
Automating Layouts of Sewers in Subdivisions
Neil Burch and Rob Holte and Martin Müller and David O’Connell and Jonathan Schaeffer 1

Abstract. An important part of the creation of a housing subdivi-
sion is the design and layout of sewers underdeath the road. This
is a challenging cost optimization problem in a continuous three-
dimensional space. In this paper, heuristic-search-based techniques
are proposed for tackling this problem. The result is new algorithms
that can quickly find near optimal solutions that offer important re-
ductions in the cost of design and construction.

1 INTRODUCTION
The design of a housing subdivision is a complex civil engineering
task. In the concept phase, the designer decides on how a tract of land
will be subdivided into housing lots connected by roads. In the design
phase, the core infrastructure is planned, including the analysis of the
terrain, grading of the land (elevation), sewers (water, sanitary), and
conduits (power, telephone). Finally, in the layout phase, all the de-
sign considerations are mapped to an implementation. The design is
typically done as part of the tendering process by a civil engineering
firm. If they are the successful bidder, then they do the layout.
Most of the design and layout of a subdivision is manually done,

with a professional civil engineer required to verify its adequacy and
compliance with regulations. One of the labor-intensive aspects is the
design and layout of the sewers. This is a difficult problem for engi-
neers. It is a three-dimensional optimization problem in a continuous
search space. Typically, engineers adopt a least-effort solution, such
as laying the sewers down underneath the middle of the road. These
solutions are demonstrably suboptimal, adding to the subdivision de-
veloper’s construction costs.
This paper poses the problem of automating the design and layout

of sewers in subdivisions as an interesting AI application. Although
the sewer problem is a small part of the overall process of creating a
subdivision, automating this process has cost advantages. First, it will
reduce the manual effort required for the design and layout phases.
Second, a (near) optimal solution will reduce the construction costs.
Automation of the sewer problem has been tackled by several re-

searchers in the engineering community. Their solutions are typically
genetic algorithm or simulated annealing based. In contrast, we take
a heuristic search approach.
The contributions of this paper are as follows:

1. An understanding of an important real-world engineering applica-
tion. Given the difficult cost function and numerous special cases,
an elegant all-encompassing solution is not possible.

2. A new algorithm for determining and placing the minimum num-
ber of manholes (ground connections to the sewer) on a single
road. Dynamic programming is used to obtain an optimal global
layout cost, subject to a restriction on the location of manholes in
intersections.

1 Department of Computing Science, University of Alberta, Canada, email:
{holte,jonathan}@ualberta.ca

3. The road layout, expressed as a graph, has cycles. The sewer sys-
tem cannot have cycles. We present a new approach for “cutting”
the graph into a tree and exploring the search space of possible
spanning trees to find a high-quality solution.

4. A complete working system that can produce an anytime solution.
It scales to larger networks than have been solved previously.
Although this research deals with sewer system planning, these

ideas are applicable to other types of pipe networks (e.g., water dis-
tribution networks [1]).

2 SEWER SYSTEMS
A sewer system is a subterranean system used to convey waste to one
or more collection points (outfalls). There are two types of sewer sys-
tems: sanitary, to convey industrial and household waste, and storm,
to prevent flooding by draining surface water. In this paper, without
loss of generality we limit the discussion to storm sewers.
Each segment of pipe in a sewer system is connected by a man-

hole. A sewer design is a list of manholes and pipes. Each manhole
has a location and depth. Every pipe has an upstream and down-
stream manhole, a diameter, and an upstream and downstream depth.
The difficulties in designing a sewer arise from a large set of con-

straints. For example, the sewer must have the capacity to handle the
load it is expected to experience. All roads in a subdivision must have
a pipe, and all pipes must go under the road. The slope of all pipes
must be over some minimum value so that they drain (we only con-
sider systems which use gravity to properly drain) and under some
maximum so that the pipes do not wear too quickly. There are only
certain fixed diameters of pipes available. Pipes must be buried to a
minimum depth. Segments of pipe must not exceed some fixed maxi-
mum length. We consider all of these in our work, but there are a few
other parameters not included that would be needed for a production
system (e.g., curved pipe segments, and constraints on the angle at
which two pipes can meet).
An important issue that needs to be considered when burying pipes

is the slope. Pipe slope affects both the flow velocity and the pressure
within the pipes. The goal of design is to keep the flow velocity above
the minimum self cleansing velocity. If the velocity of the flow is
too low, deposits may build up within the pipe, obstructing the flow.
However, if the velocity is high enough these deposits are prevented,
and thus the system is self cleansing. Sewer systems where the slope
of the pipes alone convey the sewage are known as gravity sewer
systems; more complex systems may need pumps. In this paper, we
only consider gravity-based systems.
The rules for the design and layout of a sewer system are governed

by the regulations of the local municipality in which the housing
subdivision is located. There are numerous constraints imposed by
municipalities, with no standardization across jurisdictions. A pro-
duction quality sewer design tool needs to handle the plethora of pa-
rameter settings.

For storm sewers, the flow of water that will go through the pipes
is estimated using hydrological analysis. This is a mathematical ap-
proximation based on evaporation, precipitation, snow meltage, other
types of natural water movement, and the historical record.
When creating a sewer system plan, the engineer must consider the

horizontal and vertical alignments. The horizontal alignment spec-
ifies where the pipes and manholes are placed within the subdivi-
sion. Standard engineering practice defines a corridor underneath the
roadway where pipes are allowed to be placed. To allow for proper
maintenance of the sewer system, manholes must be placed at speci-
fied intervals along the pipe. The maximum distance differs amongst
the different diameters of pipe. Manholes are also typically placed
wherever the pipe changes direction. For roads with a high degree of
curvature, this can result in many manholes.
Vertical alignment is concerned with the depth of sewer pipes.

There are several factors that must be considered when determin-
ing these depths. First, the pipes must be buried deep enough to pre-
vent damage from the surface, including pressure from traffic and
weather. Second, there is usually a minimum required separation be-
tween the sewer and pipes/cables from other utilities. For example,
underground power cables and clean water distribution systems may
also lie underneath the same road corridors as the sewer system.
The optimization process for sewer system planning can be sepa-

rated into the two interrelated problems of layout (horizontal align-
ment) and implementation (vertical alignment). The main goal is to
produce the plan with the lowest cost, while meeting the specified en-
gineering constraints defined for the project. Cost considerations typ-
ically includes the manholes (number and depth) and pipes (number,
length, diameter, and depth). For more technical information consult
a civil engineering text such as [6].

3 RELATEDWORK

Much of the engineering literature assumes fixed pipe locations and
tries to optimize the pipe diameters and slopes. “Most pipe optimiza-
tion methods have not considered the layout optimization along with
the cost due to the extreme complexity involved ...” [7]. These solvers
make simplifying assumptions, such as assuming any pipe diame-
ter is possible. By considering the diameter as a continuous variable,
the problem is easier to solve by linear/non-linear programming tech-
niques. Such solvers have been built based on dynamic programming
[12] and genetic algorithms [8, 11]. An alternative is a knowledge-
based blackboard architecture approach [2].
Despite the promising results reported in the literature, none of

these approaches are used by the engineering community. Some of
these solutions work well on small subdivisions, but do not scale to
large ones. Further, the simplifying assumptions (e.g., pipe diameter)
result in illegal solutions.
The graph of roads has to be converted to a tree data structure

(cycles are not allowed). Cuts are made in the road graph to create
a tree. When it comes to selecting where to make the cuts, many
authors optimize the sewer system layout considering only the high-
level connectivity [4, 9]. An intuitive approach to cut selection is
to apply standard spanning tree algorithms to the multigraph. One
approach is to use the cuts that yield a shortest path spanning tree
rooted at the outfall [10]. Evolution-based algorithms are a popular
alternative [4, 9]. The difficulty with all of the above approaches is
that the cost for each element in the graph is not fixed. For example,
for an edge the connectivity of the remainder of the network affects
the cost. Modifying the connectivity might change the diameter of
the pipe represented by the edge. To be effective, a cut selection al-

Figure 1. Small subdivision (left); multigraph (middle left); augmented
graph (middle right) with two edges marked by arrows for removal to form a

spanning tree; cut graph (right).

Figure 2. Sewer planner architecture.

gorithm must address these issues.
Few researchers consider the entire sewer problem. There have

been several attempts to simultaneously optimize two or more com-
ponents of the problem [3, 5]. Recent work has tried multi-objective
optimization [1, 7]. All of these systems were tested with either small
subdivisions or a few artificial graphs. The largest problem reported
solved is half that of the large subdivision reported in this paper.
Most previous research disregards the placement of manholes. A

clever manhole placement scheme may result in pipelines with fewer
manholes, further reducing the cost of the solution. The reduction of
even a few manholes in a sewer system plan may save tens or hun-
dreds of thousands of dollars in construction costs. Few researchers
have addressed this issue. [12] presents a method for doing this, how-
ever this method requires an initial layout to be provided and is not a
general solution. [3] introduces a system architecture that considers
this level of optimization, but provide little detail.

4 SEWER PLACEMENT SOLVER
Consider the example subdivision shown in Figure 1 (left). This is
transformed into an equivalent multigraph representation, Figure 1
(middle left), where each straight-line road segment becomes an edge
and each intersection and cul de sac becomes a vertex. Cut selection
algorithms are used to convert this to a cycle-free graph representing
a set of pipes which cover each road in the subdivision. Figure 1
(right) is a potential cut selection result.
Our proposed solution architecture is presented in Figure 2. Given

a road layout and hydrology information, the design and implemen-
tation of a sewer system can be broken down into four problems:

• Cut selection: take a network of roads, which may contain cycles,
and produce a graph of roads and intersections with no cycles;

• Global layout: choose the manhole locations at intersections
where multiple pipes meet;

Figure 3. Test subdivisions (large, medium, and small).

• Local layout: lay down a pipeline along a single road;
• Vertical layout: resolve the third dimension by figuring out pipe
diameters and depths.

With the exception of the vertical layout algorithm, which finds a
local minimum, suboptimality comes from sampling and discretiza-
tion. The program can increase these, allowing for improved quality
solutions with increased investment of computation time.
Our system supports iterating on a solution or parts of a solution.

As stated previously, the cost for each element in the graph is not
fixed; for an edge the connectivity of the remainder of the network
affects the cost. The vertical solver might need to get a solution, re-
vise the edge costs, and iterate until a stable result is achieved.
All our tests used three real-world subdivisions shown in Figure 3,

large (38 intersections and 55 roads), medium (18 intersections and
26 roads), and small (15 intersections and 16 roads). All three are
constructed from actual curb-line survey data. They are not shown to
a common scale. Note that the large subdivision has twice as many
roads and intersections as the largest real-world subdivision that has
been previously solved.

4.1 Cut Selection
The general problem we consider starts with nothing more than an
outflow and a description of the road curb-lines. There is no informa-
tion about the direction of flow, and there are almost certainly cycles.
Before doing the layout we must generate a tree from the multigraph
describing the roads. We cannot just remove a road from each cy-
cle, as all roads must still be serviced. For each cycle we choose a
road and introduce a cut: a small gap in the pipeline and some new
manholes at the cut ends.
This cut could be placed anywhere along a road, but we only con-

sider cutting the road right by an intersection. This only requires one
additional manhole, rather than one manhole for each of two new
segments of road. While this might prevent us from discovering a
truly optimal solution, the cost of having an extra manhole makes
this simplification seem quite reasonable.2 The result of this process
is a new graph, possibly with new vertices, which is a tree rooted
at the outfall. We call this graph a cut graph, and it satisfies all the
conditions necessary for running the global layout algorithm.
We found it unnecessarily complicated dealing directly with the

original multigraph describing the roads. Instead we use an aug-
mented graph, with a vertex for each intersection and road. There
is an edge between road and intersection vertices if the road runs
into the intersection. An example is shown in Figure 1. The small
subdivision (left) has 15 intersections and 16 roads. The augmented

2 This may be suboptimal in the case where a road segment has a hill in the
middle. Here it might be better to cut at the top of the hill.

graph (middle right) has 31 vertices representing both intersections
and roads. There are 32 edges, one for each side of every road.
Generating cuts in the original multigraph is now just a matter of

generating a spanning tree in the augmented graph. If a road vertex is
connected to both intersection vertices in the spanning tree, the road
is unmodified in the original road graph. On the other hand, if the
edge to one of the intersection vertices is missing, a cut is placed on
the road beside that intersection. It is not possible for both edges to
be missing, as there are only two edges connected to a road vertex
and all vertices will be reachable in the spanning tree. An example of
this process is shown in Figure 1.
This allows us to use standard spanning tree algorithms, but it does

nothing to reduce the space of possible arrangements of cuts. On the
real-world test data we used, the small subdivision had only 24 pos-
sible trees, which is quite manageable. The medium sized graph had
roughly ten million arrangements, and the largest had a billion. At
this time, these numbers are large enough that exhaustive enumera-
tion is not reasonable, so we randomly sample the spanning trees.
In our experiments, we tried two different sampling methods. One

method was to sample uniformly at random from all spanning trees,
and the other was to choose spanning trees that have a small maxi-
mum distance to the outfall. The second method finds minimum cost
spanning trees where the weight of both road edges in the augmented
graph is the shortest path length to the upstream intersection from the
outfall in the original graph. It is not guaranteed to produce only the
cut graphs with the shortest maximum pipe length, but it will produce
a much lower average maximum length. The rationale for trying to
find a spanning tree with a low maximum path length is that one
long pipeline is likely to be more expensive than two short pipelines
that have the same total length but run in parallel (roughly speaking),
because the depth, and corresponding amount of dirt that must be
excavated, increases over the length of the pipe.

4.2 Global Layout

Given a cycle-free pipe graph, we can consider the problem of plac-
ing the manholes within intersections (the vertices in the cut graph.)
We make the simplifying assumption that we only want to minimize
pipe length and number of manholes. This will minimize cost locally
for any single road, but ignores global effects of flow constraint. We
also ignore any constraints about the angles at which pipelines meet.
The motivating idea is to consider every possible arrangement of

locations for every intersection manhole. For every arrangement, we
run a local and vertical layout algorithm to get the cost. After con-
sidering every arrangement, we would know the best global layout.
This is an intractable search within a non-convex continuous space,
but it can be approximated by discretizing the space. We used four
different subsets of the candidate manhole locations shown in Fig-
ure 4, with a spacing of 4m. The first set only contains point 1, in the
center of the intersection. This provides a zero-effort baseline. The
second set contains points 1 to 5, the third contains points 1 to 9, and
the fourth set contains all 13 points.
Using a small set of locations makes the space finite, but the naive

idea of trying all combinations of locations is still exponential in the
number of intersections, with the base being determined by the num-
ber of positions per intersection. Since we assumed that all the costs
are determined by local factors, we can do much better.
The network of pipes is free of cycles, and can thus be described as

a tree rooted at the outfall. Combined with the costs being local, this
means we can use dynamic programming to find the optimal set of
locations efficiently. We visit the vertices using a postfix depth-first

1
2

3
4

5

6

7

8

9
10 11

1213

Figure 4. Global layout intersection positions.

Figure 5. Reducing the number of manholes needed.

ordering, which guarantees that we will know the cost of all possible
child subtrees when considering an intersection. If intersection i is
a leaf, we let cost(i, p) = 0 for each position p of intersection i.
Otherwise, cost(i, p) is

∑

c∈children(i)

min
pc

(cost(c, pc) + local(i, p, c, pc))

where local(i, p, c, pc) is the cost of the road from intersection i to
intersection c as determined by running a local layout algorithm on
that road from p to pc.
Once the costs are known, the optimal positions for every intersec-

tion can be recovered by making a second pass through the intersec-
tions, choosing positions for the children which achieves this cost.

4.3 Local Layout
Given a road with fixed endpoints, a local layout algorithm chooses
the best locations for manholes when laying a pipe down under that
road. The segments of pipe can vary in length, but must remain under
a maximum length and stay between the curbs of the road. There are
potential savings to be found by doing a more complicated design
than just running the pipeline down the center of the road. Consider
the roadway in Figure 5, shown with thick lines. When the pipeline
runs under the center of the road, shown by the solid line, two inter-
mediate manholes are needed. By choosing off-centre points, as in
the dashed line, only one intermediate manhole is needed. As with
global layout, we use the simplifying assumption that we always
want to minimize pipe length and the number of manholes.
The idea is to repeatedly find the positions that are reachable with

one more pipe. For example, given one pipe of length l, we can draw
an arc between the two curbs that are reachable in ≤ l distance and
reachable from the start point. All points on the inside of this frontier
are reachable using just one pipe and an extra manhole. The next
frontier is generated by drawing arcs around all points within the
first frontier, and taking the union of all these spaces. This process
of generating new frontiers continues until the end point lies within
a frontier. This is demonstrated in Figure 6 (left).
At this point we can generate the layout by tracing backwards

through the frontiers. For any point outside the first frontier, there
will be some point in a previous frontier which minimizes the dis-
tance from the start to the given point. This new point will be a man-
hole location, and we continue tracing backwards from there. This
will produce an optimal solution.

1 2 3 4 5 6

7

Figure 6. A simple roadway with successive frontiers of reachable points
(left); two strips along the roadway with dashed lines indicating allowed

manhole locations (right).

f is the frontier to be updated
p is the point we are expanding from
p_distance is the distance to reach p
UPDATE_FRONTIER(f, p, p_distance)
for each segment s in strips

q := farthest reachable point on s from p
if q is a valid point

d := DISTANCE(p, q) + p_distance
if s is in f

<q’, p, d’> := f[s]
if q farther along s than q’ or

q = q’ and d < d’
f[s] := <q, p, d>

else f[s] := <q, p, d>

LOCAL_LAYOUT(start, end)
if end->start crossing a curb

return []

generate new frontiers until
we reach the end of the road
create frontier f
num_frontiers := 1
frontiers[num_frontiers] := f
finished := {}
UPDATE_FRONTIER(f, start, 0)
while no point in f can reach end

create frontier new_f
for each segment s in f

if s not in finished
<p, parent, d> := f[s]
UPDATE_FRONTIER(new_f, p, d)
if p is at the end of s
add s to finished

num_frontiers := num_frontiers + 1
frontiers[num_frontiers] := new_f
f := new_f

build the final path
s := segment in f with shortest path to end
points := []
for each f from num_frontiers down to 1

f := frontiers[f]
<p, parent, d> := f[s]
add p to front of points
s := segment containing parent

Figure 7. Local layout algorithm.

The above is not feasible for a continuous space of manhole lo-
cations, as bends or corners in the road preclude a closed form de-
scription of the frontiers. Instead, we discretize the space by dividing
every straight section of the road lengthwise into strips, and only al-
low points along the middle of the strips. Figure 6 (right) shows a
simple roadway divided into strips. A frontier is now a description of
how far along a strip we can reach, for every strip. Note that running
the pipe along the center of the road is equivalent to using a single
strip. Figure 7 shows pseudocode for the layout algorithm.

4.4 Vertical Layout
A complete sewer layout does not just specify the two-dimensional
location of pipes and manholes. Depths must also be specified, as

well as selecting from available pipe diameters for each segment.
The design must also satisfy various additional constraints, the most
obvious being the capability of handling the expected load on the
sewer. There exist commercial packages for automating this process
(like StormCAD) that will suggest depths and pipe diameters given
a description of the pipeline and the loading.
We developed a program which solves this problem for storm sew-

ers. The cost function is messy, reflecting the real-world nature of
the application. The most important factors are the number of man-
holes, the pipe depths (non-linear with steps) and the pipe diameters
(roughly quadratic). The solver iterates through successive mixed in-
teger programs. Each iteration starts with the two-dimensional layout
of the pipeline and the expected input to the pipeline. The output is a
minimal cost set of depths and pipe diameters, given any piecewise
linear approximation of a convex cost function.
Multiple iterations are necessary because the expected load, as de-

termined by a commonly used prediction called the rational method,
depends on hydrological information and travel times through the
pipes. The times, calculated using the Manning formula, depend on
the slope and diameter of the pipes, which are decided during an iter-
ation. In the rational method, shorter times result in a larger expected
load. Under-estimating the times always produces a valid design, in
that the resulting sewer will handle the real load estimate given the
actual times, but the pipes may be larger or steeper than necessary,
which increases the cost.
The initial time estimates are set low enough to be a guaranteed

underestimate, so the first proposed layout is a valid design. Actual
travel times are computed for this design, and we then have times
which produce a valid design as well as some new time estimates.
We now proceed as follows. Using the new times, generate a new
design. If this design is valid, we save the time estimates for this
design, compute the new actual travel times, and continue. If the new
cost is worse, we stop, and use the previous valid design. Finally, if
the new layout is not valid, we generate new time estimates by taking
the average of the current estimates and the times that last produced
a valid layout. If no time changes by more than a minimum amount
when doing this, we stop, and just use the last valid layout.
Iterating in this fashion is not guaranteed to be globally optimal,

because we do not explore the entire space of flow time estimates.
This code, along with a real world cost model, was used to generate
the total cost estimates in the results section. The model provided a
cost per manhole and a per length pipe cost over varying depths for
each of 23 different pipe diameters.
While this component is similar to that in other proposed systems,

ours differs by 1) using a piecewise linear approximation of the cost
function, and 2) iterating starting with a lower bound.

4.5 Complete System

The information that is available initially is a collection of curb lines,
each of which is a sequential set of three dimensional positions all the
way along one continuous piece of curb. This gives the outline of the
roads, as seen in the real-world data shown in Figure 3. The other
piece of information needed is the hydrology information.
We use the process shown in Figure 8. Because local layout only

considers local properties, we save time by precomputing local lay-
out results for all positions of both intersections and all three possi-
bilities on every road (no cut, or a cut at either end). After this, we
repeatedly generate new cut graphs. For each cut graph, we run the
global layout algorithm using the precomputed local layout costs.
This gives a complete two-dimensional layout. At this point, one

SEWER_LAYOUT()
for each road r

for each pair u,d of upstream and
and downstream manhole locations

save results of LOCAL_LAYOUT(u,d) on r
cut r by upstream manhole
save results of LOCAL_LAYOUT(u,d) on r
move cut beside downstream manhole
save results of LOCAL_LAYOUT(u,d) on r
remove in cut r

for some desired number of cut graphs
CUT_SELECTION()
GLOBAL_LAYOUT(saved local layout costs)
compute storm input for each pipe
VERTICAL_LAYOUT()
if new design has lowest cost so far

save current design
return saved design

Figure 8. Sewer system layout process.

would use the topology and hydrology information to figure out how
much water is expected to enter every pipe. In our experiments, we
were forced to just use fixed estimates, as we did not have sufficient
information available to compute this for arbitrary manhole loca-
tions. With these estimates, we can run the vertical layout algorithm
to produce a complete sewer design and a dollar cost estimate.

5 RESULTS
It is difficult to do a fully realistic assessment of our system. There
are no available test sets, other than a few artificial problems. Further,
commercial data is not public—the final layout is public but the data
used to compute the answer (e.g., hydrology) is not. Thus compar-
isons to deployed sewer systems are not possible. We are fortunate
to have three real-world subdivisions for use in our testing. Even so,
we do not have access to all the data needed to do a fair comparison
between the computer-generated and human-generated solutions.
In the following, system performance is expressed in terms of

number of manholes placed. A typical manhole costs between $20K
and $50K (the cost grows nonlinearly with depth). The cost of the
pipe is usually secondary.
The experiments were run on the three subdivisions shown in Fig-

ure 3: large (L), medium (M) and small (S). For all three subdivi-
sions, we consider a number of randomly generated cut graphs and
record the best result. The first two experiments consider the number
of manholes used in the layout. The final experiment uses the vertical
layout code to provide an estimated total cost of a layout.
The results for the first set of experiments, shown in Table 1, are

generated from 100,000 random cut graphs.3 We ran tests using 1,
5, and 20 strips with the local layout algorithm. For each of these
cases, we use 1, 5, 9, or 13 intersection manhole positions for the
global layout algorithm. Finally, we used both 30m and 60m for the
maximum length of a pipe segment. The best results are in bold.
The most substantial improvement can be seen with the global lay-

out algorithm. In the case of the large subdivision with shorter pipes,
using 13 positions produced a layout with 16 fewer manholes than
using a single manhole location. Using more strips for the local lay-
out algorithm only reduced the manhole count by one when longer
pipes were allowed. This is obviously a much more modest savings,
but even a single manhole can be a significant cost.
The use of one strip and 13 positions at intersections is a close

3 Experiments with artificially-constructed subdivisions show similar trends.

Strips Manhole 30m pipes 60m pipes
Positions L M S L M S

1 1 210 98 62 101 47 31
1 5 202 93 62 94 46 30
1 9 196 90 60 89 42 28
1 13 195 90 60 88 42 27
5 1 207 97 62 98 45 31
5 5 199 92 62 93 44 29
5 9 192 88 59 88 41 28
5 13 191 88 59 87 41 27
20 1 206 97 62 98 45 30
20 5 199 92 62 93 44 29
20 9 191 88 59 88 41 28
20 13 190 88 59 87 41 26

Table 1. Manholes (random).

30m pipes 60m pipes
L M S L M S

1 position 210 98 62 101 47 30
5 positions 202 94 62 94 44 29
9 positions 193 90 60 90 42 28
13 positions 193 90 60 90 42 27

Table 2. Manholes (random; low maximum path length).

approximation to what a civil engineer might do (center of the road).
Given this assumption, then the computer outperforms the human on
the 30m pipes by 5, 2, and 1 manholes for the large, medium and
small subdivisions, respectively, and by 1 in each case for the 60m
pipes. These savings are in addition to the many hours of human
labor required to obtain these numbers.
The results show diminishing returns as the number of strips and

candidate manhole locations are increased. A typical run on the large
subdivision took 23 minutes, suggesting that high-quality results can
be obtained in a reasonable amount of time. Further, we can easily
solve much larger problems (artificially constructed), but in this pa-
per we limit ourselves to only real-world scenarios.
The second series of experiments, shown in Table 2, uses 100,000

random cut graphs with a low maximum path length. We only con-
sider the case where we use 20 strips for local layout. The results
are very similar to using random cut graphs with only a single strip
for local layout. The decrease in performance when using low path
length cut graphs is not entirely unexpected, as it is limiting the space
of cut graphs being searched in an attempt to minimize a cost which
manhole count does not reflect.
Trying to reduce the maximum pipeline length was done because

we hoped that it would generate lower cost solutions. To look for this
effect, we did a final series of experiments using the vertical layout
code to generate a total cost. We first used a baseline of 1 strip and 1
position, running the pipe down the center of the road. We then used
20 strips for local layout, 13 positions for global layout, and a 30m
maximum length for pipe segments. The solution was constrained to
use a combination of 23 commerial pipe sizes. Results are shown in
Table 3. Each data point represents the average of the minimum cost
in millions of dollars over 10 runs with 2,000 cut graphs. For the
large subdivision, a roughly $240,000 (7%) reduction is possible.
While the results for the minimum path length cut graphs are

slightly negative for the medium and small subdivisions, the differ-
ence is smaller than the difference in the manhole counts multiplied

Type L M S
Baseline $3.459 $1.565 $0.983
Random cuts $3.239 $1.459 $0.957
Random low depth cuts $3.220 $1.462 $0.960

Table 3. Solution costs, in millions of dollars.

by the $10,000 per manhole cost. Encouragingly, the largest subdivi-
sion result is positive despite this, suggesting that maximum pipeline
length is a factor, but perhaps not as significant as hoped.
On a standard 2.83 GHz quad core PC, the computation times for

the random cuts line in Table 3 were 120.8 (large), 26.3 (medium)
and 11.5 (small) minutes. For quick prototyping, the linear relaxation
of the vertical layout problem is generally around only 0.1% error,
and is about 6 times faster on the largest problem.

6 CONCLUSIONS
In this paper, we demonstrated the first system for addressing the
complete cycle of design and layout for a storm sewer system. The
system can produce high-quality solutions that reduce the number
of manholes and the cost of construction. The system is scalable to
much larger subdivisions than has been attempted before.
This research is just the first step. The goal is to produce high-

quality solutions for the problem of laying down both storm and san-
itary sewers. With two sets of pipes, there will be conflicts as each
system has additional connections (e.g., all houses have a connection
to the sanitary sewers). The “easy” solution is to have one set of pipes
at a lower elevation than the other, but this can dramatically increase
the cost. Automating the two-pipe problem is one of the long-sought-
after dreams of civil engineering.

REFERENCES
[1] M. Afshar, M. Akbari, and M. Marino, ‘Simultaneous layout and size

optimization of water distribution networks: Engineering approach’,
Journal of Infrastructure Systems, 11(4), 221–230, (2005).

[2] K. Chau and C. Cheung, ‘Knowledge representation on design of storm
drainage system’, in Innovations in Applied Artificial Intelligence, num-
ber 3029 in LNCS, 886–894, (2004).

[3] F. Diogo, G. Walters, E. de Sousa, and V. Graveto, ‘Three-dimensional
optimization of urban drainage systems’, Computer-Aided Civil and In-
frastructure Engineering, 15, 409–42, (2000).

[4] Z. Geem, T. Kim, and J. Kim, ‘Optimal layout of pipe networks us-
ing harmony search’, in International Conference on HydroScience and
Engineering, (2000).

[5] A. Hassanli and G. Dandy, ‘Optimal layout and hydraulic design of
branched networks using genetic algorithms’, Applied Engineering in
Agriculture, 21(1), 55–62, (2005).

[6] H. Methods and S. Durrans, Stormwater Conveyance Modeling and De-
sign, Haestad Press, 2003.

[7] T. Prasad and N. Park, ‘Multiobjective genetic algorithms for design of
water distribution networks’, Water Resources Planning and Manage-
ment, 73–82, (2004).

[8] D. Savic and G. Walters, ‘Genetic operators and constraint handling for
pipe network optimization’, in Evolutionary Computing, number 933 in
LNCS, 154–165, (1995).

[9] D. Smith and G. Walters, ‘An evolutionary approach for finding op-
timal trees in unidirected networks’, European Journal of Operations
Research, 120, 593–602, (2000).

[10] S. Tekeli and H. Belkaya, ‘Computerized layout generation for sanitary
sewers’, Water Resources and Management, 112(4), 500–515, (1986).

[11] K. Vairavamoorthy and M. Ali, ‘Optimal design of water distribution
systems using genetic algorithms’, Computer-Aided Civil and Infras-
tructure Engineering, 15, 374–382, (2000).

[12] G. Walters, ‘The design of the optimal layout for a sewer network’,
Engineering Optimization, 9, 37–50, (1985).

