
This is a preprint of a paper that will be presented at the HPCS '96 Conference,

Ottawa, June 1996.

Using a Template-Based Parallel

Programming Environment to Eliminate Errors

Paul Iglinski, Nicholas Kazouris, Steven MacDonald, Diego Novillo, Ian

Parsons, Jonathan Schaeffer, Duane Szafron, David Woloschuk

Department of Computing Science, University of Alberta, Edmonton, Alberta,

T6G 2H1, CANADA

March 27, 1996

{iglinski, kazn, stevem, diego, ian, jonathan, duane, davidw}@cs.ualberta.ca

ABSTRACT

In this paper we describe how a template-based approach to writing

distributed/parallel applications can be used to eliminate parallel programming

errors. We take a two phase approach. First, the programming model can be

designed to prevent many common parallel errors from occurring. Second, we

show how an integrated set of tools that support the common model provided

by the templates can be used to quickly detect and fix errors that cannot be

prevented. In effect, a high-level view of a parallel program can be used to

improve the software engineering properties of a distributed program, and

reduce the time required to produce a correct, functional program.

- 1 -

1-INTRODUCTION

Many of the papers on distributed debugging begin with the message, explicit

or implicit, that while debugging sequential programs might be characterized

as a difficult art, debugging parallel programs is a decidedly painful chore. The

cause of this drudgery is a combination of the special problems encountered in

distributed computing and the lack of tools and methodologies for coping with

these inherent difficulties. The search for solutions to this predicament can

proceed from two distinctly different directions. One approach is to develop

debugging tools to support existing parallel programming models, addressing

the typical set of errors encountered by users of the systems. This approach is

analogous to building a better mousetrap to trap those troublesome mice after

they have entered a house. The other approach is to develop a programming

model and parallel programming system (PPS) which preclude the introduction

of errors. This approach is analogous to building a better house so that fewer

or no mice can even enter.

In this paper, we discuss the advantages that template-based PPSs

offer for the prevention and removal of parallel programming errors. The use of

templates significantly reduces the possibility of programming errors by strictly

managing the parallelism. In effect, templates provide a parallel structure

framework within which the user supplies the missing application-dependent

code. A major criticism of this approach is that by using generic structures,

users lose the flexibility to tune their programs to achieve high performance.

Although performance is the most often used (and abused) metric in the

parallel/distributed computing literature, it is inadequate for the assessment of

tools. In effect, template-based tools offer rapid prototyping and improved

software engineering in return for (possibly) reduced performance.

There are three major sources for parallel programming errors:

1) Semantic errors: These errors are caused by a programmer's

misconceptions about the parallel computing model being used and how to

apply it to the problem at hand. For example, errors often arise from

misunderstanding the semantics of memory shared between processes

and the semantics of the parallel programming language used.

- 2 -

2) Implementation errors: These errors occurs because of the added

complexity of parallel programs such as process launch, communication

and synchronization. Typical errors include incorrectly packing/unpacking a

message or creating a deadlock scenario.

3) Performance errors: These errors are caused by a lack of intuition or

experience concerning the costs of parallelism and concurrency. For

example, this class of errors includes executing fine grained program

segments in parallel or poor synchronization choices that restrict

concurrency.

The first two types of errors usually result in programs that execute incorrectly.

The third source often leads to programs that run correctly but have poor

performance gains when compared to sequential solutions.

This paper uses the Enterprise PPS [Schaeffer et al., 1993] to argue that

template-based models can be used to significantly reduce the time to produce

a correctly working parallel program. The Enterprise programming model is

built on top of the C programming language, providing a familiar base for

writing programs (reducing semantic errors). A pre-compiler inserts all the

communication and synchronization code, and the run-time system takes care

of process-processor mapping and process interconnections (reducing

implementation errors). The Enterprise meta-programming model allows the

user to experiment with different parallel structures, often without changing the

code (reducing semantic and implementation errors, enhancing performance

and increasing user productivity). The environment offers a tool suite

(animation, replay, debugging and performance monitoring) that is consistent

with the programming model (helping address correctness and performance

issues).

By placing much of the onus on the pre-compiler and runtime system,

users are relieved of burdensome programming details, allowing them to

concentrate more on the program design. By providing a seamless integration

of the tools with the template model, programmers can recognize their errors

at a high level and fix them within the context of the model.

Although template-based models are currently in vogue and many new

models have recently appeared (for example, HeNCE [Beguelin et al., 1993],

PUL [Clarke et al., 1994] and P3L [Bacchi et al., 1994]) most concentrate on the

programming model without consideration for support tools. We argue that

- 3 -

tools such as debuggers and performance monitors should be integral to the

design of the parallel programming system, and not just add-ons. Individually,

many of the issues discussed in this paper are not new. What is important is

how the design of the model pervades the entire system. This creates a

uniform environment that is easy to use, reduces programming errors, and

simplifies the detection of errors.

In this paper we refer to pre-packaged parallel behaviors as templates

for compatibility with the literature. Recently however, object-oriented research

has led to the development of a more general class of commonly occurring

behavior classes called design patterns [Gamma et al., 1994]. Each template

mentioned in this paper can also be viewed as a design pattern.

In section 2 we discuss how template-based models can prevent many

of the commonly-occurring parallel/distributed programming errors. In section

3 we describe how an integrated environment based on a common template-

based model can be used to detect and correct those errors that cannot be

prevented. Section 4 states our conclusions.

2-PREVENTING ERRORS USING A TEMPLATE-BASED MODEL

Many types of commonly occurring parallel programming errors can be

prevented by providing a model which allows the compiler to handle most of

the implementation details.

2.1-REDUCING SEMANTIC ERRORS

Most template-based models build on top of an existing programming

language. In effect, the programmer uses sequential code (C in our case) to fill

in the blanks of the template. By using a familiar sequential programming

language, many of the semantic issues of new parallel programming

languages (such as Orca [Bal et al., 1992]), or extensions to existing

languages (PAMS [Beltrametti et al., 1989] for example) are eliminated.

2.2-PREVENTING COMMUNICATION ERRORS

Message passing is currently the preferred method for process communication

in a distributed environment (the alternative, distributed shared memory, is still

in its infancy). The traditional programmer's view of message passing involves

- 4 -

four steps: 1) pack (marshal) the data, 2) send the message, 3) receive the

message, and 4) unpack (unmarshal) the data. In some systems, such as

PVM [Geist and Sunderam, 1992], these steps must be explicitly programmed

in the user's code. Alternative systems, such as Sun RPC [Sun, 1986], only

require the user to provide packing and unpacking routines. However, both of

these low-level approaches require the user to write additional lines of code

that only increase the probability of introducing an error. In contrast, Linda

[Carriero et al., 1994] handles the data transparently, but expects the

programmer to explicitly call routines to do the communication. HeNCE

[Beguelin et al., 1993] allows the user to express this information graphically,

but parameter information must be specified both in the interface and the code

(causing a redundancy problem). Concert/C [Goldberg, 1993] eliminates the

packing/unpacking routines by having the user provide additional type

information describing the data. A better approach is provided by ABC++

[Arjomandi et al., 1995] and Mentat [Grimshaw et al., 1993] (for example), where

the compiler does all of the work. In all these cases, higher-level tools not only

reduce the programming effort but can also prevent programming errors.

Template-based PPSs provide templates that allow compilers to insert

code to handle all four message-passing tasks transparently to the user. The

Enterprise approach to message passing is to make RPCs look like standard

C function calls, but without the programming effort and synchronous

semantics of RPC. An Enterprise meta-program template alone determines

that these calls are to be executed in parallel. Parallel Enterprise code looks

like ordinary sequential code. For example, let's assume the procedure

Callee() is to be executed in parallel with the procedure Caller() that is

shown in Figure 1.

Caller()
{

char a;
USER_TYPE b;
double d[100];
int dnumb;
int result[100];
...
result[5] = Callee(a, b, &d[10], IN(dnumb));
...

}

Figure 1. Communication in Enterprise

- 5 -

By letting the compiler generate the code to do data packing and

unpacking, programming errors related to message packing are entirely

avoided. Any heterogeneity concerns, such as byte-ordering schemes of the

communicating processors, are handled automatically. Off-by-one errors in

passing arrays are also avoided.

Notice that an additional parameter specifies the number of elements to

pass (dnumb in the example). This approach is analogous to Fortran code

which has the advantage of allowing the user to pass a portion of an array to

reduce communication costs. Much like Concert/C, this size parameter is

usually passed as the argument of one of three macros that indicate the

direction in which array data is to be copied: from the caller to the callee (IN),

from the callee back to the caller (OUT) or in both directions (INOUT). These

macros are provided strictly as an efficiency mechanism to limit unnecessary

data in messages. INOUT(), the default, will achieve the same semantics as C,

allowing the array values in Caller() to be used and modified by Callee().

There is one important restriction on data passing in Enterprise.

Although a pointer to an array or structure can be used as a parameter (along

with the number of bytes to be passed), imbedded pointers are not allowed. To

solve the imbedded pointer problem, extensive user annotations are required

indicating the size and "shape" of the data (as in Concert/C). This restriction

modifies the sequential semantics of C and creates a possible scenario for

introducing logic errors. However, in our view, the benefit of not dealing with

complicated and error-prone annotations significantly outweighs the

disadvantages.

2.3-PREVENTING SYNCHRONIZATION ERRORS

In most parallel programming models, the user must specify the

synchronization. For example, barriers and blocking message receives are

common primitives that are explicit in the user's code. Since template-based

models use standard sequential code, neither language extensions nor library

calls are used for synchronization. That is, automatic synchronization

techniques are provided that prevent synchronization errors from occurring.

Enterprise uses futures [Halstead, 1975] to synchronize concurrency so

that the user can write sequential code with no explicit synchronization. Futures

- 6 -

are becoming increasingly popular (see, for example, ABC++ [Arjomandi et al.,

1995] and Mentat [Grimshaw et al., 1993]).

In Figure 1, Caller() continues executing without waiting for Callee() to

return. Rather, it maintains all the return values, including OUT() and INOUT()

parameters, as linked structures called futures. Caller() continues executing

until result[5] is referenced in the subsequent code, at which time Caller()

blocks if Callee() has not yet returned. As soon as the return message from

Callee() is received, Caller() uses the return value as result[5] and

resumes execution. Futures provide an error-free synchronization mechanism

while routines without return values, and hence no futures, are totally

asynchronous.

The richness of the template-based model determines the extent to

which synchronization can be specified by the user, without resorting to the

error-prone activity of inserting synchronization primitives manually. In

Enterprise, parallel procedure templates are called assets. A replicated asset

is a parallel procedure that can be concurrently executed on multiple

processes. If a replicated asset is declared as unordered, meaning that the

order of return values is irrelevant, it has fewer synchronization points, so

concurrency is increased.

 A trivial but instructive program, CubeSquare (Figure 2), illustrates how

this automatic synchronization can be controlled by the user. This parallel

equivalent of a "Hello world" program performs the trivial task of summing all

the cubes and squares of numbers from 0 to SIZE-1. Assume that the Square

and Cube routines are replicated assets so that several different processes

can execute their code on successive calls. In this example, a series of calls

are made to the same parallel functions and the order of the results is not

critical, since the results are simply summed. Therefore the user can declare

the replicated assets as having the unordered attribute. This attribute, as well

as the replication factor, is part of the meta-program (template specification)

and is independent of the user's code.

Unordered semantics denotes that the first reference to a particular

return value for an asset will receive the first corresponding parameter value

returned, regardless of whether the variable name matches or not. When the

summation is executed in CubeSquare, the program may have to block and

wait for a[0] and b[0]. However, if Square and Cube are unordered, other

- 7 -

return values already available, perhaps a[2] and b[3], may be used in their

places. It is important to realize that the unordered attribute violates the

semantics of sequential C, but can allow significantly more concurrency in

certain computations less trivial than this example. Since this option, when

used inappropriately, can lead to errors, it must be used with great care.

Nevertheless, the user is guaranteed that synchronization errors will not result.

The bottom line is that template-based models can provide the user with

different levels of synchronization control while preventing synchronization

errors.

#define SIZE 10

CubeSquare(argc, argv)
int argc;
char ** argv;
{

int i, sq, cu, a[SIZE], b[SIZE];

for(i = 0; i < SIZE; i++)
{

a[i] = Square(i);
b[i] = Cube(i);

}

sq = cu =0;
for(i = 0; i < SIZE; i++)
{

sq += a[i];
printf("The square of %d is %d\n", i, a[i]);
cu += b[i];
printf("The cube of %d is %d\n", i, b[i]);

}
printf("sum of squares %d\n", sq);
printf("sum of cubes %d\n", cu);

}

int Square(i)
int i;
{

SLEEP_RANDOM_TIME;/* Appropriately defined macro */
return(i * i);

}

int Cube(i)
int i;
{

SLEEP_RANDOM_TIME;/* Appropriately defined macro */
return(i * i * i);

}

Figure 2. The code for CubeSquare.

- 8 -

2.4-PREVENTING PARALLEL STRUCTURE ERRORS

Most coarse-grained parallel programs conform to a small number of

commonly occurring structures [Mehrotra and Pratt, 1982]. For example,

pipelined, master-slave and recursive divide-and-conquer forms of parallelism

are frequently seen. Some template-based tools provide these structures as

building blocks for more complicated parallel programs (for example, PIE

[Segall and Rudolph, 1985]).

With template-based PPSs, the parallelism is defined by using one or

more templates from a fixed set. The code that creates the processes and

establishes the parallel communication structure between them is created

automatically by the PPS. Assuming that the PPS is implemented correctly, this

guarantees that the parallel structure will be generated correctly. Furthermore,

since there are no explicit references to the parallel structure in the code, the

user cannot introduce structure errors when the code is later modified during

debugging, performance tuning or maintenance.

For example, in Enterprise, the templates for the CubeSquare program

of Figure 2 are expressed graphically in the Design View of the graphical user

interface as shown in Figure 3. The user is assured that any program graph

that can be drawn in Enterprise is syntactically correct, although it might not be

an appropriate choice for the problem.

Figure 3. A meta-program for CubeSquare.

- 9 -

For the CubeSquare program, the templates consist of a department

asset with three components: CubeSquare, Square and Cube. Each of these

three assets is implemented by one or more processes that execute the

appropriately named procedures of Figure 2. All of the code that spawns the

processes and connects them together into this parallel "department" structure

is automatically generated by Enterprise with no possibility of structure errors.

In effect, the sequential code of Figure 2 and the asset diagram (parallel

annotations) in Figure 3 are all that are needed to create a distributed

Enterprise program.

Depending on the richness of templates available in the PPS, and the

way they generate code, it may also be possible to change templates without

modifying the user code in any way. For example, in Enterprise, it is possible to

change the number of processes (called the replication factor) that can

independently execute a parallel procedure without changing the user code in

any way. In Figure 3, the superscripts on the Square and Cube assets indicate

that two copies of each asset should be created. The programmer can change

either or both of these values and, without changing the user code, use the new

template to re-execute the program. In a non-template-based PPS, such

changes would need to be made directly in the user's source code and errors

could arise. In a template-based PPS such changes can be done without the

possibility of introducing any errors.

Changing a replication factor is a fairly straightforward change to the

parallel structure of a program. However, it should also be possible to make

more dramatic changes in the parallel structure of a program and guarantee

that no structure errors will be introduced. One of the important features of

Enterprise is that one can experiment with parallelization techniques without

necessarily having to modify the code. Enterprise supports combining assets

in a hierarchical structure. For example, it is possible to have a department of

pipelines (pipelines are called Line assets in Enterprise terminology). Each

line asset could contain recursive divide-and-conquer assets (Divisions).

Having an orthogonal relationship between a program's code and its

parallel specification dramatically reduces the possibilities for errors.

Enterprise does not achieve complete orthogonality since changing between

some parallel structures may involve moving code between various files.

However, changes can be made in replication factors, ordered/unordered

- 10 -

attributes, machine preferences (including different architectures), parameter

and event logging specifications, and output windows without a single change

to the program code. Once again, the result is fewer errors.

2.5-PREVENTING DEADLOCK

Deadlock is a common problem in message-passing programs. One of the

conditions for deadlock is to have a cyclic dependency. In Enterprise, the

communication graph is implicit in the user's template selection. Except for

division assets (discussed later), the templates provided in the system

preclude the creation of a cyclical communication graph among processes.

This eliminates the possibility of a communication deadlock due to parallel

structure. Of course, the user can still create deadlock by creating other cycles

such as having a process waiting for an I/O event to occur.

It is possible to preclude deadlock without completely eliminating cyclic

graphs. For example, in Enterprise, there is only one template that includes

cyclic calls. It is a recursive template, called a Division, that is used to

implement parallel recursion for divide-and-conquer algorithms. However, all

recursive processes are created and controlled by Enterprise and

communication deadlock cannot occur. Each time a procedure calls itself, the

call either generates a new process or is a sequential call (in a parallel tree

leaf node). Since a process need only wait for its children and not any of its

siblings or parents, deadlock cannot occur.

2.6-PREVENTING HETEROGENEITY ERRORS

Enterprise includes its own internal makefile to automatically handle the

issues of compiling and running processes on a collection of heterogeneous

machines. The system maintains directories for each potential target

architecture. This removes a troublesome bookkeeping burden from the user

and eliminates another source of errors.

Enterprise also maintains a resource manager, which knows about the

capabilities of each machine that can potentially be used in a computation.

The system maps processes to processors based on any constraints

specified by the user. The default is to put processes on idle machines. Users

- 11 -

are not responsible for doing any process-processor mapping, unless they

explicitly want to.

3-DETECTING ERRORS USING A TEMPLATE-BASED TOOL SET

A programming model, no matter how sophisticated, cannot prevent all types of

errors. Although the Enterprise programming model can eliminate many of the

errors that commonly occur when parallelism is introduced into an application,

tools are still needed to identify and correct errors. Many parallel systems

provide little support for debugging. The most common techniques of inserting

print statements or attaching a sequential debugger to each concurrent

process, are of little value in detecting errors that occur due to the interaction of

two or more processes.

We divide the non-preventable errors into two classes, logic errors and

performance errors. A logic error results in a program whose results are

incorrect. A performance error results in a program that produces correct

results, but executes too slowly. Different tools are required to detect and

correct these different types of errors. In practice, logic debugging and

performance debugging are not independent activities since performance

tuning may introduce new logic errors into the code. Therefore, the PPS must

provide a simple method of switching between logic debuggers and

performance debuggers. The advantage of using a template-based PPS is

that a high-level model exists. If both kinds of debuggers are based on the

same model, then context switches between the two can be made more easily.

A uniform, fully integrated PPS such as Enterprise, allows the user to

develop distributed programs with the advantage of built-in error reduction and

debugging mechanisms. In Enterprise, a Design View provides the facilities

for creating the program's parallel design (the meta-program), coding the

assets, compiling the assets, and executing the program on selected

workstations. An Animation View allows the user to animate the message-

passing behavior of a program based upon a captured event file from a

previous execution. In the Animation view, a program does not actually re-

execute. However, logged messages can be examined and performance

analysis tools can be invoked to graphically view performance statistics. A

Replay View, similar in appearance to the Animation View, couples animation

with facilities for deterministically re-executing a program under the control of a

- 12 -

high-level event-based breakpointing tool. During replay, sequential

debuggers can also be attached to selected processes. The Performance

Views allow users to study the run-time performance of their programs. They

simultaneously provide a macroscopic perspective of the program together

with microscopic views of the state of individual processes.

3.1-SEQUENTIAL EXECUTION AND STANDARD DEBUGGING

Compiled programs can be run either sequentially or in parallel at the flip of a

switch. Each asset (process) in Enterprise has the capability of being invoked

by a message or by a sequential procedure call. Sequential mode simply

disables the sending and receiving of messages. This allows the user to

debug a program sequentially, before trying the program with parallelism

enabled.

3.2-THE ANIMATION VIEW AND PERFORMANCE DEBUGGING

To take advantage of the facilities in the Animation and Replay Views, an event

log must be recorded for a program execution. This log contains an

abbreviated record of all the inter-process communications together with state

changes, such as when a process blocks waiting for a reply or when a process

terminates. The approximate total order of events captured in the log provides

a basis for the performance analysis tools. A guaranteed partial order ensures

a deterministic description of the program without tachyons (events out of their

logical temporal sequence), such as a message being received before it is

sent. This model forms the basis for execution replay and animation. The user

has control over the amount of information logged at run-time and event

logging can even be disabled for production runs.

Once an event file has been created, the Animation View can be used for

both performance debugging and correctness debugging [Lobe et al., 1993].

The captured events are animated as a sort of time-lapse movie. Messages

are created by the calling assets, move to message queues and arrive at the

called assets. In addition, the assets change state as execution proceeds. In

the Animation View, the user can, in effect, simulate a particular execution,

without actually re-running the program. The post-mortem analysis of a

program in this view can reveal important performance characteristics and help

- 13 -

to detect various programming errors. By viewing the animation, the user can

dynamically observe the degree of parallelism, the relative states of processes,

the buildup of messages in message queues, and the values of logged

parameters in the messages. Figure 4 shows a snapshot of the animation for

the CubeSquare program.

Figure 4. A snapshot of the animation for the CubeSquare program.

The Animation View can display the program's assets in fully expanded

form, or with assets selectively collapsed to hide uninteresting detail. Each

asset is labeled by its state: IDLE, BUSY, WAIT or DEAD. Each asset has two

message queues: an input queue at the left of its top edge for call messages

and a reply queue at the middle of its right edge for return messages. If the

queues are empty, nothing is displayed. During animation, messages move

along paths on the screen between assets and enter the message queues,

which are then visibly displayed by a message icon and a number designating

the number of messages in the queue. At any time, the animation can be

stopped and the messages viewed. Since we have access to the compiler,

each parameter in a message is displayed in a high level form including its

name.

- 14 -

3.3-THE REPLAY VIEW AND CORRECTNESS DEBUGGING

Any tool that is used to detect and correct parallel logic errors must deal with

two fundamental issues, non-determinism and the probe effect. In sequential

programs, logic errors are almost always deterministic. In parallel programs,

logic errors are often non-deterministic. The execution path may depend on

race conditions between concurrently executing processes and the results of

these races often depend on many factors such as processor load, network

traffic and disk usage. If an error occurs on one of these paths, it may be

necessary to execute the program many times (even hundreds or thousands of

times) to exercise this error path once. In addition, it may be necessary to

exercise the error path many times to isolate and fix the error. A good PPS

must allow the programmer to reproduce any non-deterministic execution path

as many times as necessary to isolate and fix the error.

The probe effect occurs when a programmer inserts debugging code

into a program that alters the result of a race and changes the execution path

so that an error is masked. When the debugging code is removed, the error re-

appears. A good PPS must provide facilities to reduce the probe effect so that

the debugging tools can isolate the errors.

Although logic errors in a program can sometimes be debugged by

post-mortem examination in the Animation View, there are times when it

becomes necessary to actually re-execute the program deterministically along

the path captured in the event log. This is possible assuming that there are no

non-deterministic constructs in the sequential code of the assets themselves.

To facilitate a prescribed forced execution that allows the programmer to

examine the internal state of individual processes and message contents not

captured in the log, a Replay View was implemented for Enterprise [Iglinski,

1994]. This replay facility, a message-level breakpoint facility, and selective

access to standard sequential debuggers all together constitute the Enterprise

debugger.

Breakpoints are set at a high level, in terms of message-passing events.

These breakpoints can be either unconditional for a particular event type at a

particular asset grouping, or conditional upon the values of any parameters

which have been captured in the event file. When a set breakpoint is triggered,

the guided replay stops just before the event is executed. It is then a simple

- 15 -

operation for the programmer to single step through the event, examine the

contents of a logged message, or attach a sequential debugger to any process

for lower-level debugging. Unlike other parallel debugging systems such as

Node Prism [Sistare 94], the Enterprise debugger does not attach debugging

processes to all nodes or to nodes with scheduled breakpoints, since the

breakpoints are based upon captured information in the event file, not upon the

internal states of processes. When a breakpoint is triggered and a suspicious

process is identified, a sequential debugger can then be selectively invoked.

Enterprise is scalable in that breakpoints can be associated with either

complete sets of replicas or with particular nodes. Although the present

implementation of Enterprise is not intended for the massive parallelism that

Node Prism is designed to accommodate, the validity of the Enterprise model

is not precluded in a massively parallel environment.

The specification and management of breakpoints is accomplished with

a Breakpoint Browser (Figure 5) which is fully integrated into and coordinated

with the display in the Replay View. Breakpoints are graphically depicted in the

view by means of icons and highlighting. The text-based Breakpoint Browser is

coordinated with the graphical Replay View while the breakpoints are being

defined, and while the program is replaying and triggering breakpoints.

Alternately certain structural components of breakpoints can be defined directly

by selecting icons in the Replay View. These selections are reflected

immediately in the Breakpoint Browser. This technique of coordinating textual

information with graphical visualization is in accord with a core goal of

Enterprise: to provide an intuitively comprehensible interface to an inherently

complex and potentially confusing parallel architecture.

Although the Enterprise debugger lacks much of the power of a parallel

debugging system like Node Prism, its virtue lies in its uniformity with the

underlying model and the system into which it is integrated. It is easy to learn,

simple to manage, and effective. Context switches between the Design,

Animation and Replay Views are completely seamless. This uniformity

increases the productivity of parallel programmers [Szafron and Schaeffer,

1996].

- 16 -

Figure 5. Breakpoint Browser and Replay View.

3.4-THE PERFORMANCE VIEWS

Performance debugging is quite different from logic debugging and there are

different issues that must be addressed [Woloschuk et al., 1995]. Performance

tuning can be divided into three operations. The first operation is to acquire

(capture or record) the interesting events while the program is running. The

second operation is to analyze the events to produce information about the run.

The third operation is to present this information to the user. There are two

methods to acquire and analyze events. Real-time analysis is carried out at

run-time as events are generated. In post-mortem analysis, events are

recorded at run-time, but are analyzed in a post-execution process.

The two primary problems associated with real-time analysis are the

number of events that can be generated by many concurrently executing

processes and the difficulty of analyzing long-term patterns and trends in these

events. The difficulty with post-mortem analysis is that an entire event trace

must be captured and stored before analysis and presentation can begin, even

- 17 -

if the interesting events happen at the start of a very long execution. However,

both real time and post-mortem analysis are handicapped by fundamental

limitations to the amount of information that can be displayed and by the

amount of information that can be absorbed by human observers. Good PPSs

must combine efficient event logging mechanisms, powerful analysis engines

and good abstraction techniques for presenting information concisely.

The available Performance Views include the Asset Utilization view,

showing how busy each asset is; the Transaction Time-line View, showing

message transmission patterns; the Transaction Summary View, showing the

details of each message in a transaction (sequence of messages); and the

Annotation View, where the system attempts to comment on the parallel

program’s performance. Figure 6 shows a Transaction Summary View which

can be used to trace a sequence of messages (a transaction) from asset to

asset. It also allows a programmer to discover how much time each message

spends in transit, waiting in queues and being executed. Finally, it describes

the dynamic distribution of messages by reporting the minimum, maximum

and average times of messages.

Figure 6. The Transaction Summary View.

- 18 -

Figure 7 shows an example of the Annotation View. The view indicates

where the first speedup occurred. The user can select performance events of

interest, and the system will annotate the time-line to indicate where the events

occurred. Each of these events can be annotated with a comment indicating

the probable cause of the event and an indication of where in the user's code

the performance problem occurred. Thus the user knows exactly where

potential problems lie. The situation choices are obtained from a menu that

includes such utilization statistics as register on first speed-up, register on all

speed-ups, register on first slow-down, bottle-necks, granularity problems,

network flooding, etc. It also includes such aggregate operations as asset

under-utilized, asset over-utilized, overloaded message queue and excessive

message processing time.

Figure 7. The Performance Annotation View .

The nature of the model and the accessibility of compiler information

allow us to provide meaningful annotations to the user’s code. In this way, the

tool can offer the user some insight as to where the performance error is

occurring.

- 19 -

4-CONCLUSIONS

Debugging distributed programs should not be treated in isolation from

the model and system in which the programming takes place. If a utopian

system and model could guarantee that no errors could occur in a program, the

best debugger would be no debugger at all. Unfortunately, in the real world this

is not the case. The best we can do is prevent or minimize certain types of

errors and then provide debugging tools uniquely suited to the programming

environment and the types of errors that are most likely to occur. This paper

has shown that template-based distributed computing systems are able to

eliminate or minimize a significant number of programmer errors directly

associated with the distributed domain. In particular, much of the tedious error-

prone coding involved with establishing communication links, packing and

unpacking messages, managing inter-process communication and handling

synchronization can be automated. The result is error-reduced code and

greater programmer productivity. Enterprise implements a template-based

model of distributed computing within a graphical programming interface,

augmented by a collection of integrated tools. Consequently, the transition

from sequential programming to distributed computing becomes far less

intimidating. The super-computing power of networks of under-utilized

workstations is placed within the reach of programmers untutored in the highly

specialized skills normally required in distributed computing.

The Enterprise experience also shows that the tools for performance

analysis and correctness debugging can be seamlessly and uniformly melded

into a user-friendly programming environment. The overhead of learning such

a system is greatly reduced through a sort of skill amortization in which an

operation or technique learned in one context can be used in another context or

generalized to a related operation. By maintaining the same graphical

perspective of the program when debugging in the Replay View as when

analyzing performance in the Animation View or when designing the program in

the Design View, the user can more easily grasp the complexities of the

program's behavior and process concurrency. Within such an environment,

programmers are less likely to err.

By virtue of its template-based paradigm, Enterprise is able to launch a

preemptive attack on errors within the distributed programming domain and

- 20 -

shield the user from many of the inherent hazards. These preventive

measures combined with customized equipment for debugging in Enterprise

will hopefully make the arduous chore of writing and debugging a little less

daunting.

Enterprise is publicly available: http://www.cs.ualberta.ca/~enter.

ACKNOWLEDGMENTS

This research has been funded by NSERC and a grant from IBM Canada

Limited's Centre for Advanced Studies.

REFERENCES

E. Arjomandi, I. Kalas and W. O'Farrell. Concurrency Abstractions in a C++

Class Library, CASCON'93 Conference Proceedings, Toronto, October 1993.

B. Bacchi, M. Danelutto and S. Pelagatti. Resource Optimization via Structured

Parallel Programming. Programming Environments for Massively Parallel

Distributed Systems, Birkhauser Verlag, Basel, Switzerland, pp. 13-25, 1994.

H. Bal, M. Kaashoek and A. Tanenbaum. Orca: A Language for Parallel

Programming of Distributed Systems. IEEE Transactions on Software

Engineering, vol. 18, no. 3, pp. 190-205, 1992.

A. Beguelin, J. Dongarra, A. Geist, R. Manchek and K. Moore. HeNCE: A

Heterogeneous Network Computing Environment, Carnegie Mellon University,

Computing Science Department, Technical Report CS-93-205 (August 1993).

M. Beltrametti, K. Bobey, R. Manson, M. Walker and D. Wilson. PAMS/SPS-2

System Overview. Supercomputing Symposium, pp. 63-71, 1989.

N. Carriero, D. Gelernter, T. Mattson and A. Sherman. The Linda Alternative to

Message-passing Systems. Parallel Computing, vol. 20, no. 4, pp. 633-655,

1994.

L. Clarke, R. Fletcher, S. Terwin, R. Bruce, A. Smith and S. Chapple. Reuse,

Portability and Parallel Libraries. Programming Environments for Massively

Parallel Distributed Systems, Birkhauser Verlag, Basel, Switzerland, pp. 171-

182, 1994.

- 21 -

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,

Reading, Massachusetts, October 1994.

G. Geist and V. Sunderam. Network-Based Concurrent Computing on the PVM

System. Concurrency: Practice and Experience, vol. 4, no. 4, pp. 293-311,

1992.

A. Goldberg. Concert/C: A Language for Distributed C Programming. IBM T.J.

Watson Research Center, Yorktown Heights, New York, 1993.

A. Grimshaw, W.T. Strayer and P. Narayan. Dynamic Object-Oriented Parallel

Processing. IEEE Parallel and Distributed Technology, vol. 1, no. 2, pp. 33-27,

1993.

A.R. Halstead. MultiLisp: A Language for Concurrent Symbolic Computation.

ACM Transactions on Programming Languages and Systems, vol. 7, no. 4, pp.

501-538, 1985.

P. Iglinski. An Execution Replay Facility and Event-Based Debugger for the

Enterprise Parallel Programming System, M.Sc. Thesis, University of Alberta,

1994.

G. Lobe, D. Szafron and J. Schaeffer. The Enterprise User Interface. TOOLS

(Technology of Object-Oriented Languages and Systems) 11, R. Ege, M. Singh

and B. Mayer (editors), pp. 215-229, 1993.

P. Mehrota and T. Pratt. Language Concepts for Distributed Processing of

Large Arrays. Principles of Distributed Computing, pp. 19-28, 1982.

J. Schaeffer, D. Szafron, G. Lobe and I. Parsons. The Enterprise Model for

Developing Distributed Applications. IEEE Parallel and Distributed

Technology, vol. 1, no. 3, pp. 85-96, 1993.

Z. Segall and L. Rudolph. Pie (A Programming and Instrumentation

Environment for Parallel Processing), IEEE Software, vol. 2, no. 6, pp. 22-37,

1985.

- 22 -

S. Sistare, D. Allen, R. Bowker, K. Jourdenais, J. Simons and R. Title. A

Scalable Debugger for Massively Parallel Message-Passing Programs, IEEE

Parallel & Distributed Technology, Vol. 2, No. 2 (Summer 1994), pp. 50-56.

Sun Microsystems. Remote Procedure Call Programming Guide. Sun

Microsystems, G. Lobe, D. 1986.

D. Szafron and J. Schaeffer, An Experiment to Measure the Usability of Parallel

Programming Systems. To appear in Concurrency Practice and Experience,

1996.

D. Woloschuk, P. Iglinski, S. MacDonald, D. Novillo, I. Parsons, J. Schaeffer and

D. Szafron. Performance Debugging in the Enterprise Parallel Programming

System, CASCON'95 CDRom Conference Proceedings, Toronto, November

1995.

