Computing Science (CMPUT) 657 Algorithms for Combinatorial Games

Martin Müller

Department of Computing Science University of Alberta

Fall 2025

How to play a Sum Game?

- Review: global alphabeta can be too slow
- Incentives are great if they work (e.g. decomposition search, later)
- Using incentives fails when:
 - incentives are incomparable
 - subgames are too complex to compute incentives
- What else can we do?
 Use temperature/thermographs

Why Use Temperature/Thermographs?

- It is much easier to compute thermographs (TG) than canonical forms
 position / game state
 Memory per game is constant in practice
- Most TG have very few lines, 10 or more is rare
- Even knowing approximate temperatures can be a big help Need an algorithm to compute them

Simple Sum Strategies - Hotstrat

- Simple Sum Strategies
 - Use local data such as thermograph only
 - No global search
- Simplest idea: HotStrat
- Play in hottest subgame ties broken arbitrarily
- Which move? See later

HotStrat Example

- Sum game G + H + K
- G = 10|8||2
- H = 5|-3
- K = 5|1||-1|-8
- Temperatures
 - t(G) = 7/2
 - t(H) = 4
 - t(K) = 15/4
- H is hottest
 - HotStrat will play in H
 - for either Left or Right going first

$$H = 5I - 3$$

$$t(G) = 7/2$$

$$H= 5I-3$$
 $t(H) = 4$, hottest $K= 5I1II-1I-8$ $t(K) = 15/4$

Sample play of sum G + H + K, assuming Right goes first:

- Move $H \longrightarrow H^R = -3$
- $t(H^R) = -1$ since it is integer
- Now sum game is G 3 + K, with t(G) = 7/2, t(K) = 15/4
- Left moves in K which is is hottest.
- $K \longrightarrow K^L = 5|1$
- $t(K^L) = 2$
- Sum $G 3 + K^L$, G is hottest, Right moves from G to 2
- Sum $2-3+K^L=-1+K^L$, Left moves K^L to $K^{LL}=5$
- Sum -1 + 5 = 4. Stop reached.

HotStrat Move Selection

CMPUT 657

- Remember the construction of scaffold
- Each Left scaffold is the max of the taxed left options
- In general, at different t, different moves can contribute

be to the max LS or RS at that t

- HotStrat chooses an orthodox move that defines the scaffold of the thermograph at the temperature of the game
- Ties broken arbitrarily
 Tie: different options have the same value at t(G))

Definition - Orthodox Move

- L_t(G) = Left scaffold at temperature t
- $R_t(G^L)$ = Right scaffold of option G^L at t
- Move to G^L is orthodox at temperature t (or t-orthodox) iff taxed right option equals left scaffold of G at t
- $R_t(G^L) t = L_t(G)$
- Likewise for right options (tax: +t):
- G^R is orthodox iff $L_t(G^R) + t = R_t(G)$

Weakness of HotStrat

- We have seen before that the hottest move is not always optimal
- How bad can it get?
- We would like an error bounded by the temperature of the hottest subgame
- Remember $t(G + H) \leq max(t(G), t(H))$
- Unfortunately, HotStrat can lose much more
- It can be tricked into unbounded loss
 Loss grows without a limit, as the number of subgames
 grows
 Hotstrat is
- Note: this is worst-case performance. Not too bad in practice See empirical results in the "Locally informed.." paper

Weakness of HotStrat - Example

•
$$G = \{10||0|-20\}|-4$$
, $t(G) = 2$

•
$$H = 10||9| - 9$$
, $t(H) = 1$

•
$$m(G) = -2$$
, $m(H) = 9$, so $m(G + H) = 7$

- Play G + H, Left goes first and follows HotStrat:
- G hottest, so $G \longrightarrow G^L = \{10||0|-20\}, t(G^L) = 10$
- Right *does not follow HotStrat*, plays $H \longrightarrow H^R = \{9|-9\}, t(H^R) = 9$
- G^L is hottest, so Left plays there to 10, then Right plays H^R to -9
- Total score 10 9 = 1
- Both played the same number of moves

Weakness of HotStrat - Watching the Means

•
$$G = \{10||0|-20\}|-4$$
, $m(G) = -2$

•
$$H = 10||9| - 9$$
, $m(H) = 9$

• Left plays
$$G \longrightarrow G^L = \{10||0|-20\},$$

•
$$m(G^L) = 0$$
, Left gains 2 points over $m(G) = -2$

• Right
$$H \longrightarrow H^R = \{9|-9\}$$

•
$$m(H^R) = 0$$
, Right gains 9 points over $m(H) = 9$

- Left G^L → 10, Left gains 10 points
- Right plays H^R to -9, Right gains 9 points
- Total gains Left Right = (2+10) (9+9) = -6 for Left
- Observe how means of subgames shifted: Right gained 9 two times, Left only got 2+10

Discussion

•
$$m(G+H) = 7$$
, $t(G+H) \le 2$

- Left goes first, can expect to get to around m+t = 9
- However, Left only got to a stop of 1
- Left even lost 6 points compared to the mean, far more than the temperature
- And Left even went first!
- If we play n copies of G + H:
- We should expect to get around n times m(G+H) = 7n
- With the strategies above, all n copies will play out the same way.
- Left only gets a score of 1 per copy
- Loses about 6n points, grows to infinity with increasing n
- Unbounded loss

How to Fix HotStrat? - Watching the Means

•
$$G = \{10||0|-20\}|-4$$
, $m(G) = -2$

•
$$H = 10||9| - 9$$
, $m(H) = 9$

• Left plays
$$G \longrightarrow G^L = \{10||0|-20\},$$

•
$$m(G^L) = 0$$
, Left gains 2 points

• Right
$$H \longrightarrow H^R = \{9|-9\}$$

•
$$m(H^R) = 0$$
, Right gains 9 points

• Left answers
$$H^R \longrightarrow H^{RL} = 9$$

•
$$m(H^RL) = 9$$
, Left gains 9 points

• Right
$$G^L \longrightarrow G^{LR} = \{0 | -20\}$$

•
$$m(G^{LR}) = -10$$
, Right gains 10 points

• Left
$$G^{LR} \longrightarrow 0$$

•
$$m(0) = 0$$
, Left gains 10 points

How to Fix HotStrat? - Watching the Means

- Total gains Left Right = (2+9+10) (9+10) = +2 for Left
- Compare with previous result.
- Left "defended" the mean of H, end result in H is $H^{RL} = 9$.
- Left gained 2 points from going first in G, m(G) = -2 and end result in G is $G^{LRL} = 0$

How to Fix HotStrat?

- In the example, Left should answer Right's temperature-increasing move. $H^R \longrightarrow H^{RL} = 9$
- Then Right moves $G^L = \{10||0| 20\}$ to $G^{LR} = \{0|-20\}$
- Finally, Left moves to G^{LR} to 0, total score +9
- Compare with previous result. Left "defended" the mean of H.

Refinements of HotStrat

- HotStrat+ (Müller and Li 2004)
 - play sente moves earlier
 - A little better in practice
 - no bounded loss either
- ThermoStrat (Winning Ways)
 - bounded loss (by temperature of second hottest game)
 - pretty complex
- SenteStrat (Berlekamp 1996)
 - Simpler than ThermoStrat
 - Also has bounded loss
 - Focus on this method here

Simple Sum Strategy - SenteStrat

- SenteStrat (Berlekamp 1996):
 - Answer opponent sente moves in the same subgame
 - Play HotStrat otherwise
- How is sente defined here?
- Answer: relative to an ambient a: the lowest temperature reached so far
- An opponent move is considered sente if:
 - They move any subgame G_i to a temperature t > a
 - In all such cases, SenteStrat replies in the same G_i
- SenteStrat is a simple algorithm with bounded loss

SenteStrat on Our Example

•
$$G = \{10||0|-20\}|-4$$
, $t(G) = 2$

•
$$H = 10||9| - 9$$
, $t(H) = 1$

- Ambient $a = \max(t(G), t(H)) = 2$
- Left plays HotStrat, $G \longrightarrow G^L = 10||0| 20$
- Again Right tries $H \longrightarrow H^R = 9|-9|$
- $t(H^R) = 9 > a$
- Left treats this move as sente and answers in H^R
- $\bullet \ H^R \longrightarrow H^{RL} = 9$
- Play then continues the same as in good sequence above

Summary and Outlook

- Algorithms for sums of "relatively simple" subgames
- We can compute means, temperatures, thermographs of subgames
- Discussed simple "no-search" algorithms: HotStrat, SenteStrat
- Adding a little bit of search helps in practice, see (Müller and Li 2004) paper