted as previous testing has indicated that Arvand
performs poorly in this domain regardless of how it is configured.

While the MDA configurations outperform the MHA configura-
tions, this is not true in all domains [15]. For example, configuration
1 (MDA) only solves an average of 16.2 problems in the IPC 2006
pathways domain while configuration 4 (MHA) solves all 30 prob-
lems. This suggests that a combination of configurations is needed.

3 While three different clusters were used in the experiments presented in this
paper, any comparisons made are between planners/techniques that were
tested on the same cluster

4.2 Combining Different Arvand Configurations

A simple way to combine k configurations in a single-core version
of Arvand is to run each for 1800/k seconds. This technique will
be referred to as uniform time partitioning. We can evaluate this ap-
proach by calculating the expected coverage based on the run-time
of each configuration on its own. To do so, let P (p, c, t) denote the
probability that Arvand with configuration c will solve problem p
in at most t seconds. Now let Pk(p, C) denote the probability that
p is solved when using uniform time partitioning with a set of con-
figurations C = {c1, c2, ..., ck}. As the searches performed by the
different configurations are independent, the following holds:

Pk(p, C) = 1− P (p, c0, 1800/k) ∗ ... ∗ P (p, ck, 1800/k)

where P (p, ci, 1800/k) = 1 − P (p, ci, 1800/k). Given a problem
set, the expected number of problems solved is then the sum of these
probabilities over all problems. For the values of P (p, c, t), we will
use the empirically determined probability that p is solved in time
limit t as seen during the experiments summarized in Table 1.

Given the 6 configurations tested in Table 1, there are
(
6
k

)
possible

portfolios for any portfolio size k such that 1 ≤ k ≤ 6. When k =
2, the best configuration set of all 15 possible sets is expected to
solve 436.3 problems, an increase of 22.1 over the average number
solved by the single best configuration alone. In fact, all but 2 of
these 15 configuration sets improved over the best configuration in
its own set. For k = 4 and k = 6, the expected coverage of the best
sets are 434.4 and 431.4, respectively. These diminishing returns are
to be expected since an increase in k decreases the amount of time
any individual configuration will run. In contrast, the coverage of the
worst set for any k reaches its highest point at k = 6, and surpasses
the performance of the single best configuration alone when k = 4.

In practice, instead of starting with a new configuration every
1800/k seconds, we alternate amongst the configurations in a round-
robin fashion. For each of k = 2, k = 4, and k = 6, we tested this
approach with the configuration set of size k with the best expected
uniform time partitioning performance. The coverage of alternation
is slightly better, as it averages 435.4, 439.8, and 439.6 for k values
of 2, 4, and 6, respectively, over 5 runs per problems. This occurs
because alternation spends more time using the best configuration
on any problem. For example, if two configurations, c1 and c2, are
used on a single problem p, and c1 is less effective on p than c2, then
search episodes using c1 will stop making progress and restart more
quickly than those using c2. The available run-time will therefore
skew more towards the longer, more effective c2 configurations, than
to the shorter, quickly-restarting c1 configurations.

4.3 Configuration Selection as a Bandit Problem

Arvand was also enhanced through the use of an online configura-
tion selection system which, while not increasing coverage, did de-
crease run-time. Given a set of configurations C, the system selects
a configuration for the next search episode from C based on the per-
formance of the configurations during previous episodes. This sys-
tem views configuration selection as an instance of the multi-armed
bandit problem. This paradigm requires the definition of a payoff
function for search episodes. For this system, the reward given to a
search episode e performed with configuration c is given as follows:
where h(v) is the heuristic value of state v, s is the state on the trajec-
tory of e that achieved the lowest heuristic value, and si is the initial
state, the reward given to c is max(0, 1− h(s)/h(si)).
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Using this reformulation of configuration selection, configura-
tions can be selected online using any multi-armed bandit algorithm.
Arvand uses UCB [1], which begins by performing a single search
episode with every configuration. After this stage, the configuration
selected for the next episode is given by

argmax
c∈C

r(c) + q ·
√

ln t(c)/t

where r(c) is the average reward seen thus far for configuration c,
t(c) is the number of search episodes performed with configuration
c so far, t is the total number of search episodes, and q is a parameter
called the UCB constant value. This algorithm has been shown to
have strong theoretical guarantees on its ability to balance between
focusing on effective selections and exploring the alternatives [1].

In order to give the UCB system some quick search episodes so
as to more quickly identify the more useful configurations, the fre-
quency with which episodes restarted was initially set high and then
gradually decreased. The resulting system was then tested on a se-
lection of sets of the configurations in Table 1. In general, the UCB
system did not significantly change the coverage of Arvand when
compared to the use of round-robin configuration selection but it did
improve run-time. For example, four different values of the UCB
constant value were tested on the configuration set of size 2 with
the best expected uniform cost partitioning performance. Recall that
round-robin selection solved 435.4 problems when applied to this
same set. Of the UCB constant values tested (0.1, 0.5, 1.0, and 5.0),
the most problems solved when using the UCB selector was 439.4
and the least was 437.2. However, if we only consider the 399 prob-
lems solved on all five runs per problem by either a UCB system
or round-robin, we see that even the UCB constant resulting in the
longest run-time results in a 2.75 times speedup, while the value with
the shortest run-time sees a 3.90 times speedup.

4.4 Parallelizing Arvand

For ArvandHerd, a simple parallelization of Arvand was devel-
oped in which each core runs an independent search episode. The
only communication between cores is through the use of a shared
walk pool and a shared UCB configuration selector. When a core has
completed a search episode, it submits the corresponding trajectory
to the shared walk pool, and gets a trajectory in return. The core also
submits the reward for its current configuration to the shared UCB
system and in return is given a configuration to use in its next search
episode. The correctness of the walk pool and UCB learner are main-
tained by limiting access to each to only one thread at a time. As the
search episodes dominate execution time, there is little synchroniza-
tion or contention overhead caused by sharing these resources.

Parallel Arvand was tested with different numbers of cores on
the 790 problems from IPCs 2006, 2008, and 2011. These experi-
ments were performed on a cluster of machines, each with two 4-
core 2.8 GHz Intel Xeon E546s processors with 6 MB of L2 cache.
The configuration set used is identical to the set used in IPC 2011. It
includes configurations 1, 4, and 6 from Table 1 and another MDA
configuration with an extending rate of 1.5 and an initial walk length
of 3. This configuration set was selected manually prior to IPC 2011
based on familiarity with Arvand, and also before the expected cov-
erage analysis described above had been performed. We use this set
in our experiments below so as to evaluate how parallel Arvand
contributed to ArvandHerd’s success.

Table 2 shows the average number of problems solved over five
runs per problem when using different numbers of cores. In addi-
tion, the table shows how much faster the multi-core versions were

in comparison to the single-core version on the 639 problems that
were solved on all five runs regardless of the number of cores used.

Table 2. The performance of parallel Arvand.

Number of Cores
1 2 3 4 8

Coverage 660.4 668.0 671.4 677.8 679.6
Speedup Factor 1.0 1.9 2.5 3.0 3.4

While 8-core Arvand solved 19.2 more problems on average
than the 1-core version, parallel Arvand is still unable to solve as
many as the 721 problems that LAMA-2011 solved. Domain-by-
domain analysis also indicates that domains in which the single-
core version exhibits poor performance are often also difficult for
the multi-core versions. For example, neither the single-core nor the
8-core version of Arvand can solve even one of the 20 barman
problems from IPC 2011. This suggests that there is a limit in the
coverage that can be achieved in this domain through parallelizing
Arvand. However, LAMA-2008 can solve 15 of these problems,
thus making the case for the use of a portfolio.

5 The LAMA-2008 Planner

LAMA-2008 is a WA*-based planner that won the sequential satis-
ficing track of IPC 2008 [8]. It uses a number of planning techniques
including multiple heuristic functions, preferred operators, and de-
ferred heuristic evaluation [17]. Below, we briefly describe the set of
heuristics that we used in this system and show that LAMA-2008’s
coverage can be improved through the use of restarts.
LAMA-2008 can use several heuristics to guide search through a

process called multi-heuristic best-first search [6]. Previous analysis
of this planner has shown that strong performance can be achieved if
the set of heuristics used includes both the landmark-count heuristic
(LM) and a version of the FF Heuristic which ignores action costs
(FFs) [17]. For details on these heuristics, see [10] and [17]. We
found that if we also included a third heuristic function, a version
of FF which did adjust for action costs (FFc), then LAMA-2008
could solve 464 of the 550 problems taken from the 2008 and 2011
competitions, as opposed to just 449 when this heuristic is omitted.

Note, before IPC 2011 the LAMA-2008 code was re-factored so
as to make it thread-safe. Subsequent experimentation has shown that
these changes do not significantly impact the coverage of the system
when run on a single core. As such, though the experiments use our
newer version of LAMA-2008, the results shown below are expected
to hold if the techniques considered were implemented in the origi-
nal. Also of note, as FFs and FFc are identical in unit cost domains,
we only use one of these heuristics in the IPC 2006 domains (which
have no action costs).

5.1 Randomizing Operator Order

The use of multiple operator operator orderings has previously been
shown to yield an effective WA*-based parallel planning system [21].
Below, we will show that this is also true when using a complete plan-
ning system like LAMA-2008 even though it already uses multiple
heuristics to introduce diversity.

Recall that LAMA-2008 uses deferred heuristic evaluation. When
using this technique, the heuristic value of a state s is not calculated
until s is expanded. When s is generated, the heuristic value used for
s is actually the heuristic value of the parent of s. This technique can
often improve search time by decreasing the number of expensive
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heuristic evaluations. It will also increase the number of ties, as any
two children c1 and c2 with the same parent p that are achieved with
equal cost actions will have the same f -cost. A unit cost domain rep-
resents an extreme case of this phenomenon; all children of the same
state will be assigned the same f -cost. This increase in the number
of ties can increase the variance in coverage found with different op-
erator orderings.

This variance can be seen when experimenting with random op-
erator ordering in LAMA-2008. This technique involves randomly
re-ordering the list of children of an expanded state before those new
states are added to any open list. For this experiment, LAMA-2008
was configured to use random operator ordering in greedy best-first
search (GBFS) with the FFs and LM heuristics and preferred opera-
tors. This system was tested on all 510 problems from the 2006 and
2008 competitions for 5 runs per problem with a 30 minute time limit
and a 2 GB memory limit. These experiments were run on a cluster
of machines each with two AMD Opteron 250 2.4 GHz processors,
each with 1 MB of L2 cache. While the average number of prob-
lems solved is 431.8, if the best random seed had been selected on
a problem-by-problem basis, 448 problems would have been solved.
If the worst seed had been selected on a problem-by-problem basis,
only 415 problems would have been solved.

This variance suggests the use of restarts, whereby if some re-
source limit has been reached without a solution having been found,
the search starts fresh with a new random seed. The expected effec-
tiveness of using restarts can be calculated using the technique de-
scribed in Section 4.2. Table 3 shows this data for different types
of search and different numbers of restarts. In these experiments,
LAMA-2008 uses FFs and LM when running GBFS, and FFc and
LM when using WA* (ie. w = 7 represents a weight 7 search).

Table 3. Expected performance of LAMA-2008 using restarts.

Search Number of Restarts
Type 0 1 2 4 8 16

GBFS 431.8 437.0 438.5 440.3 437.3 427.8
w = 7 403.6 408.2 409.1 409.0 405.4 397.7
w = 1 207.2 209.1 209.8 207.3 205.4 194.9

Table 3 shows that a small number of restarts can help improve the
expected number of problems solved, though too many restarts can
degrade performance. This is true for all configurations tested includ-
ing weights 10 and 5 which are not shown in the table. The estima-
tion technique also indicates that if LAMA-2008 is set to restart not
just with a new random seed but also with a different configuration,
the additional diversity would help to further improve coverage. For
example, when restarting 4 times such that each of GBFS, w = 10,
w = 7, w = 5, and w = 1 are run for a maximum of six minutes,
the expected coverage is 448.4. This result motivates the inclusion of
several LAMA-2008 configurations in the portfolio.

The version of LAMA-2008 used in the competition was set to
restart on a memory limit instead of on a time limit. This limit was
enforced through the use of an internal memory estimator. The closed
list was also saved in between restarts so as to avoid recomputing the
heuristic values of states seen in previous iterations. Subsequent ex-
periments suggest that this was not necessarily the best approach.
When restarting with a 2 GB memory limit and using the 5 configu-
rations from above, an average of 440.2 problems was solved. While
this is competitive with restarting on a time limit with GBFS alone,
it trails behind the expected performance of restarting with differ-
ent configurations. This is at least partially due to inaccuracies in
our memory estimator which could only provide rough estimates. A

more in-depth consideration is beyond the scope of this paper.

6 Putting the Portfolio Together

In this section, we evaluate ArvandHerd on IPC benchmark do-
mains and show that it outperforms several state-of-the-art planners,
and would do so even if these planners could be efficiently paral-
lelized. Before doing so, we begin by describing the Arvand and
LAMA-2008 configurations used in the ArvandHerd portfolio.
ArvandHerd runs multiple configurations of Arvand using the

Arvand parallelization described in Section 4.4, and a single in-
stance of LAMA-2008. The configurations of Arvand used in both
the IPC competition and in the experiments below are the same as
those used in that section.

The version of LAMA-2008 used below differs slightly from that
used in IPC 2011 in terms of its restart-inducing memory limit. In
the competition, the memory limit was set at 2.7 GB even though the
systems were allowed a maximum of 6 GB. This limit was selected
so as to accommodate the memory needs of the plan improvement
system used. As the focus of this paper is coverage and the plan im-
provement system (a description of which is beyond the scope of
this paper) has been updated to allow for a larger limit, this restart-
inducing limit has been increased to 4 GB in the experiments below.

A second difference between the competition version of
LAMA-2008 and that used in the experiments below relates to the
configurations used. In the experiments, the first iteration performed
is GBFS, which is followed by a set of WA* searches that use the
following weights in the order given: 10, 5, 2, and 1. If the weight
1 search restarts due to the memory limit being reached, this cycle
of searches is repeated indefinitely (starting back at GBFS) until the
time limit is hit or a solution is found. In the competition version, the
weight 1 search was followed by several more low-weight searches
which were included for plan improvement, and have therefore been
removed. A final difference is that in the competition version, once
all LAMA-2008 configurations were tried once, the thread running
it would join the other 3 in running parallel Arvand. This is not
done in the experiments below in the interest of evaluating the gen-
eral portfolio technique, as the switch from LAMA-2008 to Arvand
assumes the portfolio members can all be run from a single binary.

6.1 ArvandHerd on IPC Benchmarks

ArvandHerd was run 5 times on each of the 790 problems in the
2006, 2008, and 2011 planning competitions on the same cluster de-
scribed in Section 4.4 (as were all planners considered in this sec-
tion). The performance of this system can be seen in Table 4, which
shows that ArvandHerd ’s coverage is significantly better than that
of the Arvand parallelization and the perfectly linear paralleliza-
tions of LAMA-2011 and FDSS. ArvandHerd achieves its high
coverage in the expected way, with Arvand and LAMA-2008 can-
celling out each others weaknesses. For example, recall that Arvand
is unable to solve even a single barman problem. With LAMA-2008
in the portfolio, 2-core ArvandHerd solves an average of 15.4 of
the 20 problems (similar to the 16 solved by LAMA-2008 when
run on its own). Similarly, while LAMA-2008 only solves 19 of 30
problems in storage (IPC 2006), 2-core ArvandHerd solves an
average of 29.4 (similar to the 30 that Arvand solves when run
on its own). In this way, ArvandHerd combines two planners in
LAMA-2008 and Arvand whose performance lag significantly be-
hind LAMA-2011 when used on their own to surpass even a per-
fectly linear parallelization of LAMA-2011.
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Table 4. Performance of parallel planners.

Planner Number of Cores
1 2 4 8

LAMA-2008 Simulation 639.0 641.0 643.0 NA
LAMA-2011 Simulation 721.0 724.0 726.0 727.0
FDSS-1 Simulation 720.0 724.0 726.0 727.0

Parallel Arvand 660.4 668.0 677.8 679.6
ArvandHerd NA 737.2 743.2 741.8

ArvandHerd +LAMA-2011 NA 750.4 754.2 755.2

6.2 Using LAMA-2011 in ArvandHerd

LAMA-2008 was included in the portfolio instead of LAMA-2011
because Arvand had originally been built into the LAMA-2008
framework. Table 4 shows that performance would further im-
prove if LAMA-2011 had been used instead (see the row labelled
“ArvandHerd +LAMA-2011”). For testing the k-core perfor-
mance of this portfolio, parallel Arvandwas run with k−1 cores on
all problems that LAMA-2011 could not solve with a 4 GB memory
limit. The table shows the sum of the number of problems solved by
LAMA-2011 and the average number of problems solved by (k−1)-
cores running parallel Arvand.

The fact that the new portfolio successfully solves even more prob-
lems than LAMA-2011 by itself reflects the importance of Arvand
in the ArvandHerd portfolio. Arvand is not simply covering the
weaknesses in LAMA-2008 that have been addressed with the re-
lease of LAMA-2011. It is also handling problems that this state-of-
the art planner cannot.

While coverage does not increase substantially with additional
cores regardless of whether LAMA-2008 or LAMA-2011 is used in
the portfolio, this is largely due to a “glass ceiling” effect. For exam-
ple, the 2-core portfolio containing LAMA-2011 is already solving
95% of the test problems.

7 Conclusion

In this paper, we began by demonstrating that parallelizing a single
planning algorithm is not necessarily the best way to use a multi-
core shared memory machine if the goal is to maximize coverage.
This occurs because while the parallelized algorithm may be faster,
it will have similar limitations as the original single-core algorithm in
terms of both resource usage and the domains it handles well. Instead
of parallelizing a single algorithm, we used an algorithm portfolio
approach to parallel planning in the development of ArvandHerd,
which won the multi-core sequential satisficing track at IPC 2011.

This paper contains a full description of ArvandHerd and an
analysis of how several design decisions contributed to its success.
In particular, we have shown that the use of multiple configurations
and restarts can improve the coverage of each of the two planners
used in the portfolio, namely LAMA-2008 and Arvand, even when
used on only a single core. While these techniques have previously
been used in the SAT-solving community, we have shown that their
success extends into automated planning. The combination of these
planners in ArvandHerd is then shown to outperform even the sim-
ulated performance of perfect parallelizations of two state-of-the-art
single-core planners. It is also shown that the coverage can be fur-
ther improved by replacing LAMA-2008 with LAMA-2011in the
ArvandHerd portfolio.

More generally, we have demonstrated through the construction
of ArvandHerd that the use of a portfolio is a powerful approach
for building general parallel planners due to its ability to combine

the strengths of different planners. While the ArvandHerd port-
folio only contains two planners, others may be included as well.
In particular, we suspect that planners that use approaches other than
the WA*-based and random-walk-based approaches already included
will offer the most potential for further improving coverage. These
may include SAT-based planners [19] and probe-based planners [13].
However, an evaluation of portfolios containing these approaches on
top of those already in ArvandHerd is left as future work.
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