
ArvandHerd: Parallel Planning with a Portfolio
Richard Valenzano, Hootan Nakhost, Martin Müller, Jonathan Schaeffer

University of Alberta
{valenzan, nakhost, mmueller, jonathan}@cs.ualberta.ca

Nathan Sturtevant
University of Denver
sturtevant@cs.du.edu

Abstract

ArvandHerd is a satisficing parallel planner that has been
entered in the 2011 International Planning Competition (IPC
2011). It uses a portfolio-based approach where the portfolio
contains four configurations of the Arvand planner and one
configuration of the LAMA planner. Each processor runs a sin-
gle planner, and the execution is mostly independent from the
other processors so as to minimize overhead due to communi-
cation. ArvandHerd also uses the Aras plan-improvement
system to improve plan quality.

Introduction
If a planner is to be successful, it must be able to handle
problems from a diverse set of domains. Unfortunately, no
single algorithm can be expected to dominate all other chal-
lengers on all possible domains. Even within a single do-
main, it has been shown that to achieve the best possible
performance, it is often necessary to use different param-
eterizations or configurations of an algorithm on different
problems (Valenzano et al. 2010). These issues suggest the
use of an algorithm porfolio. This means that instead of us-
ing a single strategy, problems should be tackled with a set
of strategies that differ by their configuration or in the un-
derlying algorithm.

For parallel planning, different members of the portfolio
can be assigned to separate processors. This is a simple al-
ternative to the difficult process of parallelizing a single-core
algorithm and it mostly avoids overhead from communica-
tion and synchronization. These ideas form the backbone of
our ArvandHerd planner.

In this paper, we begin with a description of the indi-
vidual members of the ArvandHerd portfolio. This is
followed by a description of the general architecture of
ArvandHerd, including communication between proces-
sors, memory management, and the use of the Aras plan-
improvement system.

The ArvandHerd Portfolio
The portfolio was selected so as to maximize the cover-
age of ArvandHerd by including different configurations
of two significantly different planning approaches. More

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

specifically, the portfolio contains four configurations of the
random walk based Arvand planner (Nakhost and Müller
2009) and one configuration of the WA*-based LAMA plan-
ner (Richter and Westphal 2010). Below, these planners and
their configurations are described in more detail.

The Arvand Planner
Arvand is a sequential satisficing planner that uses heuristi-
cally evaluated random walks as the basis for its search. The
execution of Arvand consists of a series of search episodes.
In the simplest version of Arvand, each search episode be-
gins with n random walks, each being a sequence of m legal
random actions originating from the initial state si, where n
and m are parameters. The heuristic value of the final state
reached by each random walk is also computed using some
heuristic function. Once all n walks have been performed,
the search jumps to the end of the walk whose final state, s,
has the lowest heuristic value. This means that Arvand now
runs a new set of n random walks of length m, only this time
the walks originate from state s. This is followed by another
jump to the end of the most promising walk from this new
set of walks. This process repeats until either a goal state
is encountered, or some number of jumps are made without
any improvement in the heuristic values being seen. In the
latter case, the current search episode is terminated and a
new episode begins with random walks originating from si.
Arvand has been shown to be able to solve many difficult

problems that traditional planners have been unable to solve
(Nakhost and Müller 2009). This increase in coverage gen-
erally comes at the expense of solution quality, though the
quality can be improved significantly by using the any-time
and plan-improvement strategies described later in this pa-
per. Arvand also requires very little memory which makes
it ideal for running simultaneously in a shared-memory en-
vironment with other memory-intensive planners.

Configurations Four different Arvand configurations
have been included in the ArvandHerd portfolio. Below,
the parameters that differ between configurations in the port-
folio are described in more detail. We omit any descrip-
tion of most of the other system parameters. For a more
comprehensive discussion of all the parameters in Arvand,
see (Nakhost and Müller 2009), (Nakhost, Hoffmann, and
Müller 2010), (Nakhost et al. 2011).



Bias Initial Extending
Config Type Walk Length Rate

1 MDA 1 2.0
2 MDA 3 1.5
3 MHA 1 1.5
4 MHA 10 1.5

Table 1: Arvand configurations used in ArvandHerd.

The first important difference between configurations re-
lates to the biasing of the random action selection. Arvand
allows for random walks to either be unbiased, biased to
avoid actions that have previously led to dead-ends (referred
to as MDA), or biased to using helpful actions identified by
the heuristic function (referred to as MHA). These different
biasing strategies have been shown to be useful for different
domains (Nakhost and Müller 2009). The bias used for each
configuration in the portfolio is shown in Table 1.

The portfolio configurations also differ in parameters re-
lated to the random walk length. In Arvand, this length is
adjusted online if little progress is being made in the heuris-
tic values seen during a set of random walks. Such stagna-
tion may occur if the current state is in a heuristic plateau.
In an attempt to escape these plateaus, the walk length is
increased over time. The initial walk length, the frequency
with which walks are lengthened, and the factor by which
they are lengthened (called the extending rate) are all pa-
rameters affecting this process. The initial walk length and
the extending rate for each configuration in the portfolio is
shown in Table 1. Note, the frequency with which walks
were lengthened did not vary between configurations.

Heuristic Function All Arvand configurations use the
FF heuristic (Hoffmann and Nebel 2001). For this heuris-
tic, a possibly suboptimal plan starting at the current state is
found to a relaxed version of the problem. This relaxation
corresponds to the removal of delete effects from operators.

Techniques used for solving the relaxed problem vary.
The implementation used for Arvand is from the Fast
Downward planning system (Helmert 2006). In this im-
plementation, the heuristic value ignores operator costs and
is given by the number of operators in the relaxed plan. This
heuristic will be referred to as the FFFD heuristic.

Smart Restarts If Arvand makes a number of jumps
without seeing any progress in the heuristic values encoun-
tered, the current search episode is terminated. However,
instead of always restarting from scratch, as is done in the
simplest version of Arvand, the planner can build upon
progress made by previous search episodes through the use
of a walk pool (Nakhost, Hoffmann, and Müller 2010). For
some a (called the pool size), the walk pool holds the a
“best” trajectories seen in all search episodes performed thus
far. A trajectory t1 is preferred over a trajectory t2 if the
state with the lowest heuristic value in t1 is lower than the
state with the lowest heuristic value in t2. Qualifying trajec-
tories are added to the walk pool at the termination of the
corresponding search episode. For each new search episode,
a trajectory t is randomly selected from the walk pool. In-
stead of starting from si, the new search episode then begins

from a state that has been randomly selected from t.
Note, for the first b search episodes — where b is a pa-

rameter called the pool activation level — the search begins
from the initial state. It is only after the first b episodes are
completed that partial trajectories from the walk pool are
used to find new starting positions for search. This prevents
the walk pool from becoming completely biased towards tra-
jectories that are all similar to the very first trajectory.

Configuration Selection as a Bandit Problem Arvand
has been enhanced with a system that, given a set of configu-
rations C, selects a configuration for the next search episode
from C based on the performance of the configurations dur-
ing previous search episodes. This system views configura-
tion selection as a multi-armed bandit problem in which C
is the set of bandits and the search episodes correspond to
arm pulls. This paradigm requires the definition of a pay-
off function for search episodes. For this system, the reward
given to a search episode e performed with configuration c
is given as follows: where s is the state on the trajectory of
e that achieved the lowest heuristic value, the reward given
to c is max(0, 1 − h(s)/h(si)), where h(r) is the heuristic
value of state r.

Using this reformulation of the problem, configurations
can be selected online using any of the multi-armed bandit
algorithms. In Arvand , the UCB algorithm (Auer, Cesa-
Bianchi, and Fischer 2002) is used.

Any-time Planning with Arvand The solutions found
by Arvand are generally suboptimal and so this planner
does not terminate once a solution is found. Instead, the so-
lution is added to the walk pool and a new search episode is
started. The cost of the best solution found thus far is used
as a bound on all future trajectories. This planner can then
be run indefinitely or until some resource limit is reached.

The LAMA Planner
LAMA is a WA*-based planner that won the sequential satis-
ficing track of IPC 2008 (Helmert, Do, and Refanidis 2008).
It uses both multiple heuristic functions and helpful action
open lists. Given a set of k heuristics H = {h1, ..., hk},
LAMA will have two sets of k open lists, denoted O =
{o1, ..., ok} and Op = {op1, ..., o

p
k}. LAMA must also be

given a second set of heuristics, denoted Hp = {h′
1, ..., h

′
j},

for the generation of helpful actions. Note, we will let
prefh′

i
(s) denote the set of children corresponding to the

helpful actions found with heuristic h′
i for state s.

When it is time to expand a state, one of the open lists
from either O or Op is selected in a process described below.
This open list will return the state s it identifies as the best
state it contains. If s is a goal state, the solution is extracted
from the closed list and returned. If s is not a goal state, the
children of s, denoted C, are then generated, as is the set
of preferred children of s, given by C ′ = prefh′

1
(s) ∪ ... ∪

prefh′
j
(s). The states in C are then added to each of the lists

in O for which states in any oi ∈ O are sorted by the cost
function fi(s

′) = g(s′)+w ∗hi(r), where r is the parent of
s′ and w is the weight used for the current WA* search. For
example, the cost given to c ∈ C in open list oi is given by



g(c) + w ∗ hi(s). This technique is called delayed heuristic
evaluation and has been shown to be effective in planning.
The states in C ′ are then added to each of the lists in Op.
For every opi ∈ Op, states in opi are ordered using the same
cost function as oi. However, notice that oi and opi do not
contain the same states as oi contains all generated but not
expanded states, while opi only contains preferred children.

When selecting which open list to remove a state from, the
strategy in use is to alternate between all lists in O∪Op. The
alternation is supplemented with a preferred children open
list bonus. Whenever a state is seen such that for at least one
of the heuristics it is the state with the lowest heuristic value
seen so far, the open lists in Op are all given a bonus of j
state expansions. This means that the alternation will be re-
stricted to only the open lists in Op until each has expanded
j nodes (or more if additional bonuses are accrued during
this phase), at which point alternation will continue among
all lists in O ∪Op.

Heuristics Two heuristics were used in the version of the
LAMA planner entered in IPC 2008: the landmark-count
heuristic and a variation of the FF heuristic. These will
be denoted as LM and FF+, respectively. Both heuristics
were also used for helpful action generation.

While the LM heuristic was one of the major advances
introduced in the LAMA planner, the heuristic was used as
is in ArvandHerd and so interested readers are referred
to the journal paper on LAMA (Richter and Westphal 2010).
However, instead of using FF+, ArvandHerd uses two
related heuristics. To explain why, we briefly describe FF+.

Just as in FFFD, LAMA’s version of the FF heuristic com-
putes a plan for the relaxed problem. This plan yields two
obvious heuristics. The first, denoted by FFsize, is given
by the number of actions in the relaxed plan just as is done
in FFFD. This heuristic is intended to capture the expected
depth of the solution from the current state. The second,
denoted by FFcost, is given by the sum of the cost of the
actions in the relaxed plan and is designed to capture the ex-
pected cost of the solution from the current state. FF+ is
given by the sum of FFsize and FFcost as a way to balance
between the two heuristics. Note, as Fast Downward
and LAMA compute the relaxed plan differently, the values
of FFFD and FFsize are often different, as are the set of
generated helpful actions.

In our experiments, we found that coverage was increased
if, instead of using FF+, we used both FFcost and FFFD

as a way to balance between these metrics. This means that
three heuristics are used in the version of LAMA used in
ArvandHerd: LM , FFcost, and FFFD. However, only
FFFD and FFcost were used to generate helpful actions.

Any-time Planning Once a solution is found with LAMA,
the search is restarted from the initial state with a lower
weight value. The previous best solution found is then used
to prune all future searches. Changing the weight introduces
diversity into the search which helps the planner avoid mak-
ing the same early mistakes it has made previously. In the
version of LAMA used in ArvandHerd, the first iteration
runs greedy best-first search which means open lists are or-
dered by heuristic values alone. This is then followed by

iterations with weights 10, 5, and 2, followed by 4 iterations
with a weight of 1, and a final iteration with a weight of
0. A similar strategy has been shown to significantly outper-
form other forms of any-time planning (Richter, Thayer, and
Ruml 2010). The WA* iterations have been further diversi-
fied effectively by randomizing the order in which generated
children of the same parent are added to any one open list.
This causes ties between children of the same state to be
broken differently in different iterations.

The caching of heuristic values, helpful actions, and the
best path found for each state in the closed list has also been
shown to increase the speed of LAMA since many heuristic
values will not need to be re-computed during future itera-
tions (Richter, Thayer, and Ruml 2010). This feature was
not part of LAMA as submitted to IPC 2008, but has been
added to LAMA as used in ArvandHerd.

The ArvandHerd Architecture
For the sequential satisficing multi-core track of IPC 2011,
4 processors are allotted for each planner. As both
Arvand and LAMA are built on top of Fast Downward,
ArvandHerd is run from a single binary. When problem-
solving begins, this binary spawns threads for different
members of the portfolio. However, before this can be-
gin, the planner first requires a translation from PDDL to
a SAS+-like formalism, and a knowledge compilation step
that builds data structures necessary for the LM heuristic.
We have not parallelized these components and simply use
this portion of the original LAMA code as is. For more infor-
mation on this process, see the work on LAMA (Richter and
Westphal 2010) or the work on Fast Downward (Helmert
2006) on which this process is based.

Once the translation and knowledge compilation stages
are complete, one of the processors is assigned to run LAMA
while the other three are each given one of the four Arvand
configurations to run. Most of the communication between
the processors is limited to those running Arvand. Specif-
ically, the three processors share a walk pool and a single
UCB configuration selection system. When a processor has
completed a search episode, it submits the corresponding
trajectory to the shared walk pool, and gets a new trajec-
tory in return, or the empty trajectory if the activation level
has not yet been reached. The processor then submits the
reward for its current configuration to the UCB system and
in return is given a configuration to use in its next search
episode. This sharing of the UCB system among the proces-
sors running Arvand allows them to more quickly identify
strong configurations than they would be able to with inde-
pendent UCB systems. The walk pool, for which both the
activation level and size are set to 100, is shared for similar
reasons. LAMA is also given the ability to add walks to the
solution pool, though in the submitted planner it only adds
solution trajectories.

So as to maintain the correctness of the walk pool and the
configuration learner, each system uses a lock that limits ac-
cess to one processor at a time. As the search episodes dom-
inate the Arvand execution time and LAMA is not expected
to find solutions very often, there is little synchronization or
contention overhead caused by sharing these resources.



The final shared value is the cost of the best solution found
by any planning method thus far. This value is used to prune
LAMA’s WA* search.

Plan Improvement with Aras
While Arvand usually performs well in terms of coverage,
it often finds low quality solutions. To address this issue,
the Aras plan improvement system was created (Nakhost
and Müller 2010). Aras involves two phases: action elimi-
nation (AE) and plan neighbourhood graph search (PNGS).
AE involves a scan of the current solution and the removal
of unneccesary actions. For PNGS, a plan neighbourhood
graph is built around the current solution using a breadth-
first search. The plan neighbourhood graph is then searched
for a shorter path between the start and any goal states.

The execution of Aras alternates between iterations of
AE and PNGS until some time or memory limit is hit. How-
ever, instead of rebuilding the neighbourhood graph on each
new PNGS iteration, the previous bread-first search is sim-
ply continued so as to grow the neighbourhood graph.

In ArvandHerd, whenever a solution is found by any
processor, an instance of Aras is created and run on the cur-
rent solution. If the initial solution was found by Arvand,
Aras is given a 60 second time-limit. If the initial solution
was found by LAMA, Aras is given a 40 second time-limit.
This limit is lower for LAMA since that planner already has
a fairly effective plan improvement scheme.

Recall that LAMA uses the cost of the best solution found
by any method for pruning. Such pruning is ineffective for
Arvand which instead only uses the best cost of a solution
found strictly with Arvand as a bound. This is because
bounds given by LAMA or Aras solutions are often too tight
for Arvand in which case Arvand is unable to find any
new solutions. As such, it was generally found to be more
effective to create a diverse set of plans with Arvand and
improve them with Aras, than to force Arvand to create
low cost plans directly by using the global bound.

Memory Management
As the memory requirements of Arvand are limited to
space for the current trajectory, the best random walk seen
thus far, the walk pool, and the UCB configuration selection,
Arvand is expected to almost never hit the 6 GB memory
limit given to planners for IPC 2011. This is not the case for
Aras and LAMA. As such, these processes need to be pre-
vented from exhausting all the memory given to the planner,
thereby crashing the whole system, and preventing further
search by the processors running Arvand . To address this
problem, the PNGS phase of each Aras instance is limited
to using only 500 MB, and the total memory of the open
and closed lists in LAMA is set as 2.7 GB. If the Aras limit
is hit, Aras quits and returns the best solution found thus
far. If the LAMA limit is hit, the current search iteration is
ended and the open lists are emptied. The next iteration of
LAMA then begins with the possibility that the diversity in-
troduced by changing the weight and tie-breaking may avoid
the mistakes made on the previous iterations. If the final 0-
weight iteration also runs out of memory, the processor run-
ning LAMA will run another copy of Arvand instead.

Conclusion
We have described the main features of the ArvandHerd
parallel planner which uses a portfolio containing the
Arvand and LAMA planners. Due to the use of the porfolio,
ArvandHerd is expected to have strong coverage, while
the use of Aras and LAMA’s any-time strategies should lead
to good solution quality.

Acknowledgments
We would like to thank Sylvia Richter for allowing us to use
the LAMA planner in the ArvandHerd portfolio, and Malte
Helmert for giving us access to the Fast Downward code.
We would also like to acknowledge the support of NSERC
and Alberta Ingenuity.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Machine
Learning 47(2-3):235–256.
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds. 2010. Proceedings of the 29th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2010,
Toronto, Ontario, Canada, May 12-16, 2010. AAAI.
Helmert, M.; Do, M.; and Refanidis, I. 2008. IPC 2008
Deterministic Track.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Nakhost, H., and Müller, M. 2009. Monte-Carlo Explo-
ration for Deterministic Planning. In Boutilier, C., ed., IJ-
CAI, 1766–1771.
Nakhost, H., and Müller, M. 2010. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Brafman et al. (2010), 121–128.
Nakhost, H.; Müller, M.; Valenzano, R.; and Xie, F. 2011.
Arvand: The Art of Random Walks. IPC 2011 Deterministic
Track Planner Reports.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2010. Improving
Local Search for Resource-Constrained Planning. Technical
Report TR 10-02, Dept. of Computing Science, University
of Alberta, Edmonton, Alberta, Canada.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research (JAIR) 39:127–
177.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The Joy of
Forgetting: Faster Anytime Search via Restarting. In Braf-
man et al. (2010), 137–144.
Valenzano, R. A.; Sturtevant, N. R.; Schaeffer, J.; Buro, K.;
and Kishimoto, A. 2010. Simultaneously Searching with
Multiple Settings: An Alternative to Parameter Tuning for
Suboptimal Single-Agent Search Algorithms. In Brafman
et al. (2010), 177–184.


