
Why Not Use a Pattern-based ParallelProgramming System?John Anvik, Jonathan S
hae�er, Duane Szafron, and Kai TanUniversity of AlbertaAbstra
t. Parallel programming is seen as an e�e
tive te
hnique toimprove the performan
e of 
omputationally-intensive programs. Thisis done at the 
ost of in
reasing the 
omplexity of the program, sin
enew issues must be addressed for a 
on
urrent appli
ation. Parallel pro-gramming environments provide a way for users to reap the bene�tsof 
on
urrent programming while redu
ing the e�ort required to 
reatethem. The CO2P3S parallel programming system is one su
h tool whi
huses a pattern-based approa
h to 
reate a parallel program.Using the Cowi
han Problems, this paper demonstrates that the CO2P3Ssystem 
ontains a suÆ
ient number of parallel patterns to implement awide variety of appli
ations. This 
hara
teristi
 is 
alled the utility ofa system. Code metri
s and performan
e results are presented for thevarious appli
ations to show the usability of the CO2P3S system andits ability to redu
e programming e�ort, while produ
ing programs withreasonable performan
e. Finally, the extensibility of CO2P3S is illustratedby des
ribing how a new pattern, 
alled the Sear
h-Tree pattern, wasadded to CO2P3S in order to solve two of the Cowi
han Problems.1 Introdu
tionIn many �elds of resear
h there exist problems whi
h simply take too long tosolve using a single pro
essor. Only by dividing the problem into separately
omputable 
omponents and using multiple pro
essors 
an these problems besolved in a reasonable time frame.However, doing so is not without 
ost. Adding parallelism adds new 
on
ernsto the appli
ation, su
h as syn
hronization and 
ommuni
ation between thepro
essors. This leads to either an in
reased 
omplexity of the algorithm, or theuse of a 
ompletely di�erent algorithm. It also makes the debugging of programsmore diÆ
ult as non-determinism is now introdu
ed. The writing of parallelprograms is known to be a 
omplex and error-prone task, even for experts in the�eld.The state of the art in parallel programming tools is represented by OpenMPfor shared-memory programs and MPI for distributed-memory programming.These are low-level models in that the user must expli
itly represent the paral-lelism in the 
ode. The user is required to adapt or restru
ture their appli
ationto a

ommodate the 
on
urren
y. In the 
ase of MPI, this 
an translate intohundreds or more additional lines of potentially error-prone 
ode.



However, there is hope. In sequential programming there exist strategieswhi
h may be used a
ross many problems. These strategies are 
alled designpatterns [6℄ and they en
apsulate the knowledge of solutions for a 
lass of prob-lems. To solve a problem using a design pattern, an appropriate pattern is 
hosenand adapted to the parti
ular problem. By referring to a problem by the par-ti
ular strategy that may be used to solve it, a deeper understanding of thesolution to the problem is immediately 
onveyed and 
ertain design de
isionsare impli
itly made.Just as there are sequential design patterns, there exist parallel design pat-terns whi
h 
apture the syn
hronization and 
ommuni
ation stru
ture for aparti
ular parallel solution. The notion of these 
ommonly-o

urring parallelstru
tures has been well-known for de
ades in su
h forms as skeletons [5, 7℄, ortemplates [10℄. Examples of 
ommon parallel design patterns are the fork/joinmodel, pipelines, meshes, and work piles.Although there have been many attempts to build pattern-based high-levelparallel programing tools, few have gained a

eptan
e by even a small user 
om-munity. The idea of having a tool that 
an take a sele
ted parallel stru
ture andautomati
ally generate 
orre
t stru
tural 
ode is quite appealing. Typi
ally, theuser would only �ll in appli
ation-dependent sequential routines to 
omplete theappli
ation. Unfortunately these tools have not made their way into pra
ti
e fora number of reasons:1. Performan
e. Generi
 patterns produ
e generi
 
ode that is ineÆ
ient andsu�ers from loss of performan
e.2. Utility. The set of patterns in a given tool is quite limited, and if the ap-pli
ation does not mat
h the provided patterns, then the tool is e�e
tivelyuseless. Further, a tool may only be suitable for a single type of parallelar
hite
ture.3. Extensibility. High-level tools 
ontain a �xed set of patterns and the tool
annot be extended to in
lude more.The CO2P3S parallel programming system uses design patterns to ease thee�ort required to write parallel programs. The system addresses the limitationsof previous high-level parallel programming tools in the following ways:1. Performan
e. CO2P3S uses adaptive generative parallel design patterns. Anadaptive generative design pattern is an augmented design pattern whi
h isparameterized so that it 
an be readily adapted for an appli
ation, and usedto generate a parallel framework tailored for the appli
ation. In this mannerthe performan
e degradation of generi
 frameworks is eliminated.2. Utility. CO2P3S provides a ri
h set of parallel design patterns, in
ludingsupport for both shared and distributed memory environments.3. Extensibility. MetaCO2P3S is a tool used for rapidly 
reating and editingCO2P3S patterns. CO2P3S 
urrently supports 15 parallel and sequentialdesign patterns, with more patterns under development.



This paper fo
uses on the utility aspe
t of CO2P3S. The performan
e aspe
tof using CO2P3S has already been presented [4℄. The intent of this paper is toshow that the use of a high-level pattern-based parallel programming tool is notonly possible, but more importantly, it is pra
ti
al. The CO2P3S system 
anbe used to qui
kly generate 
ode for a diverse set of appli
ations with widelydi�erent parallel stru
tures. This 
an be done with minimum e�ort, where e�ortis measured by the number of additional lines of 
ode written by the CO2P3Suser. The Cowi
han Problems are used to demonstrate this utility by showingthe breadth of appli
ations whi
h 
an be written using the tool. Furthermore,it is shown that the a shared-memory appli
ation 
an be re
ompiled to run in adistributed memory environment with no 
hanges to the 
ode.First, a des
ription of the CO2P3S system is given in Se
tion 2. The resultsof using the system to implement solutions to the Cowi
han Problems are thenpresented in Se
tion 3. Se
tion 4 illustrates the extensibility of CO2P3S by de-s
ribing a new pattern, the Sear
h-Tree pattern, that was ne
essary in order tosolve two of the Cowi
han problems. The use of CO2P3S is illustrated by show-ing how this pattern was used to implement an IDA* sear
h appli
ation. Finally,some 
on
luding remarks are made in Se
tion 5.2 The CO2P3S Parallel Programming SystemThe CO2P3S1 parallel programming system is a tool for implementing parallelprograms in Java [8℄. CO2P3S generates parallel programs through the use ofpattern templates. A pattern template is an intermediary form between a pat-tern and a framework, and represents a parameterized family of design solutions.Members of the solution family are sele
ted based upon the values of the pa-rameters for the parti
ular pattern template. This is where CO2P3S di�ers fromother pattern-based parallel programming tools. Instead of generating an appli-
ation framework whi
h has been generalized to the point of being ineÆ
ient,CO2P3S produ
es a framework whi
h a

ounts for appli
ation-spe
i�
 detailsthrough parameterization of its patterns.The pattern parameters in CO2P3S 
an be divided into four types of param-eters: lexi
al, design, performan
e, and veri�
ation parameters. Lexi
al param-eters are various 
lass and method names in the pattern framework whi
h areprovided by the user. Design parameters are pattern parameters whi
h a�e
t theoverall parallel stru
ture of the generated framework. Performan
e parametersintrodu
e optimizations that may improve performan
e by 
hanging the internalframework 
ode. However these 
hanges are not visible to the user. Veri�
ationparameters allow for the in
lusion of pie
es of 
ode in the framework to ensureits proper use and �nd errors in user 
ode.A framework generated by CO2P3S provides the 
ommuni
ation and syn-
hronization for the parallel appli
ation, and the user provides the appli
ation-spe
i�
 sequential 
ode. These 
ode portions are added through the use of se-1 Corre
t Obje
t-Oriented Pattern-based Parallel Programming System, pronoun
ed`
ops'.



quential hook methods in the framework 
ode. This abstra
tion of parallelismfrom the appli
ation-spe
i�
 portions, maintains the 
orre
tness of the parallelappli
ation sin
e the user 
annot 
hange the 
ode whi
h implements the paral-lelism at the pattern level. However, due to the layered model of CO2P3S [8℄,the user has a

ess to lower abstra
tion layers when ne
essary in order to tunethe appli
ation.Extensibility of a programming system supports in
reased utility. CO2P3Simproves its utility by allowing new pattern templates to be added to the systemusing the MetaCO2P3S [3℄ tool. Pattern templates added through MetaCO2P3Sare indistinguishable in form and fun
tion from those already 
ontained inCO2P3S. This allows CO2P3S to adapt to the needs of the user; if CO2P3Sla
ks the ne
essary pattern for a problem then MetaCO2P3S supports its rapidaddition to CO2P3S.The des
riptions of pattern templates generated by MetaCO2P3S are storedin system-independent XML2 format. This ensures that the patterns generatedby MetaCO2P3S 
an be used not only by the CO2P3S system itself, but alsoby any template-based programming tool whi
h uses XML. The 
reation of asystem-independent pattern repository 
an enhan
e the the utility of all systemsthat 
an use this format sin
e more patterns 
an be developed and distributed.The �rst step in testing the utility of the CO2P3S system was to sele
t asuitable set of problems to use. The Cowi
han Problems were 
hosen as a non-trivial set of problems. When the problems were analyzed, it be
ame evident thatCO2P3S la
ked the ne
essary patterns to implement four of these problems.For another high-level programming system the experiment would have beenover. However, using MetaCO2P3S, we were able to extend CO2P3S to �t ourrequirements through the addition of two new patterns: the Wavefront pattern[1, 2℄ and the Sear
h-Tree pattern.3 Using CO2P3S to Implement the Cowi
han ProblemsTest suites su
h as SPEC and SPLASH for assessing system performan
e, aboundin the 
omputing world. In 
ontrast, the number of test suites whi
h address theutility or usability of a system are few. For parallel programming systems, weknow of only one non-trivial set: the Cowi
han Problems [12℄. The Cowi
hanProblems are a suite of seven problems spe
i�
ally designed to test the breadthand ease of use of a parallel programming tool, as opposed to testing the per-forman
e of the programs that 
an be developed using the tool [13℄. The goal ofthese problems is to provide a standard set of `non-trivial' medium-size problemsby whi
h di�erent parallel programming systems may be 
ompared.The problems are designed to test di�erent aspe
ts of a parallel program-ming system. The problems are from a wide sele
tion of appli
ation domainsand parallel programming idioms, 
overing a range from numeri
al to symboli
appli
ations, from data-parallelism to 
ontrol-parallelism, from 
oarse-grained2 Extensible Markup Language.



to �ne-grained parallelism, and from lo
al to global to irregular 
ommuni
a-tion. The problems also address important issues in parallel appli
ations su
h asload-balan
ing, distributed termination, non-determinism, and sear
h overhead.Des
riptions of ea
h of these problems 
an be found in [12℄.For our work, one modi�
ation was made to the original problem set. TheCowi
han Problems 
ontain a single-agent sear
h problem, the A
tive ChartParsing Problem. The problem involves generating all possible derivations ofa senten
e based on an ambiguous grammar. Unfortunately, �nding grammarsand senten
es suÆ
iently large to produ
e programs whi
h run for more thana few se
onds on 
urrent pro
essors is diÆ
ult. Therefore, a di�erent single-agent sear
h (IDA*), whi
h was more representative of this 
lass of problemswas sele
ted.All of the Cowi
han Problems have been implemented using CO2P3S. Spe
i�
sof how the patterns were used to implement the problems may be found in [2℄.Presented here is an overview of ea
h of the patterns used to solve the problems.Table 1 provides a summary of whi
h CO2P3S pattern was used to solve ea
h ofthe Cowi
han Problems. Tables 2 and 3 provide 
ode metri
s and performan
eresults for ea
h solution that was 
reated using CO2P3S.3.1 The Sear
h-Tree PatternThe Sear
h-Tree pattern is used to parallelize tree sear
h algorithms, su
h asthose used in optimization and heuristi
 sear
h. The nodes of the tree repre-sent states (e.g. a game board 
on�guration) and the ar
s represent movementbetween states (e.g. a player's move). The Sear
h-Tree pattern uses the divide-and-
onquer te
hnique for sear
hing a tree in whi
h the 
hildren of tree nodesare generated up to a 
ertain depth in the tree (divide) and the remaining nodesare pro
essed sequentially by the pro
essor (
onquer).3.2 The Wavefront PatternThe Wavefront pattern [1, 2℄ is appli
able to appli
ations where the data depen-den
ies between work items 
an be expressed as a dire
ted a
y
li
 graph (DAG).The wavefront denotes the partition between nodes of the graph that have been
omputed and nodes that 
an now be 
omputed be
ause their dependen
y re-quirement has been satis�ed. While a wavefront may o

ur in arbitrary DAGs,the Wavefront pattern restri
ts the set of dependen
y graphs to those whi
ho

ur in a matrix. Parallelism in the Wavefront pattern results from elementson the wavefront being data independent of ea
h other, otherwise the elements
ould not o

ur on the wavefront. CO2P3S 
ontains versions of the Wavefrontpattern for both shared-memory [2℄ and distributed memory ar
hite
tures [11℄.3.3 The Mesh PatternThe Mesh pattern [8℄ is used for 
omputing elements of a regular, re
tangulartwo-dimensional data set where ea
h element is dependent on its surrounding



values and 
hanged over time. In other words, it is used for appli
ations wherethe elements are evenly spread over a two-dimensional surfa
e and 
omputationof an element is dependent on values from either the 
ardinal points or from alleight dire
tions, and ea
h element must be re
omputed many times. This 
lassof appli
ation in
ludes programs for weather predi
tion and parti
le simulation.The parallelization of an appli
ation whi
h uses a mesh is a

omplished byspatially de
omposing the mesh into partitions and performing one iterationin parallel on all the partitions. Boundary values are then ex
hanged betweenpartitions and another iteration is done. This 
ontinues until a lo
al stopping
ondition is satis�ed for all elements.As with the Wavefront pattern, CO2P3S 
ontains both shared-memory [8℄and distributed memory implementations of the Mesh pattern [11℄.3.4 The Pipeline PatternPipelines provide a simple way of improving the performan
e of a task by sep-arating a task into stages, ea
h of whi
h 
an be done in parallel. Abstra
tly,a pipeline 
an be regarded as a sequen
e of stages wherein the stages have aspe
i�
 ordering between them so that the results of one stage forms the inputfor one or more of the following stages. Ea
h stage of the pipeline 
an be viewedas having an obje
t in a 
ertain state, and transition between pipeline stages issimply a 
hange of state for the obje
t [8℄.Traditionally, pipelines are parallelized by assigning one or more threads toea
h stage of the pipeline. However, this 
an lead to load imbalan
es as somestages may require more 
omputation and these parti
ular stages may vary dur-ing a run of the appli
ation. The Pipeline pattern [8℄ in CO2P3S resolves thisproblem by taking a work-pile approa
h to the 
omputation of pipeline stages.Ea
h stage of the pipeline 
an be viewed as having a bu�er of items to be pro-
essed in that stage. Sin
e the pro
essing of an item in the pipeline may beviewed as a transformation from one state to another, in a work-pile approa
hthreads sear
h the bu�ers for work, transform items to their next state, andpla
e them into the next bu�er if further pro
essing is required. In this way theload is balan
ed a
ross the pipeline.Algorithm Appli
ation PatternIDA* sear
h Fifteen Puzzle Sear
h-TreeAlpha-Beta sear
h Ke
e Sear
h-TreeLU-De
omposition Skyline Matrix Solver WavefrontDynami
 Programming Matrix Produ
t Chain WavefrontPolygon Interse
tion Map Overlay PipelineImage Thinning Graphi
s MeshGauss-Seidel/Ja
obi Rea
tion/Di�usion MeshTable 1. Patterns used to solve the Cowi
han Problems.



3.5 The E�e
ts of Using CO2P3SThe results of using CO2P3S to implement solutions to the Cowi
han Problemsare presented here. The results take on two forms: 
ode metri
s to show thee�ort required by a user to take a sequential program and 
onvert it into aparallel program, and performan
e results. Together, these results show that withminimal e�ort on the part of the user, reasonable speedups 
an be a
hieved. Thespeedups are not ne
essarily the best that 
an be a
hieved, sin
e the appli
ations
ould be further tuned to improve performan
e using the CO2P3S layered model[8℄. The results are presented in two tables. Table 2 shows the 
ode metri
s fromthe various implementations and 
ontains the sizes of the sequential and parallelprograms, how mu
h of the parallel 
ode was generated by CO2P3S, how mu
h
ode was reused from the sequential appli
ation, and how mu
h new sequential
ode the user was required to write. Table 3 provides performan
e results forvarious sets of pro
essors.Table 2 shows that a sequential program 
an be adapted to a shared memoryparallel program with little additional e�ort on the part of the user. The timerequired to move from a sequential implementation to a parallel implementationtook in the range of a few hours to a few days in ea
h 
ase. The additional 
odethat the user was required to write was typi
ally 
hanges to the sequential driverprogram to use the parallel framework, and/or 
hanges ne
essary due to the useof the sequential hook methods. The extreme 
ase of this is for the Map Overlyproblem where there was a fundamental 
hange in paradigm between the twoimplementations. In order to use the Pipeline pattern, the user is required to
reate 
lasses for various stages of the pipeline. Ea
h of these 
lasses is requiredto 
ontain a spe
i�
 hook method for performing the 
omputation of that stage,and for transforming the 
urrent obje
t to the obje
t representing the next stage.As this was not ne
essary in the sequential appli
ation, the user was required towrite more 
ode in order to use the Pipeline pattern. For all the other patterns,the user only had to �ll in the hook methods for a generated 
lass.The performan
e results presented in Table 3 are for a shared-memory ar
hi-te
ture. The ma
hine used to run the appli
ations was an SGI Origin 2000 with46 MIPS R100 195 MHz pro
essors and 11.75 gigabytes of memory. A nativethreaded Java implementation from SGI (Java 1.3.1) was used with optimiza-tions and JIT turned on, and the virtual ma
hine was started with 1 GB of heapspa
e.Table 3 shows that the use of the patterns 
an produ
e programs that havereasonable s
alability. Again, these �gures are not the best that 
an be a
hieved,sin
e only the pattern layer of CO2P3S was used. All of these programs 
ouldbe furthered tuned to improve the performan
e. While most of the programsdo show reasonable s
alability, the two that do not, Ke
e and Map Overlay,are the result of appli
ation-spe
i�
 fa
tors and not a 
onsequen
e of the useof the spe
i�
 pattern. In the 
ase of Ke
e, the number of siblings pro
essed inparallel during the depth-�rst sear
h was found to never ex
eeded 20. For theMap Overlay problem, the problem was only run using up to 8 pro
essors, as



Appli
ation Sequential Parallel Generated Reused NewFifteen Puzzle 125 308 123 122 47Ke
e 375 539 135 362 42Skyline Matrix Solver 196 390 224 144 22Matrix Produ
t Chain 68 296 223 60 13Map Overlay 85 455 235 60 160Image Thinning 221 529 350 170 9Rea
tion/Di�usion 263 434 205 177 52Table 2. Code metri
s for the shared-memory implementations of solutions to theCowi
han Problems. Appli
ation 2 4 8 16Fifteen Puzzle 1.74 3.56 6.70 10.60Ke
e 1.93 3.42 4.83 5.80Skyline Matrix Solver 1.93 3.89 7.84 14.86Matrix Produ
t Chain 1.81 3.64 7.80 13.37Map Overlay 1.56 3.11 4.67 -Image Thinning 1.88 3.53 6.39 10.43Rea
tion/Di�usion 1.75 3.13 4.92 6.50Table 3. Speedups for the shared-memory implementations of solutions to theCowi
han Problems.the appli
ation ran for 5 se
onds using 8 pro
essors for the largest dataset sizethat the JVM3 
ould support.Table 4 shows the 
ode metri
s for using CO2P3S to generate distributedmemory 
ode. As the distributed implementations of the Pipeline and Sear
h-Tree patterns are not yet 
omplete, only a subset of the problems are shown. Akey point is that although CO2P3S generates very di�erent frameworks for theshared and distributed memory environments, the 
ode that the user providesis almost identi
al. There are only two small di�eren
es.The �rst di�eren
e is that the method signatures of the generated hookmethods for the distributed environment may 
ontain a throws 
lause. For ex-ample, in the skyline matrix solver appli
ation, the signature of one of thehook methods for the shared memory environment is operateLeft(: : :). Inthe distributed memory environment, the signature be
omes operateLeft(: : :)throws java.rmi.RemoteEx
eption. In the se
ond 
ase, if an ex
eption o

ursdue to a node failure, the framework 
ode 
at
hes the ex
eption and displaysan error. Note that user �lls in exa
tly the same 
ode for the hook methodsin both 
ases. Therefore, no user 
ode 
hanges are required to move from oneenvironment to the other.The se
ond di�eren
e is that in the distributed memory environment, the usermust use a try-
at
h statement to en
lose the 
onstru
tor of the obje
t that initi-ates the parallel 
omputation. Figure 1 shows an example of the shared-memory3 Java Virtual Ma
hine



Appli
ation Sequential Parallel Generated Reused NewSkyline Matrix Solver 196 1929 1760 144 25Matrix Produ
t Chain 68 1534 1458 60 16Image Thinning 221 2138 1968 170 12Rea
tion/Di�usion 263 1476 1304 177 55Table 4. Code metri
s for the distributed-memory implementations of solutions to theCowi
han Problems.and distributed-memory versions of this statement for the skyline matrix solverappli
ation. It is impossible to absorb this di�eren
e into the generated frame-work 
ode sin
e the user 
an write 
ode that initiates a parallel pattern fromanywhere in their appli
ation 
ode. The important point is that a user 
an swit
hbetween shared and distributed memory implementations by one trivial 
hangein their appli
ation 
ode. We are unaware of any other high-level parallel pro-gramming system that supports both shared memory and distributed memoryenvironments in su
h a transparent manner. Sin
e work on the distributed mem-ory patterns is ongoing, no performan
e results are shown in this paper. However,we have generated working distributed-memory versions of the Wavefront andMesh appli
ations from the Cowi
han Problems.4 The Sear
h-Tree PatternTwo new patterns were added to CO2P3S to solve the Cowi
han Problems. TheWavefront pattern has been des
ribed in [1℄. The Sear
h-Tree pattern was alsoadded to CO2P3S to solve two of the Cowi
han Problems. Using the MetaCO2P3Stool, the CO2P3S system was extended to support this new pattern. On
e thepattern had been designed, adding it to CO2P3S took approximately nine hours.This demonstrates the extensibility of CO2P3S, whi
h 
ontributes to the system'sutility.4.1 Pattern ParametersThe single lexi
al parameter for the Sear
h-Tree pattern is the name of the 
lasswhi
h represents a node in the tree. This 
lass will 
ontain the hook methodswhi
h are implemented by the pattern user.This pattern has a single design parameter, the traversal te
hnique. The tree
an be sear
hed in either a breadth-�rst or a depth-�rst manner. If the tree issear
hed breadth-�rst then all nodes to a 
ertain depth are expanded in paralleland the remaining 
hildren are then sear
hed in parallel. If the tree is sear
heddepth-�rst then all nodes on the left side of the tree are expanded to a 
ertaindepth and the left 
hild at the spe
i�ed depth is sear
hed sequentially. On
e aleft 
hild 
ompletes its 
omputation, the sibling nodes are pro
essed in parallel.Figure 2 shows the order in whi
h nodes are pro
essed for both breadth-�rst anddepth-�rst parallel sear
hes. Another possible traversal is best-�rst. However we



add parameters and parameter values to CO2P3S on a need-only basis and wedo not yet have an appli
ation that needs this traversal. We take this approa
hto prevent the generation of an overly general framework or the unne
essaryexplosion of parameter 
ombinations.The Sear
h-Tree pattern has one performan
e parameter, early termination.This parameter allows for the termination of the sear
h to o

ur before all nodeshave been sear
hed, su
h as when an appli
ation wants to terminate after �ndingone solution as opposed to all solutions.The Sear
h-Tree pattern introdu
ed a new parameter type to the CO2P3Ssystem 
alled a veri�
ation parameter. In the Sear
h-Tree pattern, the veri�-
ation parameter veri�es that the user's done() method is valid. The done()method is a hook method in whi
h the user indi
ates when a node has 
ompletedits 
omputation. If the user states that a node is still waiting for the 
ompletionof its 
hildren, but the framework 
an dete
t that in fa
t all 
hildren have �n-ished, then this indi
ates a fault in the user's 
ode and an ex
eption is thrown.This does not prevent the user from spe
ifying the done() method to allow asub-tree traversal to halt before all of the node's 
hildren have been pro
essed.It simply prevents the waiting for more 
hild nodes to be pro
essed when theyhave all been pro
essed.4.2 Pattern Hook MethodsThe parallel pattern framework generated by CO2P3S for the Sear
h-Tree pat-tern 
ontains �ve hook methods into whi
h the user inserts their sequential 
ode.Depending on the parameter settings, two additional framework methods maybe generated whi
h the user 
an make use of in their 
ode. This is demonstratedin Se
tion 4.4. Only a des
ription of these methods is given here; how the hookmethods are used in the Sear
h-Tree framework is deferred until Se
tion 4.3.The generated methods are:divideOrConquer() This hook method indi
ates whether to generate a node's
hildren (i.e. 
all divide()), whi
h will then be pro
essed in parallel or topro
eed with the sequential 
omputation of the node (i.e. 
all 
onquer()).divide() This hook method generates a node's 
hildren.
onquer() This hook method performs the sequential 
omputation of a node.updateState(TreeNode 
hild) This hook method allows a node to update itsstate based on information whi
h may be extra
ted from the 
hild. Whenea
h 
hild has 
ompleted its 
omputation, it sends this message to its parentwith itself as an argument.done() This hook method spe
i�es when a node is 
onsidered to be �nished,su
h as when all 
hildren have updated their parent or when a 
hild node�nds a solution.4.3 Implementation of the Sear
h-Tree PatternThe Sear
h-Tree Pattern uses a work queue model for managing the nodes ofthe tree. When a node is divided, its 
hildren are pla
ed on the queue and a



�xed number of threads are fed work from that queue. Computation of a nodeis a

omplished via the pro
ess() method shown in Figure 3. In the 
ase ofa depth-�rst traversal, a se
ond queue (a pending queue) is used to hold thesiblings of a left 
hild until it has been pro
essed. For a depth-�rst sear
h, whenthe 
hildren are returned from divide() the �rst node in the array is assumed tobe the left 
hild and is pla
ed immediately into the work queue. The remaining
hildren are marked to indi
ate that they are dependent on the left 
hild nodeand pla
ed onto the pending queue. When a node has 
ompleted pro
essing, thepending queue is sear
hed for all nodes whi
h depend on the 
ompleted node,and if any are found they are pla
ed onto the work queue. On
e a node has
ompleted pro
essing, all the 
hildren of the node are marked as invalid in 
asethere was an early termination 
ondition and there were still nodes in the workqueue to be pro
essed. Pro
essing of an invalid node returns immediately asshown in Figure 3.Note that while there are many tools whi
h 
ould produ
e 
ode like thatshown in Figure 3, CO2P3S uses generative design patterns so that only theportions of the 
ode relevant to the sele
ted traversal method and other param-eter settings would be generated. On
e a traversal method has been sele
ted,the other portions would not be generated, in
luding the test for traversal type.This is a simple example of how generative design patterns 
an improve theperforman
e of framework 
ode via 
ustom 
ode generation.The veri�
ation of the done() method is a

omplished in the following man-ner. When divide() returns the 
hildren of a node, the 
hildren are all pla
edin a separate list, used for keeping tra
k of whi
h 
hildren have �nished. As ea
h
hild �nishes and updates their parent, the respe
tive 
hild node is removedfrom the list. Every time that done() returns false, the list is 
he
ked to seethat it is non-empty. If the list is ever empty (i.e. verifyDone() returns true)when done() returns false, then an error has o

urred sin
e there are no more
hildren that require pro
essing and the 
urrent node must be �nished. Figure 4shows how updates are propagated up the tree and node 
ompletion is veri�ed.The user of the Sear
h-Tree pattern is never aware of the above details.They are all internal to the generated framework, and the only view that thepattern user has is that of the appli
ation-spe
i�
 hook methods. From thepattern user's perspe
tive they sele
t a set of parameter values, have CO2P3Sgenerate the 
ustomized parallel framework 
ode, and implement the ne
essaryhook methods.4.4 Implementation of IDA* Sear
hThis se
tion provides an example of how CO2P3S is used to generate a parallelprogram from a sequential program. Spe
i�
ally, the IDA* sear
h used in theFifteen Puzzle [9℄ is implemented using the Sear
h-Tree pattern.For this problem, we would like to perform an IDA* sear
h in parallel on mul-tiple bran
hes of the tree. Therefore the traversal parameter is set to breadth-�rst. Note that from the CO2P3S perspe
tive this is a breadth-�rst sear
h,but that the subtrees whi
h are sear
hed sequentially ea
h perform depth-�rst



sear
hes. As soon as a solution is found the sear
h should terminate, so the earlytermination parameter is set to true. Figure 5 shows the parameterization ofthe Sear
h-Tree pattern for the Fifteen Puzzle appli
ation.The implementation of the divideOrConquer() hook method returns trueif the depth of the node is less than a spe
i�ed value to indi
ate that the nodeshould be \divided." Otherwise, false is returned to indi
ate that the nodeshould be pro
essed sequentially. The divide() method 
reates new nodes forea
h possible move from a given position. The 
onquer() method is a wrappermethod for the re
ursive traversal method from the sequential appli
ation. If theearly termination parameter is set, then two framework methods are providedto the user: 
anContinue() and terminateAll(). A 
all to 
anContinue() isadded to the sequential method so that the pro
essing of the node will stop ifanother node indi
ates that the goal was found by 
alling the terminateAll()method. A node is 
onsidered done when it has re
eived updates from all ofits 
hildren. For this appli
ation, a 
ounter is kept of the number of messagesre
eived and the done()method returns true when the 
ounter equals the num-ber of 
hildren. Finally, the update() method 
olle
ts the nodes in the upperportion of the tree whi
h are on the path toward the goal state.In this appli
ation, all of the 125 lines were reused from the sequential appli-
ation due to the wrapping of the sequential traversal method in the 
onquer()hook method. As only a minor 
hange was needed in the driver program, thattoo was almost entirely reused. Only 47 new lines of 
ode were ne
essary to
onvert the sequential program into a parallel program.5 Con
lusionsWhile parallel programs are known to improve the performan
e of 
omputationally-intensive appli
ations, they are also known to be 
hallenging to write. Parallelprogramming tools, su
h as CO2P3S, provide a way to alleviate this diÆ
ulty.The CO2P3S system is a relatively new addition to a 
olle
tion of su
h tools andbefore it 
an gain wide user a

eptan
e there needs to be a 
on�den
e that thetool 
an provide the assistan
e ne
essary. To this end, the utility of the CO2P3Ssystem was tested by implementing the Cowi
han Problem Set. This requiredthe addition of a two new patterns to CO2P3S, the Wavefront pattern and theSear
h-Tree pattern. The addition of these patterns highlight the extensibilityof CO2P3S; an important 
ontribution to a system's utility.Parallel 
omputing must eventually move away from MPI and OpenMP.High-level abstra
tions have been resear
hed for years. The most serious obsta-
les - performan
e, utility, and extensibility, are all addressed by CO2P3S. An-other way in whi
h the utility of CO2P3S is demonstrated is by the MetaCO2P3Stool, whi
h produ
es XML des
ription of the patterns so that patterns may bemade available to all for use in other tools through a pattern repository.



this.wavefront = new Skyline(this.height,this.width,threads,this,this);(a) Use of shared-memory 
ode.tryfthis.wavefront = new Skyline(this.height,this.width,threads,this,this);g
at
h (java.rmi.RemoteEx
eption re) fre.printSta
kTra
e();g (b) Use of distributed-memory 
ode.Fig. 1. Example of the minor 
ode di�eren
e between using shared-memory anddistributed-memory framework 
ode in an appli
ation.



1

2 2 2

3 3 3 3 3 3 3 3 3(a) Breadth-�rst traversal.
1

2

3

5 5

4 4(b) Depth-�rst traversal.Fig. 2. Tree traversals in the Sear
h-Tree pattern. Nodes with the same value arepro
essed in parallel.
if(node is invalid) returnif(divideOrConquer())
hildren = divide()// This 
ode will only appear if the// breadth-first parameter setting is sele
ted.if(breadth-first traversal)forea
h 
hildadd 
hild to work queue// This 
ode will only appear if the// depth-first parameter setting is sele
ted.if(depth-first traversal)mark first 
hild as left 
hildadd left 
hild to queueforea
h remaining 
hildadd to pending queueelse
onquer()update parentFig. 3. Pseudo-
ode of the pro
ess() method.



update stateremove 
hild from validation list// This 
ode will only appear if the// depth-first parameter setting is sele
ted.if(depth-first traversal)add nodes to work queue nodes from thepending queue whi
h are now readyif(done())invalidate all 
hildrenupdate parentelse if(verifyDone())throw ex
eptionFig. 4. Pseudo-
ode of the update() method.

Fig. 5. The parameterization of the Fifteen Puzzle in CO2P3S.



Referen
es1. John Anvik, Steve Ma
Donald, Duane Szafron, Jonathan S
hae�er, Steve Brom-ling, and Kai Tan. Generating parallel programs from the wavefront design pattern.Pro
eedings of the 7th International Workshop on High-Level Parallel ProgrammingModels and Supportive Environments, April 2002. On CD.2. John K. Anvik. Asserting the utility of COPS using the Cowi
han Problems.Master's thesis, Department of Computing S
ien
e, University of Alberta, 2002.3. Steve Bromling. Meta-programming with parallel design patterns. Master's thesis,Department of Computing S
ien
e, University of Alberta, 2002.4. Steve Bromling, Steve Ma
Donald, John Anvik, Jonathan S
hae�er, DuaneSzafron, and Kai Tan. Pattern-based parallel programming. Pro
eedings of the2002 International Conferen
e on Parallel Pro
essing, August 2002.5. Murry Cole. Algorithmi
 Skeletons: A Stru
tured Approa
h to the Management ofParallel Computations. MIT Press, 1988.6. Eri
h Gamma, Ri
hard Helm, Ralph Johnson, and John Vlissides. Design Patterns:Elements of Reusable Obje
t-Oriented Software. Addison-Wesley, 1995.7. Dhrubajyoti Goswami, Ajit Singh, and Bruno R. Priess. Ar
hite
tural skeletons:The re-usable building-blo
ks for parallel appli
ations. In Pro
eedings of the 1999International Conferen
e on Parallel and Distributed Pro
essing Te
hniques andAppl
iations (PDPTA'99), pages 1250{1256, 1999.8. Steve Ma
Donald. From Patterns to Frameworks to Parallel Programs. PhD thesis,Department of Computing S
ien
e, University of Alberta, 2001.9. Stuart Russell and Peter Norvig. Arti�
ial Intelligen
e: A Modern Approa
h, 
hap-ter 5. Prenti
e Hall, 1995.10. Jonathan S
hae�er, Duane Szafron, Greg Lobe, and Ian Parsons. The Enterprisemodel for developing distributed appli
ations. IEEE Parallel and Distributed Te
h-nology, 1(3):85{96, 1993.11. Kai Tan. Supporting pattern-based parallel programming in a distributed-memoryenvironment. Master's thesis, Department of Computing S
ien
e, University ofAlberta, 2002.12. Gregory V. Wilson. Assessing the usability of parallel programming systems: TheCowi
han problems. In Pro
eedings of the IFIP Working Conferen
e on Program-ming Environments for Massively Parallel Distributed Systems, pages 183{193,April 1994.13. Gregory V. Wilson and Henri E. Bal. An empiri
al assessment of the usabilityof Or
a using the Cowi
han problems. IEEE Parallel and Distributed Te
hnology,4(3):36{44, 1996.


