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ABSTRACT

A new parallel sorting algorithm suitable for MIMD multiprocessors is

presented. The algorithm reduces memory and bus contention, which many

parallel sorting algorithms suffer from, by using a regular sampling of the data

to ensure good pivot selection. For n data elements to be sorted and p proces-

sors, when n ≥ p 3 the algorithm is shown to be asymptotically optimal. In

theory, the algorithm is within a factor of two of achieving ideal load balanc-

ing. In practice, there is almost perfect partitioning of work. On a variety of

shared and distributed memory machines, the algorithm achieves better than

half-linear speedups.
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1. Introduction

Sorting is one of most studied problems in computer science because of its theoreti-

cal interest and practical importance. With the advent of parallel processing, parallel

sorting has become an important area for algorithm research. Although considerable

work has been done on the theory of parallel sorting and efficient implementations on

SIMD architectures, good parallel performance on a variety of multiprocessor MIMD

architectures with a large number of processors remains a challenging problem.

A multitude of innovative parallel sort algorithms have been proposed. Akl pro-

vides a good overview of the subject [2]. It is not practical to mention all previous pro-

posed parallel sorts here due to space limitations. Nor is there a necessity to do so, since

many of them are based on unrealistic assumptions, which are beyond our interests.

Instead, several algorithms that we consider representative of work in this area are dis-

cussed. These algorithms are characterized by being realistic and likely to yield good

performance in an implementation.

The speedup of a parallel sort achievable on a multiprocessor depends largely on

how well the average memory latency and overhead of scheduling and synchronization

can be minimized. Based on the general strategies utilized, most parallel sorts suitable

for multiprocessor computers can be placed into one of two rough categories: merge-

based sorts and partition-based sorts. Merge-based sorts consist of multiple merge stages

across processors, and perform well only with a small number of processors. When the

number of processors utilized gets large, so does the overhead of scheduling and syn-

chronization, which reduces the speedup. Partition-based sorts consist of two phases:

partitioning the data set into smaller subsets such that all elements in one subset are no
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greater than any element in another, and sorting each subset in parallel. The performance

of partition-based sorts primarily depends on how well the data can be evenly partitioned

into smaller ordered subsets. Unfortunately, no general, effective method is currently

available, and it is an open question of how to achieve linear speedup for parallel sorting

on multiprocessors with a large number of processors.

Parallel Quicksort has been a popular choice for research [6, 8, 17]. The basic result

is that initial data splitting limits the speedup to a maximum, generally believed to be

about 5 or 6, regardless of how many processors are used. A similar effect happens to

Evans and Yousif’s two-way, merged-based parallel sort [9], as little parallelism can be

exploited in the last few phases of merge. Francis and Mathieson have noticed this prob-

lem and proposed a parallel Mergesort (PMS) which evenly partitions data to be merged

among any number of processors [10]. However, this sorting algorithm is merge-based

and, consequently, involves too much data movement, causing frequent memory refer-

ence conflicts and serious bus contention. Quinn has implemented a combination of

Quicksort and Mergesort, Quickmerge, significantly reducing the amount of data move-

ment [18]. However its execution time is unstable in the sense that the pivots (or divid-

ers) selected are not guaranteed to divide the data to be sorted into ordered subsets rea-

sonably evenly. In the worst case, a single processor may have to perform a Mergesort

on nearly all the data in the last phase, which makes linear speedup impossible.

The ability to partition the data evenly into ordered subsets is essential for

partition-based sorts. If the distribution statistics of the data are known, it becomes easy

to divide the data into equal-sized subsets such that each element in the ith subset is no

greater than any element in the (i + 1 )th subset, and then sort each subset in parallel.
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Unfortunately, in general, we do not know the data distribution. To overcome this diffi-

culty, Huang and Chow proposed extracting a random sample from the data and use the

order information of the sample to help the partitioning, Parallel Sorting by Sampling

(PSS) [12]. The effectiveness of sampling depends largely on the distribution of the ori-

ginal data, the choice of a proper sample size, and the way in which the sample is drawn.

It appears to be a difficult problem to find pivots that partition the data to be sorted into

ordered subsets of equal size without sorting the data first.

This paper describes a new parallel sorting algorithm suitable for a variety of mul-

tiprocessor architectures. Parallel Sorting by Regular Sampling (PSRS) finds pivots for

partitioning the data into ordered subsets of approximately equal size by using a regular

sample from sorted sublists of the data. It is proven that this form of sampling results in

all processors being within a factor of two of achieving ideal load balancing. In practice,

this results in a nearly perfect partitioning of the data. On a variety of shared and distri-

buted memory machines, including the Myrias SPS-2, BBN TC2000, a local area net-

work of Sun 3/80 workstations, and iPSC/2-386 and iPSC/860 Hypercubes, the algorithm

achieves better than half-linear speedups. For example, on the SPS-2, sorting 8,000,000

data items on 64 processors achieved a 44.4-fold speedup.

2. Parallel Sorting by Regular Sampling

Let the data set to be sorted on a p-processor MIMD multiprocessor be denoted by

X, and the size of X be n. Let X i: j be { X i , X i + 1 , ... X j }, where 0 ≤ i ≤ j < n. For

simplicity in the analysis of the algorithm, we assume p 2  n and X i ≠ X j , where i ≠ j.

PSRS has three phases. The appendix outlines the pseudo-code for the algorithm

(more details can be found in [22]). In the first phase, each of p processors sorts a
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contiguous list of size w =
p
n_ _ using sequential Quicksort. More precisely, each proces-

sor i (1 ≤ i ≤ p) sorts a list X (i − 1 ) w : iw − 1 with Quicksort. After this phase all proces-

sors synchronize and X is now said to be locally ordered. It is convenient to think of X as

one contiguous list containing p sorted lists. In practice, depending on the architecture, X

may in fact be distributed over the processors.

Define the regular sample of the locally ordered X be a set of the following

p(p − 1 ) elements:

X
p
w_ __ + j w , X

p
2w_ ___ + j w , ... , X

p
(p − 1 ) w_ ________ + j w , Rwhere P 0 ≤ j ≤ p − 1.

From each of the p lists, p − 1 samples are chosen, evenly spaced throughout the list. The

regular sample contains the "order information" of the original data set. The pivots,

which divides the regular sample into ordered subsets of sample of equal size, will also

partition the original data into order subsets of roughly equal size.

In the second phase, the regular sample set, Y, is sorted using sequential Quicksort

yielding an ordered list Y 1 , Y 2 , ... , Y p(p − 1 ) . Next choose Y
2
p_ _ , Y p +

2
p_ _ , ..., Y (p − 2 ) p +

2
p_ _

as the p − 1 pivots for partitioning X, referred to as y 1 , y 2 , ... , y p − 1 . In other words, the

p(p − 1 ) samples are sorted and p − 1 elements, evenly spaced throughout the sorted

list, are chosen to be the pivots.

The partitioning of X is accomplished as follows. Each processor finds where each

of the p − 1 pivots divides its list, using a binary search. More precisely, each processor i

(1 ≤ i ≤ p) finds the index of the largest element no larger than the j-th pivot,

j = 1 , 2 , ... , p − 1. After doing this, all processors synchronize. At this point each of

the p sorted lists of X have been divided into p sorted sublists with the property that every
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item in every list’s i-th sorted sublist is greater than any item in any list’s (i − 1 )-th sorted

sublist, for 2 ≤ i ≤ p.

In the last phase, each processor i (1 ≤ i ≤ p) performs a p-way Mergesort to merge

all the i-th sorted sublists of p lists. Note that unlike phase one, in which each processor

sorts a contiguous block of keys, in phase three each processor merges p sublists stored in

p different areas. Because of the demarcations established in phase two, their merges are

completely independent of each other. After this all processors synchronize and X is

sorted.

Fig. 1 illustrates how PSRS works for n = 36 and p = 3. In phase 1, each proces-

sor is assigned w =
p
n_ _ = 12 contiguous elements to sort. After sorting its list, each pro-

cessor selects a regular sample, elements 4 and 8, evenly spaced throughout the 12 ele-

ments. In the second phase, the p(p − 1 ) samples are gathered together and sorted. In

the example, this is the list of elements {10, 13, 16, 22, 23, 27}. From this, a regular

sample of p − 1 = 2 pivots are selected, evenly spaced throughout the list, resulting in

the selection of pivots 14 and 23.

Finally, the 3 sorted lists of 12 elements are partitioned into 3 sublists by the pivots.

Each processor keeps one sublist and passes the others on to the appropriate processor.

In the example, processor 1 keeps the first sublist, {0, 1, 2, 9}, and sends the second, {16,

17}, to processor 2 and the third, {24, 25, 27, 28, 30, 33}, to processor 3. Similarly for

processors 2 and 3. Once each processor receives its portions of the data from the other

processors, it can merge the results into the final sorted array.

Given the extensive literature on parallel sorting, it is not surprising that PSRS is

similar to other proposed sort algorithms. For example, Won and Sahni’s balanced bin
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sort [26] and Abali, O
. .
zgu

. .
ner and Bataineh’s load balanced sort [1] for Hypercube archi-

tectures both resemble PSRS. Both differ from PSRS in the second phase of the algo-

rithm. The balanced bin sort merges each processor’s sample, keeping the elements in

the odd positions and discarding those in the even positions. In the final partition phase,

the sort has an upper bound of
p

3n_ __ elements that must be merged by a single processor

(PSRS is shown to have a bound of
p

2n_ __ in the next section). The load balanced sort

iterates in phase 2, repeatedly modifying its selection of pivots until it eventually

achieves perfect load balancing. In this paper, it is shown that PSRS achieves almost

perfect load balancing in practice without the overhead of finding a perfect partition.

3. Complexity Analysis

In phases one and two of PSRS, all processors have roughly the same amount of

work to do. In phase three, it is not obvious how evenly the work is divided because this

depends on how well the data has been partitioned. However, it can be shown that there

is an upper bound on the amount of work a processor must do.

Theorem 1: In phase 3 of PSRS, each processor merges less than 2w elements.

Proof: Consider any processor i, where 1 ≤ i ≤ p. There are three cases:

1) i = 1. All the data to be merged by processor 1 must be ≤ y 1 . Since there are

p 2 − p −
2
p_ _ elements of the regular sample which are > y 1 , there are at

least (p 2 − p −
2
p_ _ )

p
w_ _ elements of X which are > y 1 . In other words,

there are at most n − (p 2 − p −
2
p_ _ )

p
w_ _ = (p +

2
p_ _ )

p
w_ _ < 2w elements

of X which are ≤ y 1 .
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2) i = p. All the data to be merged by processor p must be > y p − 1 . There are

(p − 2 ) p +
2
p_ _ elements of the regular sample which are ≤ y p − 1 . That

is, there are at least (p 2 − 2p +
2
p_ _ )

p
w_ _ elements of X which are

≤ y p − 1 , or there are at most n − (p 2 − 2p +
2
p_ _ )

p
w_ _ < 2w elements of

X which are > y p − 1 .

3) 1 < i < p. All data to be merged by processor i must be > y i − 1 and ≤ y i . There are

( i − 2 ) p +
2
p_ _ elements of the regular sample which are ≤ y i − 1 , imply-

ing lb = ( (i − 2 ) p +
2
p_ _ )

p
w_ _ elements of X. On the other hand, there

are (p − i) p −
2
p_ _ elements of the regular sample which are > y i . As

well, there are
p
w_ _ − 1 elements that fall between y i and the next highest

element in the regular sample. Thus there are at least

ub = ( (p − i) p −
2
p_ _ + 1 )

p
w_ _ − 1 elements of X which are > y i .

Since the size of X is n, there are at most n − ub − lb = 2w −
p
w_ _ + 1 <

2w elements of X for processor i to merge.

In conclusion, no processor merges more than 2w =
p

2n_ __ elements in the last phase of

PSRS. If p 2 doesn’t divide n evenly, it is easy to prove that no processor merges more

than 2
p
n_ _  elements.

What is the time complexity of PSRS? The analysis for phase one is easy. The ini-

tial Quicksort phase has time complexity Ο(w log w), in the average case †, representing
_ ______________
† Quicksort is an O(w log w) algorithm in practice, but has a worst case that is O(w 2). PSRS can
be changed to use an algorithm that has a worst-case performance of O(w log w), such as Mer-
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the time consumed by each processor to sort w data using sequential Quicksort. In phase

two, sorting the regular sample using Quicksort requires Ο(p 2 log p 2) time. Then each

processor performs p − 1 binary searches on sorted lists of no greater than w elements.

Hence the time complexity of phase two is Ο(p 2 log p 2 + p log w). In phase three, the

size of data to be merged by any processor is always less than 2w. Thus the last phase

can finish in no more than Ο(2w log p) time.

Summation of the times of all three phases gives a time complexity for PSRS of

O(w log w + w log p + p log w + p 2 log p 2) which is asymptotic to Ο(w log w) =

Ο(
p
n_ _ log n) when n ≥ p 3 .

The bound on the size of the data to be merged in PSRS is an important difference

which other partition-based sorts, such as Quickmerge and PSS, don’t have. Theoreti-

cally, PSRS is optimal when n ≥ p 3 , regardless of the distribution of the original data.

Aside from easy scheduling and few synchronization points, another advantage of PSRS

lies in its good per-task locality of reference. In all three phases, each task accesses only

a small portion (always less than 2w) of the data and the accesses are highly localized.

This minimizes the amount of paging, hence reducing the average memory latency. The

algorithm is especially suitable for distributed memory multiprocessors. If each proces-

sor is initially allocated a portion of approximately w elements, then no data transmission

is required during the first phase. In the second phase, only p(p − 1 ) elements need to

be collected and p − 1 pivots are required to be broadcast to all the processors. In the

last phase, each processor has to send p − 1 sublists to the other p − 1 processors.

After a processor receives its sublists, it stores them locally and then works on them
_ ______________
gesort.
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totally independent of others. The total number of messages required in this phase is

therefore p (p − 1 ) and the total data traffic is no greater than n.

Two final points need to be addressed. First, the algorithm and its analysis is based

on there being no duplicate elements in the list to be sorted. If there are duplicates, then

Theorem 1 does not hold. However, even if there are a large number of keys, each hav-

ing a small number of duplicates, in practice there will be no problem. If there are keys

for which there are a large number of duplicates, parallel performance will degrade

unless the algorithm is enhanced to cover this case (for example, by adding a secondary

key).

Secondly, it is possible to use more than p (p − 1 ) elements in the regular sample

for choosing the pivots. The more elements chosen, the tighter the bound in Theorem 1

can be made. A larger sample implies more overhead in determining the pivots,

although, this could also be done in parallel. If n is large enough, the more effective load

balancing may offset this cost.

4. Experimental Results

The first version of PSRS was implemented in C to run on a 64-processor Myrias

SPS-2 [4]. Parallelism is expressed on the SPS-2 system by a single pardo extension to

the programming languages Fortran and C. The pardo causes independent loop iterations

to be executed in parallel as independent tasks. Parallel tasks can be heterogeneous and

recursive. Each task, in principle, gets (by demand paging) a virtual copy of its parent’s

address space, and manages its own portion of the program independent of other con-

current tasks. When the tasks of a loop all complete, the new parent state is formed by

merging the results computed by all the parallel tasks. Specifically, there are four
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merging rules:

1) no update:If no child task assigns to a variable, then the parent variable is unchanged.

2) one task updates:If exactly one child task assigns to a variable, the variable in the

parent task is changed to the assigned variable.

3) several tasks update with the same value:If more than one child task assign to a vari-

able, but the values assigned are identical, then the variable in the parent task is

changed to the assigned value.

4) otherwise:Any other update pattern will cause the value of the parent task variable to

be unpredictable.

The parent task then resumes just as it would at completion of a corresponding serial

do/for loop in Fortran/C. The fundamental idea behind this new memory model is to

relieve memory contention at the price of memory replication.

The Myrias SPS-2 system provides a transparent control mechanism that automati-

cally schedules parallel tasks on PEs, optimizes the use of hardware resources, and

manages all data motion. This, however, has both advantages and disadvantages. The

major advantage is that it simplifies programming; a user need not worry about the

details of task allocation, data motion, and synchronization. On the other hand, this also

makes it impossible for a user to have their own control scheme to execute one’s specific

program. This is not always desirable since the system’s optimizer cannot take advan-

tage of the properties specific to a program.

PSRS was tested using randomly-generated 32-bit integers with various distribu-

tions. No tests were made for duplicate elements, of which there were undoubtedly a

few. As long as the number of duplicates is small in relation to the total number of
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elements, this will not significantly affect the performance. The size of the array to be

sorted ranged from 0.1 million to 8 million elements. Experiments were done using 2, 4,

8, 16, 32, and 64 processors on a dedicated machine. Each data point presented in this

section was obtained as the average of 20 program executions, each on a different set of

test data.

An improved version of Quicksort was used as the optimal sequential sort. The

improvements consisted of two common modifications. First, the median of the first,

middle, and last elements of the subarray were used as the pivot. Second, subarrays with

size less than ten integers were sorted using linear insertion sort.

Unfortunately, one PE on the SPS-2 can only sort at most 0.2 million 32-bit integers

due to the limitations of main memory. To compute the speedups, we need to know the

sequential sorting time of the improved Quicksort on the Myrias SPS-2 when n is larger

than 0.2 million. Since the bound of sequential comparison-based sorting is Ο(n log n),

it is reasonable to assume the time of sorting n integers using the improved Quicksort on

one PE of the Myrias SPS-2 as follows:

t PE (n) = C n log n

where C is a constant independent of size n. Sequential times for lists of more than 0.2

million elements were calculated using the following formula:

t PE (n) =
100 , 000 log 100 , 000

n log n_ __________________ × t PE ( 100 , 000 )

where 0.4 million ≤ n ≤ 8 million and t PE ( 100 , 000 ) = 6.63 seconds, the experimental

time for the improved sequential Quicksort to sort 0.1 million integers on one PE of the

SPS-2. Note that if one uses this formula to compute t PE ( 200 , 000 ), the result is almost
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a perfect match with the corresponding experimental time.

To obtain more confidence in the speedups, we also took an experimental approach

to estimate the sequential sorting time of the improved version of Quicksort on the

Myrias SPS-2. Timing experiments were done on a MIPS R1000, with 32 MByte of

main memory, that is able to sort 4 million 32-bit integers without any memory shortage.

Without memory limitations, we would have the following approximate equation:

t R1000 (n 1 )

t PE (n 1 )_ _________ =
t R1000 (n 2 )

t PE (n 2 )_ _________

where n 1 and n 2 are the sizes of data to be sorted, and t R1000 (n) represents the sequen-

tial sorting time of the improved Quicksort on the MIPS machine. Using this estimate

tends to result in higher sequential times, improving our speedups. The results presented

in this section use the first approximation for the sequential running time, preferring to

err on the side of being conservative. Sequential times that were obtained by calculation,

instead of measurement, are indicated by italics.

Table 1 shows the time to sort using PSRS and Fig. 2 plots the speedups achieved.

As the problem size increases, task granularity increases, offsetting the overheads of the

algorithm, resulting in better speedups. Sorting 8,000,000 items with 64 processors gave

a 44.4-fold speedup †.

For comparison purposes, PMS, Quickmerge and PSS have also been implemented.

For brevity, only the PSS results are shown, as they are significantly better than both

PMS and Quickmerge. Table 2 shows the time to sort the elements using PSS and Fig. 3

_ ______________
† Note that the original PSRS speedup results are less than those reported here [22]. The original
results included the cost for initially distributing the data, and the time taken to merge all the sort-
ed sublists back to one processor. Most parallel sorting results assume the data is initially distri-
buted and that merging the sorted sublists in one processor is not necessary.
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plots the speedups achieved. Our implementation of PSS used an initial sample of 16p

elements randomly spread over the data. The speedup increases with the value of p in

general, but quickly tapers off when p is greater than 16. This is mainly because when

the number of processors used increases, so does the probability that some processor may

have to merge significantly more data than its share. Theoretically it is possible that

some processor may have to perform a Mergesort on nearly all the data.

Since the strength of PSRS is the claim that the data is evenly partitioned, it is

important to measure how successful it was. The RDFA measure is used to quantify this.

RDFA is the Relative Deviation of the size of the largest partition From the Average size

of the p partitions, which is defined as follows:

RDFA =
w
m_ __

where m is the size of the largest of the p partitions and w =
p
n_ _, the average size of the p

partitions. Since m ≥ w, it is always the case that RDFA ≥ 1. The smaller the RDFA is,

the more balanced the partitioning is. An RDFA of r indicates that largest portion was r

times larger than optimal.

The RDFA measures for PSRS are shown in Table 3 and PSS in Table 4. For PSS,

the data clearly shows that as the number of processors increases so does the RDFA

metric. Hence, for a large number of processors, the disparity in the amount of work

between processors grows, reducing the speedup possible. For PSRS, the results are

remarkably consistent, in all cases being within a few percent of perfect partitioning.

From the data obtained, a few observations can be made on the performance of

PSRS:
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1) As the number of PEs increase, the speedups are good provided that the problem

size is large enough to give each PE a sufficient amount of work to do. When both

the problem size and number of PEs double, so does the speedup.

2) Although we have used a conservative approach in computing the speedups, the

results are still quite good. PSRS has a speedup of 44.4 when sorting 8 million 32-

bit integers with 64 PEs. Using the other estimate for sequential time, 49-fold

speedups are obtained. The trends suggest that additional processors beyond 64 can

be effectively utilized to further reduce sorting times

3) Table 3 shows that PSRS RDFAs are consistently close to 1.0, perfect load balanc-

ing. The size of the largest of the p partitions is very close to the average, indicating

that the regular sample does indeed provide a good representation of the original

data. Surprisingly, even when p is small, the regular sample is still able to help par-

tition the data evenly. Theoretically, the RDFA of PSRS is only guaranteed to be

less than two. However, in practice, our experiments show it to be within a few per-

cent of optimal. Contrast that with the PSS results, where the sorting of 8 million

integers on 64 processors was a factor of 2.4 off of the optimal partition.

4) PSRS runs poorly on the SPS-2 when the size of the data is not large enough. Two

factors contribute to this. The first comes from the SPS-2 architecture. The imple-

mentation of PSRS required using three pardo statements. The overhead of a pardo

is not insignificant. For good performance, the problem size must be large enough

to provide each individual processor a sufficient amount of computation. The

second factor comes from the algorithm itself. The sampling cost in PSRS is basi-

cally fixed, regardless of the size of the data. This cost, in proportion to the total
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sorting time, increases as the problem size decreases, reducing the speedup.

5) PSRS is guaranteed to work well on any data distribution, as long as the number of

duplicates is relatively small. For example, using the IMOX data set from image

processing [7], which form a normal distribution, speedups that were almost identi-

cal to those reported here were achieved [15].

6) The executions of PSRS on the SPS-2 show that system activities account for the

performance losses. Most of the system time is spent in memory replication and

merging required by the Myrias SPS-2 memory model. The rest is spent in task

creation, scheduling, and synchronization. Since sorting is a data-intensive prob-

lem, it is not a "good" problem for the Myrias SPS-2 to solve.

In general, the speedup relationships of the four algorithms implemented are as fol-

lows:

PMS ≤ Quickmerge ≤ PSS ≤ PSRS .

The speedups of PMS are found to be rather poor. We can’t confirm Francis and

Mathieson’s claim that PMS has linear speedup [10]. These results may be due to the

Myrias SPS-2 architecture. However, one should not understate the overhead of schedul-

ing and synchronization during the second phase of the algorithm. The speedups of

Quickmerge are much better than those for PMS, but not as good as for PSS. Random

sampling seems to be a reasonable approach to parallel sorting, depending on the data

distribution.

PSRS has been implemented on the shared memory BBN TC2000 [16]. A 44.5-fold

speedup was achieved sorting 8,000,000 elements on 64 processors. The sorting was

done in each processor’s local memory, while the global memory was used to communi-
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cate data.

5. PSRS on Hypercubes

In this section, PSRS is extended to run on Hypercubes machines. A Hypercube is a

multiprocessor in which the (processor) nodes can be imagined to lie at the vertices of a

multidimensional cube. Multiprocessors based on this topology require modest intercon-

nections, yet seem rich enough to allow many of the classical interconnections to be

easily constructed. The architecture is appealing because of its homogeneity and sym-

metry properties. Considerable effort has been devoted at achieving good results (for

example, [1, 13, 14, 21, 23, 24, 26]).

Assume p is the number of nodes on a Hypercube and that p is a power of 2. The

nodes are indexed by a linear sequence ranging from 0 to p − 1, with the neighboring

nodes differing in exactly one bit position in their binary representations. Assume the

data is evenly distributed to all p nodes. The n elements are said to be sorted if all ele-

ments are sorted at each node, and there is no element at any node that fits in the range of

values of any other node.

The complexity of Hypercube sorting is usually measured in terms of the computing

and communication costs. Presently, Johnsson’s algorithm, which is an adaptation of

Batcher’s bitonic sorting algorithm [3], has the best theoretical worst case bounds for

Hypercube sorting [13]. His algorithm has Ο(w log w + w log2 p) computing com-

plexity and Ο(w log2 p) communication complexity, with w =
p
n_ _.

PSRS appears easily adaptable to Hypercubes. The algorithm requires 4 phases:

1) Each node sorts in parallel its local list of size w with sequential Quicksort. Each
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node selects p − 1 elements evenly spaced from its local sorted list and sends them

to a designated node, say node 0.

2) After it receives all p (p − 1 ) elements, node 0 selects p − 1 pivots using the same

method described previously. It then broadcasts the chosen pivots to all other

nodes. After each node receives the pivots, a binary search is used to partition each

local list into p sublists.

3) Each node i (0 ≤ i ≤ p − 1) sends its ( j + 1 )-th sublist to node j, j = 0 , 1 , ...,

p − 1 , j ≠ i.

4) Finally, after it receives its p − 1 sublists, each node performs a merge on all the

received sublists plus the local one unsent. The sort completes after all nodes finish

merging.

Note that no global synchronization is necessary between phases. Data transfers are per-

formed by passing messages between nearest neighbors. Thus data which must travel

from node A to node B must cross a sequence of nodes starting at node A and ending at

node B.

The lower bound of the total computing time required for sorting n numbers is

Ο(p 2 log p 2 + w log p + w log w + p log w), which is asymptotic to Ο(
p
n_ _ log n)

when n ≥ p 3 . The computing time alone is not sufficient to distinguish a parallel sort for

Hypercubes. To study the communication complexity of this algorithm, the model of

Saad and Schultz is used [20]:

a) Moving a vector of length m from one node to a neighbor takes the time β + mτ,

where β represents the communication startup time and τ, the elemental transfer
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time.

b) It takes the same time to move the same data from one node to any number of its

log p neighbors.

Further details can be found in [20].

The algorithms and estimates for the times of data transfers required in phases 1, 2

and 3 are sketched in Fig. 4 (phase 4 has no communication). For convenience,

exponents applied to the binary bits 0 and 1 stand for concatenation.

Phase 1 of the algorithm has log p steps. At the jth step, the algorithm transfers

2 j − 1 p selected elements between two nodes, since the number of elements collected

doubles at every step. Therefore the total time required for gathering p 2 elements, p per

node, is

j = 1
Σ

log p
(β + 2 j − 1 pτ) = β log p + (p − 1 ) pτ.

Phase 2 of the algorithm consists of log p steps, all requiring the same amount of

time. Hence the total time for broadcasting p − 1 pivots in phase 2 is

(β + (p − 1 ) τ) log p.

The data transfer operations in phase 3 are equivalent to transposing a p × p matrix,

if the ( j + 1 )th sublist at node i is viewed as an entry (i , j) of the matrix, where

0 ≤ i , j ≤ p − 1. To formulate the algorithm, we denote by (i) k the bit in position k of

the log p-bit binary representation of number i, and i
_

k the number whose binary

representation differs only in the kth bit from that of i. Let L i , j be the ( j + 1 )th sublist at

node i and L i , jbe its length, where 0 ≤ i , j ≤ p − 1. [L i , j] stands for the p × p

matrix as explained before. Then we have the following relations:
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0 ≤ L i , j ≤ w , 0 ≤ i , j ≤ p − 1 , (1)

j = 0
Σ

p − 1
L i , j = w , 0 ≤ i ≤ p − 1 , Rand P (2)

i = 0
Σ

p − 1
L i , j < 2w , 0 ≤ j ≤ p − 1. (3)

Proving (1) and (2) is trivial. The proof of (3) is the same as in Section 3.

The principle of the algorithm is to exchange data across opposite edges along the

log p dimensions in turn. The first step consists of exchanging the matrices that are in

the upper right and lower left positions of the large 2 × 2 block matrix obtained from

[L i , j] by splitting it into four equal parts. Each of the four can again be split into four

parts in the same manner.

The next step deals with each of the four parts in a manner similar to what was done

with the original matrix, and the total number of the sublists exchanged is still p. To

obtain the time bound of each step, the following lemmas are introduced:

Lemma 1: At step k (1 ≤ k ≤ log p), all the sublists sent by any node must come

from 2k − 1 different rows and 2log p − k different columns of the original

matrix.

Proof: At the first step, all the sublists sent by any node come from one single

row and
2
p_ _ different columns of the original matrix. After each step, the

number of different rows of the sublists to be sent doubles, while the

number of different columns of the sublists to be sent reduces by half.

Lemma 2: At step k (1 ≤ k ≤ log p), the total size of all the sublists sent by any
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node is no larger than

min



2k − 1 w , 2log p − k + 1 w





.

Proof: Straightforward from Lemma 1, Equation (2), and Equation (3).

Hence step k costs less than or equal to

2 (β + (min



2k − 1 w , 2log p − k + 1 w





) τ) ,

and the upper bound on the total communication time of phase 3 is

k = 1
Σ

log p
2 (β + (min




2k − 1 w , 2log p − k + 1 w





) τ) = 2β log p +
p

6 (√  p − 1 )_ __________ nτ.

Summation over the three phases yields an upper bound of the total communication cost

of PSRS as follows:

4β log p + (
p

6 (√  p − 1 )_ __________ n + (p − 1 ) (p + log p) ) τ ,

where the first item represents the total startup time, and the latter one stands for the total

transmission time. The total startup time is determined only by p and is of a relatively

low order. When n >> log p, the total communication cost is asymptotic to Ο(
√  p

n_ ___).

The average communication time can be expected to be much less than this bound. Note

that no assumption is made that allows a node to send (receive) data to (from) its neigh-

bors simultaneously.

Summarizing, the extension of PSRS on a Hypercube computer has Ο(w log w)

computing complexity and Ο(
√  p

n_ ___) communication complexity, where n >= p 3 . Com-

pared with Johnsson’s algorithm, it has a better computing complexity. As well, the
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startup time of the PSRS is much less than Johnsson’s.

PSRS has been implemented for the Intel iPSC/2-386 and iPSC/860 Hypercubes

[16]. On the iPSC/2-386 using 32 processors, sorting 4,000,000 items resulted in a

27.49-fold speedup. The better results here are due to fast communication between pro-

cessors. The iPSC/860 is similar to the iPSC/2-386 except for the use of a faster proces-

sor per node. Hence, for comparably sized problems, one would expect the speedups to

be less than for the iPSC/2-386. Using 64 processors, sorting 8,000,000 items gave a

38-fold speedup. Note that results reported here were obtained using the same version of

PSRS as used on the Myrias and BBN machines, except for the parallel programming

constructs used. No attempt was made to take advantage of the architecture. In particu-

lar, the communications patterns did not take advantage of the savings possible by using

the architecture’s nearest neighbour links. Other parallel Hypercube sorts have reported

better results than PSRS (for example, [1, 24]) in part because they exploit the communi-

cation structure of the Hypercube. Our PSRS implementation can be similarly extended.

6. PSRS on LANs

The last decade has witnessed the explosive growth of LANs (Local Area Net-

works). Large files on such a network may be physically distributed over a number of

stations. A file X of size n is assumed to be distributed over p stations of a LAN. The

stations are logically ordered into a linear sequence with station i + 1 being immediately

to the right of station i, where 1 ≤ i ≤ p − 1. We initially assume an equal number of

w =
p
n_ _ elements at each station. The distributed sorting problem is to relocate some of

the elements so that each subfile at each station is sorted and each element at station i is
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less than or equal to any element at station i + 1.

To simplify the discussion, we refer to an Ethernet-type LAN, where all stations are

interconnected by a common bus. Each station on the LAN is able to send a message to

any other station(s) across the bus. Since the cost of a distributed sort is dominated by

the communication cost, its complexity is usually measured in terms of the required

number of messages and the total data traffic.

Several distributed algorithms have been proposed for solving the distributed sort-

ing problem [5, 19, 25]. Wegner’s algorithm is based on parallel Quicksort [25]. In each

iteration, every partition is divided into two smaller ones. On the average, the algorithm

has message complexity Ο(p log p) and data traffic complexity Ο(n log p). Rotem,

Santoro and Sidney’s algorithm [19] starts with finding p − 1 even partition points by

using a distributed version of the kth selection algorithm [11]. After that, each data item

is sent directly to its destination station. The algorithm has message complexity

Ο(p 2 log n) and data traffic complexity Ο(n).

While both algorithms have relative low orders of complexity compared with other

distributed sorting algorithms, they still suffer from drawbacks. Wegner’s algorithm

requires a large amount of data traffic, while Rotem et al.’s algorithm requires too many

messages.

Although PSRS was developed for sorting on a multiprocessor, the algorithm is

readily amenable to distributed sorting. As was analyzed in Section 3, the algorithm has

Ο(n) data traffic complexity and Ο(p 2) message complexity, which is a substantial

improvement over the Ο(p 2 log n) worst case for Rotem et al.’s algorithm.

PSRS has been implemented on a network of Sun 3/80 workstations connected via
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Ethernet. For 500,000 items, a 4-fold speedup with 8 processors has been achieved [15].

These poor results were the result of a system limitation that restricted the amount of data

that could be sent between processors at a time.

7. Conclusions

Long memory latency and the overhead of scheduling and synchronization are two

critical factors that greatly affect the speedup of a parallel algorithm on present multipro-

cessor architectures. Parallel Sorting by Regular Sampling is intended to minimize both.

It has a high per-task reference locality, yet is simple to schedule and synchronize.

Experiments on a variety of architectures make it clear that good speedups for parallel

sorting on present multiprocessor architectures is indeed achievable. The results reported

here are quite encouraging, considering that sorting is generally believed a hard problem

to parallelize. The success of PSRS indicates that good sorting performance for a variety

of supercomputers is obtainable.
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Appendix. The PSRS Algorithm

procedure PSRS(array , n , p)
# array[ 0 :n − 1 ]: array to be sorted, n: size of the array, p: number of processors
begin

# Divide the array into p contiguous lists and sort each in parallel.
# Select p − 1 elements evenly spaced from each of the p sorted lists
# as the regular sample and store them in sample[ 0 :p(p − 1 ) − 1 ].
size =  (n + p − 1 ) /p 
rsize =  (size + p − 1 ) /p 
for i = 0 to p − 1 do in parallel

start = i×size
end = ( i + 1 ) ×size − 1 # = start + size − 1
if end ≥ n then

end = n − 1
# Sort subarray array[start :end] with sequential Quicksort.
Quicksort(array, start, end)
for j = 1 to p − 1 do

if j×rsize ≤ end then
sample[ i×p + j] = array[ j×rsize]

else sample[ i×p + j] = array[end]
endfor

endfor

# One designated processor sorts the regular sample sample[ 0 : p(p − 1 ) − 1 ]
# using sequential Quicksort. Then it chooses p − 1 pivots from the sorted
# regular sample and stores them in pivots[ 1 :p − 1 ].
Quicksort(sample, 0, p(p − 1 ) − 1)
for i = 0 to p − 2 do

pivots[ i] = sample[ i×p + p /2 ]
endfor

# Divide, in parallel, each sorted list i into p sublists:
# array[subsize[ i×(p + 1 ) + j] : subsize[ i×(p + 1 ) + j + 1 ] − 1 ] ,
# 0 ≤ j ≤ p − 1, with the chosen pivots as splitters.
for i = 0 to p − 1 do in parallel

start = i×size
end = ( i + 1 ) ×size − 1 # = start + size − 1
if end ≥ n then

end = n − 1
subsize[ i×(p + 1 ) ] = start
subsize[ i×(p + 1 ) + p] = end + 1
Sublists(array, start, end, subsize, i×(p + 1 ), pivots, 1, p − 1)

endfor

# In parallel, count the size of each of the p partitions.
for i = 0 to p − 1 do in parallel
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bucksize[ i] = 0
for j = i to p×(p + 1 ) − 1 step p + 1 do

bucksize[ i] = bucksize[ i] + subsize[ j + 1 ] − subsize[ j]
endfor

endfor

# In parallel, decide the start-point of each partition in the final array.
for i = 1 to p − 1 do in parallel

bucksize[ i] = bucksize[ i] + bucksize[ i − 1 ]
endfor
bucksize[ 0 ] = 0

# Merge each partition in parallel.
for i = 0 to p − 1 do in parallel

merge the following sublists with the standard Mergesort:
array[subsize[ i + j×(p + 1 ) ] : subsize[ i + j×(p + 1 ) + 1 ] − 1 ], 0 ≤ j ≤ p − 1
The merged results are stored in array starting from index bucksize[ i]

endfor
end PSRS

procedure Sublists(array, start, end, subsize, at, pivots, f p, lp)
# Recursively divide array[start :end] into p sublists with pivots[ f p: lp] as splitters.
# The final demarcations for the sublists are stored in subsize starting from index at.
begin

mid =  ( f p + lp) /2 
pv = pivot[mid]
lb = start
ub = end
while lb ≤ ub do

center =  ( lb + ub) /2 
if array[center] > pv then

ub = center − 1
else lb = center + 1

endwhile
subsize[at + mid] = lb
if f p < mid then

Sublists(array, start, lb − 1, subsize at, pivots, f p, mid − 1)
if mid < lp then

Sublists(array, lb, end, subsize, at, pivots, mid + 1, lp)
end Sublists
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FIG. 1. PSRS example.
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_ ________________________________________________________________
Sorting Times
(in seconds)_ ______________________________________________________Sizes

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs_ _________________________________________________________________ ________________________________________________________________
100000 6.63 3.86 2.14 1.56 1.06 1.09 1.66_ ________________________________________________________________
200000 14.00 8.08 4.20 2.74 1.71 1.43 1.83_ ________________________________________________________________
400000 29.71 16.77 8.60 5.58 3.13 2.11 2.20_ ________________________________________________________________
800000 62.62 - 21.51 10.67 5.84 3.50 2.86_ ________________________________________________________________

1000000 79.56 - 29.88 13.13 6.97 4.38 3.12_ ________________________________________________________________
2000000 167.10 - - - 13.73 7.87 5.19_ ________________________________________________________________
4000000 350.17 - - - - 14.83 8.70_ ________________________________________________________________
8000000 732.28 - - - - - 16.49_ ________________________________________________________________ 


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Table 1. Sorting times of PSRS.
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FIG. 2. Speedups of PSRS.
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_ ________________________________________________________________
Sorting Times
(in seconds)_ ______________________________________________________Sizes

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs_ _________________________________________________________________ ________________________________________________________________
100000 6.63 4.33 2.44 2.00 1.80 1.97 2.34_ ________________________________________________________________
200000 14.00 8.87 4.78 3.35 2.60 2.72 3.00_ ________________________________________________________________
400000 29.71 19.34 9.67 6.26 4.33 3.91 4.34_ ________________________________________________________________
800000 62.62 - 24.27 12.14 7.15 6.01 6.57_ ________________________________________________________________

1000000 79.56 - 33.86 16.54 8.75 6.96 7.28_ ________________________________________________________________
2000000 167.10 - - - 18.39 11.09 10.95_ ________________________________________________________________
4000000 350.17 - - - - 22.10 15.83_ ________________________________________________________________
8000000 732.28 - - - - -_ ________________________________________________________________ 
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Table 2. Sorting times of PSS.
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FIG. 3. Speedups of PSS.
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_ _______________________________________________________
RDFAs_ ______________________________________________Sizes

2PEs 4PEs 8PEs 16PEs 32PEs 64PEs_ ________________________________________________________ _______________________________________________________
100000 1.001 1.008 1.021 1.030 1.074 -_ _______________________________________________________
200000 1.002 1.003 1.012 1.032 1.043 -_ _______________________________________________________
400000 1.001 1.002 1.008 1.017 1.044 -_ _______________________________________________________
800000 - 1.002 1.005 1.017 1.026 1.062_ _______________________________________________________

1000000 - 1.001 1.004 1.010 1.021 1.047_ _______________________________________________________
2000000 - - - 1.009 1.016 1.045_ _______________________________________________________
4000000 - - - - 1.011 1.026_ _______________________________________________________
8000000 - - - - - 1.017_ _______________________________________________________ 
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Table 3. RDFAs of PSRS.
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_ _______________________________________________________
RDFAs_ ______________________________________________Sizes

2PEs 4PEs 8PEs 16PEs 32PEs 64PEs_ ________________________________________________________ _______________________________________________________
100000 1.342 1.373 2.029 2.096 2.861 -_ _______________________________________________________
200000 1.339 1.349 1.722 1.685 2.515 -_ _______________________________________________________
400000 1.351 1.403 1.485 2.100 2.425 -_ _______________________________________________________
800000 - 2.264 1.441 2.339 2.150 2.001_ _______________________________________________________

1000000 - 1.649 2.348 1.996 2.044 2.635_ _______________________________________________________
2000000 - - - 1.578 2.104 2.447_ _______________________________________________________
4000000 - - - - 2.365 2.670_ _______________________________________________________
8000000 - - - - - 2.407_ _______________________________________________________ 
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Table 4. RDFAs for PSS.
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Data gathering in phase 1:

for j = log p , log p − 1 , ... , 1 do
All nodes numbered 0log p − j 1a j , where a j is any
(j − 1)-bit binary number, send in parallel their respective data
accumulated from the previous steps to nodes 0log p − j + 1 a j .

Data broadcasting in phase 2:

for j = 1 , 2 , ... , log p do
All nodes numbered 0log p − j + 1 a j , where a j is any
(j − 1)-bit binary number, send in parallel the received p − 1 pivots
to nodes 0log p − j 1a j .

Data exchange operations in phase 3:

for k = 1 , 2 , ... , log p do
Each node i, such that (i) k = 1, exchanges with node i

_
k

all sublists L i , j and L i
_k

, j
_k ,

for all 0 ≤ j ≤ p − 1 such that ( j) k = 0.

FIG. 4. PSRS on a Hypercube.
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