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Abstract-Despite rapid growth in workstation and networking tech- 
nologies, the workstation environment continues to pose challenging 
problems to shared processing. In this paper, we present a computational 
model and system for the generation of distributed applications in such an 
environment. The well-known RPC model is modified by a novel concept 
known as template attachment. A computation consists of a network of 
sequential procedures which have been encapsulated in templates. A small 
selection of templates is available from which a distributed application 
with the desired communication behavior can be rapidly built. The system 
generates all the required low-level code for correct synchronization, 
communication, and scheduling. This results in a system that is easy to use 
and flexible, and can provide a programmer with the desired amount of 
control in using idle processing power over a network of workstations. The 
practical feasibility of the model has been demonstrated by implementing 
it for Unid-based workstation environments. 

Index Terms- Coarse grain concurrency, distributed computing, dis- 
tributed soflware engineering, network systems, parallel programming, 
parallel programming models, workstation environment. 

I. INTRODUCTION 
ORKSTATION environments have been in use for more W than a decade now. In an ever increasing number of 

research, industrial, and academic environments, the bulk of 
the computing is now done using personal workstations. Large 
time-sharing systems, however, continue to be used for jobs 
that require large amounts of processing time and therefore 
cannot achieve acceptable performance on a single worksta- 
tion. Although a network of workstations together represents a 
large amount of computing power (“the network is the super- 
computer”’), a single user often cannot utilize this power for his 
applications. 

Harnessing the computing power of a network of machines 
poses some interesting problems. First, the processors available 
to a distributed application and their capabilities may vary from 
one execution to another. Second, communication costs may be 
high in such an environment, restricting the types of parallelisms 
that can be effectively implemented. Third, users do not want 
to become experts in networking or low-level communication 
packages to utilize the potential parallelism. Unfortunately, there 
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network is the computer.” 

are few systems that are aimed at providing shared processing 
power in a workstation environment, while taking into account 
the constraints of the environment and the user [17], [26]. 

In this paper, we describe the Frameworks system for writing 
applications to run in a distributed environment. This system has 
several important features. 

1) Programs are written as sequential procedures enclosed in 
templates. The templates hide all the distributed comput- 
ing implementation details, such as communication and 
synchronization. The code can be compiled to run in a 
sequential environment or in a distributed environment with 
only minor changes (if any) on the user’s part. 

2 )  The procedures themselves contain only a small amount of 
information as to how they interact with the rest of the sys- 
tem. Most of it is specified separately via templates. Such 
a decoupling of specifications results in an environment 
where applications can be readily adapted to the number 
of processors available. 

3) A graphical interface facilitates the interactive construction 
of a distributed application and the specification of proces- 
sor allocation constraints. The same interface is also used 
for querying or modifying these specifications. 

4) Contractor templates provide a novel method for dis- 
tributing work in environments with changing resources. 
Contractors dynamically contract out work to employee 
processes. They adapt to the changing constraints of the 
environment. 

5 )  A user can exercise a wide range of control over the 
mapping of processes to processors. Using a high-level 
notation, the user can specify the processor assignments 
completely, partially, or leave it entirely up to the envi- 
ronment. 

6) Frameworks provides global system monitoring to achieve 
load balancing, detecting when workstations fall idle or be- 
come heavily loaded, and monitors the system performance 
for the user. 

Frameworks programs are written with the aid of a preproces- 
sor for the C programming language. The user writes sequential 
C code and encapsulates it in templates, and the system translates 
this into an executable module that runs in the Frameworks 
environment. Processes run in the background, taking advantage 
of idle machines when available and recognizing when machines 
become heavily loaded. In this way, we can keep the user 
community happy, while having applications profitably using 
machines that would otherwise be idle. 

The rest of the paper is organized as follows. The concept of 
modules (Section 11) and templates (Section 111) describes what 
the user needs to know to write a Frameworks application. 
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Section IV contains examples illustrating how to program using 
modules and templates. A specialized extension of the contrac- 
tor template is described in Section V. The complete process 
of developing distributed applications as well as the software 
architecture of Frameworks are discussed in Section VI. Some 
performance results are presented in Section VII. Section VI11 
compares our system to work done by others. Finally, Section IX 
presents some concluding remarks. 

11. MODULES 

We assume an environment where workstations are connected 
over a local area network and run under a distributed or 
network operating system that provides a basic message 
passing mechanism [8], [21], [27], [37]. The overall orga- 
nization of a distributed program in Frameworks has striking 
similarities with the organization of a sequential program. 
Therefore, an application can be quickly altered to run in 
a sequential or distributed environment. At the macroscopic 
level, Frameworks looks similar to several other systems that 
use system calls for process communication. However, the 
semantics, implementation, and user interface of Frameworks 
differ significantly from other work (as described in Sections VI 
and VIII), yielding a system that is easy to use and requires little 
knowledge of distributed computing. 

Briefly, an application consists of communicating processes. 
The programmer views each process as a sequential module 
or procedure. Parallelism is achieved using the simple call 
statement, which the programmer treats as a procedure call. All 
communication and synchronization is removed from the user’s 
responsibility. Templates are used to encapsulate sequential code 
and indicate how the process is to interface to other parallel 
processes. From these templates, all commonly occurring forms 
of distributed process graphs, such as pipelines or master/slave 
relationships, can be constructed. In essence, the system provides 
a few simple building blocks, from which systems can be built 
quickly and reliably. 

A complete application consists of modules that communicate 
with each other via remote procedure calls (51. No common 
variables among modules are allowed. Each module contains a 
single entry procedure that can be called from other modules. In 
addition, a module can have one or more local procedures that 
can only be called from within the module. Each application has 
one main module that contains the main procedure in addition 
to its optional entry procedure and local procedures. The main 
module initiates the execution of the application. In many ways, 
this is analogous to programming with abstract data types, which 
provide well-defined means for manipulating data structures 
while hiding all the underlying implementation details from the 
user. 

Frameworks augments a programming language (C in our 
case) with the call statement, which has the same semantics 
as a procedure call, but is translated by the system into com- 
munication with another process. An arbitrary module X can 
communicate with a module Y by the simple 

call Y (input); 

with input being the set of input parameters. X and Y are the 
names of modules specified by the programmer at compile- 
time. With no return value expected, the semantics of such a 
call are that Y is invoked asynchronously, without X waiting 
for its completion (nonblocking communication). Synchronous 

communication is possible using the blocking version of call 

output = call Y(input); 

where output is the return value(s) from Y. In this case, the calling 
routine X is suspended until the reply (output) from Y is received. 
The called routine replies by executing an explicit 

reply(output); 

statement. 
The input and output of modules are in the form of structured 

messages called frames. A frame is similar to a Pascal record 
or C structure except that pointer type variables are not allowed. 
For every module, the programmer declares an input frame (a 
structure containing all the input parameters needed for a call)  
and, if necessary, an output frame (containing all the reply or 
output values returned). 

111. TEMPLATES 
Most of the information regarding a module’s interaction 

with other modules is added through a separate set of attribute 
bindings known as template attachments. A template represents 
a prepackaged set of characteristics which can be used for 
partially specifying the scheduling/synchronization structure for 
a sequential module. Depending upon his needs, a user selects 
a set of appropriate templates that completely describes the 
behavior of a module in the application. Every module needs up 
to three templates to fully describe its behavior in a concurrent 
environment (input, output, and body templates). As described 
below, an input template is responsible for correct scheduling 
and synchronization of incoming messages. Similarly, an output 
template deals with the scheduling and synchronization of calls 
originating from the given module to other modules. The use 
of a body template is optional. It is used to assign additional 
characteristics to a module that modify the module’s execution 
behavior in the distributed environment. 

Templates are used to describe the interaction of a module 
with other modules. Essentially, most distributed programs take 
advantage of several frequently occurring communication StNC- 
tures, such as pipelines, or master/slave relationships (71, [24]. 
After the user specifies which template(s) apply to their module, 
Frameworks inserts the necessary code to set up the desired 
relationship. For example, if a user wants to set up a pipeline 
of processes, then they need only specify that each process gets 
its input from a pipeline, and that its output goes to a pipeline. 
As shown in Fig. 1, the source code in a user’s module is 

extended by several layers of code generated by the Frameworks 
system to allow proper communication, synchronization, and 
scheduling. In addition to the code for the templates, there are two 
other layers of code that are required for the low-level communi- 
cation package used (similar to [5]). The data layer is concerned 
with producing code necessary for sending and receiving frames 
in the form acceptable to low-level communication routines. The 
communication layer is concerned with the selection and routing 
of messages to the appropriate instance of a process when there 
are multiple executing copies of the called module. To distinguish 
the original code in a module from its augmented version, the 
latter is referred to as a process. 

Currently three types of templates are supported. Fig. 2(a) 
gives the icons for these templates as used by the graphical 
interface. The templates are: 

1) initial: Initial templates allow no input from other pro- 
cesses. Since such a process cannot be called by any other 
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Fig. 1. Transformation of user module in process code. 

process, only the main module of the application may use 
this template. For example, an application where the main 
module does not have an entry procedure would require an 
initial template. 
in-pipeline: A process with an in- pipeline input template 
can act as a server to any of its input processes, with calls 
from processes accepted in an FCFS manner. For example, 
this template would be used to specify the input interface 
for a process that is part of a pipeline. 
assimilator: The assimilator template states that a process 
must have one input frame from each of its input processes 
before it starts processing any of its input frames. This 
template becomes handy if, for example, a process is 
to merge the outputs of several processes. To keep the 
semantics simple, an assimilator can only be called in a 
nonblocking mode. 

There are three types of output templates [Fig. 2(b)]: 
out-pipeline: This template allows for the output of a 
process to flow in a pipeline fashion to any process 
connected to its output. 
manager template: Often some processes require more 
processing time than others and, to keep them in step 
with other parts of the application, a user may want 
multiple instances of the same process running. The man- 
ager template is concerned with the management and 
scheduling of multiple instances of the same module. The 
calling module is unaware of the existence of multiple 
instances of the called module. The manager will select 
the currently available instance for placing its call. For 
example, managers can be used to achieve master-slave 
relationships. 
terminal template: This is simply a special case of the 
out- pipeline template. A process with terminal type output 
template does not call any other process. 

Together, input and output templates provide several ways of 
structuring the interface of a module in a distributed environment. 
To illustrate the expansion of a user module, consider the module 
X in Example 1 of Fig. 2(d). Here, the input and output of 
module X have been structured as in- pipeline and out- pipeline, 
respectively. Fig. 3(a) shows a FrameWorks module that is part 
of a pipeline, and the pseudocode it is translated into is shown 
in Fig. 3(b). It should be noted how little programming was 
required in Fig. 3(a) to achieve Fig. 3(b). Of course, the savings 
are much more significant for more complicated structures such 

- Q R  P Q  R S  

Pipeline Ass i m i I at oi  Initial 

(a) 

Terminal Pip e I i n e Manager 

( b) 

1 1 

Executive Contractor Example 1. Example 2. 

(c) ( 4  
Fig. 2. Representation and use of templates. (a) Input templates. (b) Output 

templates. (c) Body templates. (d) Examples. 

as managers or contractors (described below). 
Body templates [Fig. 2(c)] provide further choice for specify- 

ing the behavior of a module. There are currently two choices 
for the body template. An executive template is meant to serve 
as a user interface to the application and hence only the main 
module of an application is allowed to use it. The executive 
template causes the process to have its input, output, and error 
streams directed to the user's terminal. Otherwise, these streams 
are directed to files whose names are based on the names of the 
module and the application [35]. If there is no executive type 
process in an application, then the complete application can be 
run in the background without any user intervention. 

The default in Frameworks is for a process to serve only 
one call at a time. A frequently occurring problem arises when 
some processes in an application require significantly more 
computation than others, perhaps creating a bottleneck. To solve 
this, one might try partitioning the work done by such a process 
by breaking it into smaller modules, or try using a manager 
template that distributes the work done by the process. However, 
each of these structures is defined at design time and uses a fixed 
number of processors. To increase flexibility at execution time in 
using idle processors and relieving the designer from specifying 
the exact number of processors required by such processes, the 
model provides a body template type called contractor. When 
a module's body is declared as a contractor, it means that the 
process gets its work done by employee processes. A module 
with a contractor body template is repeatedly and asynchro- 
nously called by its input nodes. Depending upon the number 
of available processors and the processor time requirements of 
the module, a contractor hires a dynamically varying number of 
employees to get the job done. The designer of the application 
does not take any part in the hiring and firing of employees; 
one simply specifies that the given module should function as a 
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----------______________________________----------------------------------- 
/ *  The code in the user module does not have any information regarding */  

interface-routine( input-frame ) 
I 

/ *  the type of templates that are used to encapsulate it. */  

... 
routine code 

output = call Y( input ) ;  
... 
... 

1 

local-procedures ... / *  local procedures may issue remote calls as well */ ---------_______________________________---------------------------------- 
(a) 

________________________________________--------------------------------- 
/ *  The expansion of user module as shown below is based on the */  

*/  
* /  

/ *  assumption that the module is assigned in-pipeline, outgipeline, 
/ *  input and output templates respectively. No body template is used. 

in-pipeline 0 
I 

while( true ) { 
who = CheckMessage 0 ; 
if( who == A VALID CLIENT { 

Receivei[jessage( who, input );  
interface-routine( input 1; 

ReceiveMessage( who, message ) ;  
if( message == REQUEST-FOR-STATUS ) 

SendMessage ( MONITOR, status ) ; 
else if( message == TERMINATION-NOTICE ) { 

CloseBooks 0 ; 
Terminate ( 1  ; 

1 
else if( who == FW MONITOR ) { 

1 
else if { 

/ *  some other actions (not included) */ 
I 
else ErrorHandler 0 ; 

1 
else ErrorHandler 0 ; 

interface-routine(input1 
i ... ... 

routine code 

/ *  expansion of "output=call Y ( input ) " for out-pipeline 
/ *  output template. 
CheckValidserver( Y 1; 
status = WaitForStatus ( Y ; 
if (status != IDLE) 

SendMessage( Y, input, REPLY-MODE 1; 
ReceiveMessage ( Y, output ) ; 
/ *  end of expansion * /  

... 

ErrorHandlerO; 

* /  
* /  

.. 

contractor. The actual process of hiring employee processes is 
managed by the run-time environment and is transparent to the 
designer. 

Both contractors and managers provide a means of running 
multiple instances of a process. In each case, replicated instances 
of a process compute independently without interacting with each 
other. Also, for the correctness of a computation, it is necessary 
that such processes do not contain any state information within 
themselves. Contractors hire and fire employees dynamically at 
execution time depending upon the workload. Managers provide 
a restricted form of the services provided by a contractor. 

However, since a manager executes only a fixed number of 
processes, its execution time overheads are lower than those 
of a contractor. Example 2 of Fig. 2(d) shows the revised 
representation of the process Y in Example 1, after it is declared 
to function as a contractor. This is done without any change in 
the source code of the modules. 

The user is provided with a graphical user interface that is 
used to specify the template attachments to the modules, inter- 
connection between modules, processor allocation preferences for 
the modules, etc. The interface between modules is checked for 
consistency. For example, a process cannot call another process 
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whose input is an initial input template. The system also checks 
that frames match between communicating modules. 

IV. AN EXAMPLE OF A DISTRIBUTED ANIMATION SYSTEM 
To illustrate our model, this section describes an application for 

distributed animation that has been implemented using Frame- 
Works [ 161. Computer animation involves creating a sequence 
of graphical images that, when shown in rapid succession, create 
the illusion of motion. The calculations required to produce these 
images are compute intensive and require a high volume of data. 
In the case of video, 30 images per second are required, each 
image having a resolution of at least 512 x 512 pixels and each 
pixel representing 8 to 24 bits of information. Determining the 
value of a pixel may require hundreds of floating point operations. 
Performance results related to the generation of a specific image 
sequence using several different configurations of this system 
are described in Section VII. 

The complete system consists of about 2500 lines of code 
in our extended C language and is divided into three modules: 
Model, PolyConv, and Split. The overall structure of these mod- 
ules, along with the frames used by them for communication, 
are shown in the Appendix. Fig. 4(a) shows one possible in- 
terconnection of these modules using templates, prepared using 
the Frameworks system’s graphic interface called Module-Crafr. 
(More on Module-Crafr will be presented in Section VI where 
we describe the implementation of the complete FrameWorks 
system.) The code in Model depends on the subject(s) of anima- 
tion. It computes the location and motion of each object in the 
image and stores the results in a file on the distributed file system. 
Completion of this computation is communicated to PolyConv by 
issuing a nonblocking call. After this, Model continues with the 
computation of the next image in the animation sequence. At the 
same time, PolyConv reads the data from the disk and performs 
some data format transformations followed by viewing trans- 
formation, projection, sorting, and back-face removal. PolyConv 
passes the data in the image along with the image’s sequence 
number to the Split module through a nonblocking call. PolyConv 
then waits to serve the next incoming call. The Split process 
performs hidden surface removal (using the z-buffer algorithm) 
and anti-aliasing. Finally, the rendered image is stored on a disk 
file. 

Most of the computation done by the application comes from 
the Split module. In fact, it is the computational bottleneck 
for the complete system. The effect of this bottleneck can be 
reduced significantly by assigning a contractor body template to 
the Split module [Fig. 4(b)]. By doing so, several input images 
from PolyConv are processed concurrently by Split. To do this, 
Split dynamically hires a varying number of processors, each of 
which is assigned a single image for processing. Now, suppose 
we want to find out whether speeding up computations in the 
PolyConv module will speed up the application. Once again, 
this can be done by assigning a contractor body template to the 
PolyConv module [Fig. 4(c)]. With this configuration, PolyConv 
processes several input frames from Model concurrently, whereas 
Split processes several input frames from PolyConv concurrently. 
However, as shown by the performance results presented in 
Section VII, attaching a contractor template to PolyConv does 
not speed up the overall computation by a significant amount. 
Therefore, we revert back to the configuration in Fig. 4(b), by 
simply detaching the contractor template from the PolyConv 
module. The speed of the overall computation now depends on 
how fast Model and PolyConv can supply input data to Split. 

Finally, suppose we want to ascertain how the performance of 
the complete application scales as the number of processors 
employed by the Split module is varied. This can be done by 
modifying the configuration of Fig. 4(a) to the one shown in 
Fig. 4(d). Here, the output of PolyConv has a manager template 
and during each execution, a fixed number of Split processes 
are specified to be run under it. Sample performance results, 
for all the four configurations described here, are discussed in 
Section VII. 

Our simple example here serves to illustrate several important 
features of Frameworks. First, the complete application can be 
converted to run in a sequential environment by changing only 
two call statements in the whole source code.’ This means 
that development and debugging can be done in the more 
familiar sequential environment and, once a correct solution is 
achieved, it can be quickly modified to run in a distributed 
environment. The initial version of the animation system was 
developed as a sequential application without any knowledge of 
the Frameworks system. However, it was possible to convert 
it into a Frameworks’ form with a negligible amount of extra 
effort. Second, the performance of the time consuming Split 
module scales automatically. The user simply declares Split as 
a contractor and as many processors as are available are used 
to speed up the computation. Third, the load balancing in Split 
is done dynamically. If there are idle employee processes, they 
are released. If work is coming in at a faster rate, then more 
employees can be hired. Fourth, unnecessary context switching 
is absent. A new employee process is created only if a new 
(idle) processor is available. Finally, it should be noted that the 
configurations of the animation system in Fig. 4(a), (b), (c), and 
(d) have all been created by simply altering a graphic diagram, 
without making any modification to the code in the modules. 

V. DYNAMIC TASK SCHEDULING WITHIN CONTRACTOR TEMPLATES 
There is a large class of problems where the program structures 

are simple yet they require an enormous amount of computing. 
Often, in such programs, the strategy is to break the original 
problem down into several small independent subproblems. Each 
of these subproblems can be assigned to a different process 
and the results received from these processes can be combined 
to form a solution to the original problem. Sometimes, the 
number of subproblems and their sizes can be determined at 
program design time. The contractor or manager templates as 
described in Section 111 can be easily used for such situations. 
Often, however, the problem cannot be divided into independent 
subproblems of equal size at program design time [3], [14], [23], 
[29]. Rather, the creation and synchronization of subproblems 
proceeds recursively and dynamically, and these subproblems can 
be of widely uneven sizes. Although the contractor or manager 
templates can be used in such cases as well, inefficiencies result 
because there could be some processors that are idle, whereas 
the rest of the solution process cannot proceed until the results 
of some child processes become available (Fig. 5). Instances of 
such problems are quite commonly found in problems that use 
divide and conquer, depth first search, breadth first search, or 
branch and bound strategies. 

To efficiently handle the scheduling of dynamically evolving 
medium-grained tasks, Frameworks provides two more language 

3Such a conversion process can be automated for a large class of applica- 
tions where the network graph is acyclic, and each module of the application 
is history insensitive, i.e., the computation done by each module depends only 
upon the input to that module and not on the previous inputs processed by 
the module. 
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Polycom 0 
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Fig. 4. (a) A pipeline structure of the animation system. (b) Split module assigned contractor template. 

constructs that can be used within a module enclosed in a 
contractor body template. The call 

frame. The mode of call can be either blocking or nonblocking. 
In the case of a blocking split- j ob  call, execution in the calling 
process is blocked until a new processor is available. The call 
returns a positive integer in job-id that serves as the identification 
number for the newly started subproblem. In the nonblocking 
mode, the call returns immediately. If an idle processor is found, 
the call returns a valid job identification number. Otherwise, a 

job-id = split- job(job-frame, mode); 

causes creation of a new employee process. The structure of the 
job-frame is the same as the structure of the module's input 
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Fig. 4. (Continued) (c) PolyConv and Split assigned contractor templates. (d) PolyConv used as a manager of Split processes. 

negative number is returned and no new process is started. This 
allows an employee process to take advantage of any other cur- 
rently idle employee in a dynamically expanding and shrinking 
pool of employees. To receive the results from processes started 
via split- job calls, another Frameworks call merge- job is used. 
The call 

result = merge- job(rep-frame, job-id, mode); 

returns immediately if the nonblocking mode is used. In this 
case, the call returns 0 if the subproblem given by job-id has 
been completed, and -1 otherwise. If the subproblem has been 
completed, the reply frame is returned in rep-frame. In the 
case of blocking mode, the calling process is blocked until the 
specified subproblem is completed, after which the call returns 
with the reply frame being placed in rep-frame. 
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Fig. 5 .  Recursive splitting of a task. 

The split-job and merge-job calls provide a powerful and 
flexible method for creation and control of hierarchical threads 
of execution and efficient dynamic scheduling of available pro- 
cessors. Using these calls, the employee processes of a contractor 
module can further subdivide their work without worrying about 
complicated processor management in the workstation environ- 
ment. The split-job call provides a means by which a new 
process is not started until an idle processor is found. In such a 
situation, the calling process has the option of trying the split- job  
call later, or doing the job by itself. Although, the split-job 
and merge- job calls appear similar to other known methods of 
starting a new thread of execution, such as fork/join statements 
and methods based on spawning a new process [lo], [ l l ] ,  there 
are some significant differences. In these other methods, a new 
process is started whether or not an idle processor is available. 
In our case, each processor runs a single process and a new 
process is added only when an idle processor is available. 
This has several positive implications. It eliminates logically 
pointless and expensive context switching, and avoids clogging of 
systems’ job queues with jobs waiting for processor time. Also, 
these calls provide greater flexibility in using idle processors 
at execution time. The number of processes created can be 
adjusted according to the computational requirements of the 
application as well as the available processors. Allowing the idle 
processors to help out the more busy ones significantly reduces 
synchronization costs in the types of computations mentioned 
earlier. However, the most significant difference between these 
methods and the scheme based on split- job  and merge- j o b  is the 
ease of programming applications that require dynamic creation 
and control of hierarchical threads of execution. As an example, 
the parallel chess playing program ParaPhoenix [29] performs dy- 
namic splitting of tasks for implementing distributed alpha-beta 
search. It conducts a variable depth distributed game tree search 
using workstations on a local area network via a carefully hand- 
crafted implementation. The implementation took several man 
months of effort to obtain a relatively error-free program. The 
same functionality can be derived in a rather straightforward 
manner through the use of split-job and merge- j o b  commands. 

VI. FRAMEWORKS SYSTEM 
The FrameWorks system has been implemented at the Depart- 

ment of Computing Science, University of Alberta. Our general 
computing environment consists of over 50 Sun workstations 
connected via Ethernet cables. In addition, there are 4 VAX 
11/780’s, two MIPS m/1000 machines, and several other kinds 
of special purpose workstations. Most of the workstations are 
situated in various laboratories and the rest are located in 

individual offices. Although one of the goals of Frameworks 
is to allow the user to use processors with different architectures, 
in the current implementation only a homogeneous set of Unix 
machines can be used within a single application. Frameworks 
has been implemented mostly using tools developed in our 
department. For the distributed computing aspects, the Network 
Multiprocessor Package (NMP) is used [22]. NMP is built using 
sockets [21] and it provides a library of high-level routines to 
support remote process initiation and message passing among 
processes. The visual interface is implemented for color as well 
as monochrome monitors using locally developed user interface 
management tools called, Diction, Chisel, and Vu [31], [32]. The 
following subsections briefly describe the implementation and 
functionality of Frameworks, as well as the process of developing 
distributed applications using the system. 

A .  Developing Applications Using Frameworks 

The complete process of generating a distributed application is 
split over two phases as shown in Fig. 6. The first phase consists 
of input from the user. Two types of input are required. First, a 
user prepares source code modules as shown in the Appendix. 
These modules, called FW modules, are written in an extended 
version of the C language that allows call, reply, split- job, and 
merge- job  statements. The second type of input consists of the 
assignment of templates to each module, specification of their 
interconnection, and the names of the input and reply frame(s) 
for each module. The interactive graphical editor Module-Craft 
is used for this purpose. Sample Module-Craft screen layouts are 
shown in Fig. 4. Using the command and item menus of Mod- 
ule-Craft, a user prepares and edits application specifications as 
shown in the previous sections. Module-Craft is also responsible 
for checking compatibility and other semantic constraints in the 
preparation of the communication diagram. 

Allocation constraints of a module can be specified using 
Module-Craft via its allocation command. The include and 
exclude options allow the specification of processors that may 
be selected or avoided in allocating the given process. These 
commands may be repeated. The special name free-pool denotes 
the available list of processors other than those specifically 
specified. The list of preferences is scanned strictly sequentially 
from top to bottom and, once a selection is made, the rest of the 
list is left unscanned. For example, let us assume the following 
sequence of preferences for a process X 

include sun001 sun005; 
exclude sunOl3; 
include free-pool; 

The allocator first attempts to allocate sun001 or sun005 if 
either is available. If not, then any processor except sun013 
is allocated. Processors are allocated in a depth-first manner 
starting from the main module. For a module that has not 
been assigned the contractor body template, the allocation of 
processors takes place just prior to initiating execution of the 
application. Therefore, depending upon availability of processors, 
during different executions, different processors may be selected. 
For a contractor module, the processors are selected for employee 
processes at execution time. These processors are again selected 
on the basis of allocation constraints. If the allocator cannot 
satisfy a user’s allocation requirements with the current status 
of processors, the allocation procedure is aborted and the user 
is given an appropriate error message. The user then has two 
options. He can modify his allocation constraints so that they 
can be satisfied with the currently available processors, or he can 
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retry the allocation procedure later when the processors required 
by him are available. This processor allocation scheme is simple 
yet quite powerful. For example, it can be used to limit the 
maximum number of employee processes that can be created 
at execution by a certain contractor process. 

The distributed design of the application, as specified through 
Module-Craft, is stored in a file called the distributed-design-file 
(DDF). In the second phase, a system component called the 
configurer prepares a detailed distributed design, called the 
configuration-file, for the application in which each process 
is given a logical node identification number. The information 
in the DDF, along with the application’s source modules, is 
processed by the Frameworks preprocessor (FW-PP). FW-PP 
generates all the code for the layers discussed in Section 111 
(Fig. 1) in order to transform a module into a process executable 
in the distributed environment. The output of FW-PP consists 
of C language modules. Executable modules are prepared by 
compiling these modules and linking them with the Frameworks 
run-time library. Allocation of processors is performed by the 
system component called the Allocator. The system component 
Butler maintains a database (called the machine-registry) of the 
status of available processors and their load averages (similar to 
[26]).  Allocator uses the information in the machine-registry to 
allocate processors to processes. Due to the lack of a process 
migration facility in the Unix operating system, processors are 
bound to processes for their entire lifetime. However, as de- 
scribed in the next section, Frameworks does provide a limited 
facility for adding or removing processors at execution time in 
the case of a contractor. 

An application runs in the presence of the Butler and an 
Execution-Time-Monitor (ETM) which provide execution time 
services required by an application (Fig. 7). The execution time 
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environment of Frameworks is described briefly in the next 
subsection. 

B. Execution Time Environment of Frame Works 

The Butler and ETM together manage the dynamic allocation 
and release of processors used by contractor processes. The 
contractor template is implemented as a closely related group 
of processes consisting of a coordinator and its employees. 
The implementation is quite different from the implementa- 
tion of threads in Mach [28] in the sense that coordinator or 
employees do not share address spaces. It is more similar to 
the “process-groups” of V [XI with the significant difference 
that the management of employee processes is transparent to 
the programmer, and is handled completely by the coordinator 
process. For every module which has been assigned a contractor 
body template, a separate coordinator process is started. This 
coordinator process is responsible for managing the employee 
processes. From the users’ point of view, an employee process 
represents an instance of the user module functioning as a server. 
The actual number of employee processes at any time during 
execution depends upon the allocation constraints specified by 
the user, the number of processors available on the network, and 
processing requests that arrive from client nodes. In addition to 
managing the number of employee processes, the coordinator is 
responsible for receiving input from the input nodes, sending this 
input to a selected employee, receiving the input back from the 
employee, and sending the output to output nodes. An employee 
repeatedly serves calls assigned to it by its coordinator process 
until it is ordered to terminate by the coordinator. Employee 
processes also use the coordinator for providing services required 
by the split-job and merge-job commands for dynamic task 
scheduling among themselves. Thus, in addition to providing 
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the complete functionality of a contractor template as described 
in Sections 111 and V, our implementation scheme avoids the 
inefficiency of starting a new process for each call and then 
terminating it after the call is served. 

Distributed applications often need a mechanism for detect- 
ing the termination condition of their processes. For example, 
researchers have studied the problem of termination for the CSP 
model 191, 1131. Termination of a Frameworks' application is the 
other important service provided by the ETM. The modules in a 
Frameworks application act as servers to modules connected to 
their inputs. Therefore, each module (except the one with initial 
input template), after finishing the processing of the current input 
data, waits for more input to arrive. The Execution-Time-Monitor 
checks for situations where some or all of the processes fall 
idle, and also will not receive any further input. Such processes 
are marked as ready for termination and are terminated by the 
ETM. Several different termination strategies for Frameworks 
applications have been investigated. These strategies and their 
relative merits are discussed in detail in 1341. 

In addition to the services mentioned above, ETM optionally 
can provide other services such as performance data collection 
for individual processes and deadlock detection at run time. The 
details of these services are given in [34] and are not described 
here. 

VII. EXPERIMENTAL RESULTS 
The FrameWorks system is being used in our department for a 

variety of applications. Among them are an implementation of a 
parallel chess program 1291, a distributed animation project [ 161, 
a distributed system for choosing subsets of pattern recognition 
properties from a given set 1251, a distributed version of the 
Make program 1121, and several smaller applications. In the 
following subsection, we present some application independent 
measurements taken with the Frameworks system. These exper- 
iments were performed on diskless Sun 3/50 workstations with 8 
megabytes of memory. These workstations share a Sun 31180 file 
server and a Sun 3/60 page server. The workstations run under the 
Sun OS 3.5 and communicate over 10 Mbps Ethernet interfaces. 
Some performance results for the animation system described in 
Section IV are also presented. These results are not meant to 
be comprehensive. Rather, they are presented to give an insight 

Q p  

( 1 1 )  g 
Fig. 8. (a) Experimental configurations for Fig. 9(a). (b) Experimental 

configurations for Fig. 9( b). 

into performance characteristics and overheads of Frame Works, 
as well as some indication of speedups that may be attained by 
using the system. 

A .  Application Independent Measurements 

Two different kinds of measurements based on configurations 
shown in Fig. 8(a) and (b) were taken. The results of these 
measurements are shown in Fig. 9(a) and (b), respectively. The 
first set of experiments were done to ascertain the cost of 
executing Frameworks' blocking and nonblocking call state- 
ments with varying message sizes. These results are based on 
a variety of configurations shown in Fig. 8(a). Although, for the 
sake of simplicity and brevity, not all possible combination of 
templates are used, all different types of templates are represented 
in these configurations. The time taken for 1000 calls was 
measured for each configuration. The results are shown in 
Fig. 9(a). Since assimilator and contractor templates are called 
only in a nonblocking mode, there are no curves showing results 
for blocking calls for configurations (ii) and (ivj. To provide a 
basis for comparison against some well-known standard, results 
for executing send and send-receive using bare sockets with the 
TCP protocols are also shown. 

There are several observations that can be made regarding the 
results shown in Fig. 9(a). First, the overhead of executing a 
call statement in the case of templates that are not concerned 
with the management of replicated instances of a user's module 
is small (approximately 10- 15%). However, templates which 
manage replications (contractors and managers) are about 4 to 10 
times more expensive. In each case, the overhead is due to two 
factors: the execution of extra code associated with templates, 
and the exchange of control messages for management purposes. 
It should be noted that although templates add overhead in terms 
of extra code and messages, a similar overhead will be there even 
if the user himself writes code to achieve similar functionality as 
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Fig. 9. (a) Call times for 1000 messages for configurations in Fig. 8(a). (b) Results for configurations in Fig. 8(b). 

provided by templates. Except in the case of expert users, this 
overhead is not likely to be smaller than overheads associated 
with Frameworks' templates. Therefore, although the overhead 
would exist whether the code is hand written or generated using 
templates, Frameworks simply provides an easy way to get quick 
and correct code. 

The second set of experiments was done to determine the be- 
havior of templates that manage replication, namely the contrac- 
tor and the manager. Configurations used for these experiments 
are shown in Fig. 8(b). In each case, the module P iteratively 
makes nonblocking calls to module Q. The module Q repeatedly 
computes floating point multiplications of two variables. The time 

taken in executing the module Q is controlled by the number 
of times this multiplication is done. This time represents the 
granularity of the work done by the replicated processes. 

These results are shown in Fig. 9(b), where the number of 
workstations is varied from one to ten. Two different grain sizes 
were used, each having 1000 calls by module P to module Q.  For 
the sake of comparison, the times taken when the same task is 
done sequentially are also shown. These results suggest that the 
overheads of a contractor are always higher than the overheads 
of a manager. Both contractor and manager perform well in cases 
where the amount of work done on each call is one second. When 
the work done on each call is reduced to 0.5 s, the contractor 
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does not do very well, but the manager still scales reasonably 
well. Although, the contractor's overheads are higher than those 
of manager's, in our opinion the advantages provided by the 
contractor template in an environment with changing processor 
resources justify its inclusion in our selection of templates. 

The results in Fig. 9(a) and (b) show the overhead costs and 
range of acceptable grain sizes for good performance. Coarse 
grain applications, where computation times of modules are of 
the order of a few seconds and often even a few minutes (refer to 
the application in the following subsection), are not rare. In such 
applications, the grain sizes are well within the good performance 
range for the contractor as well as the manager. Even the worst 
case communication cost [0.04 s per call for configuration (iv) 
in Fig. 9(a)] would be quite acceptable in such cases. 

B. The Animation System 

In this subsection, some performance data taken using the 
animation system described in Section IV are presented. The 
Model module in this case deals with animating the simple 
schooling behavior of fish in a tank. The modeling and motion 
is computed through a model that takes into account behavioral 
characteristics of the fish and the laws of physics. In addition 
,to the sequential version, all four distributed configurations 
discussed in Section IV were implemented. These configurations 
are shown together in Fig. 10. Fig. 11 shows the real time taken 
in computing 120 images. The variation of overall speedup 
with the total number of processors employed for configuration 
D is shown in Fig. 12, along with some of the data from 
Fig. 11. No additional speedup is gained when Model cannot 
supply input data faster than it can be processed by PolyConv 
or Split. The contractor processes in configurations B and C 
dynamically employ and release processors and therefore use 
an unspecified number of processors. In such cases, significantly 
better performance is observed during night times due to a larger 
number of lightly loaded or idle processors that are readily 
available for use. 

Although this example is a simple one and is expected to 
get good performance, these experiments demonstrate that it is 
possible to achieve a fair amount of speedup using Frameworks. 
The absolute value of the speedup is not important; given that our 
graphics group ran this program sequentially, any improvement 
in performance was welcome. That they achieved this with 
minimal programming effort was equally welcome. Distributed 
configurations, such as B, C,  and D, have fairly complicated 

Execution Time Speed-up 
Processors (In Minutes) Ratio 

Sequential Version One 
Configuration A Three 
Configuration B Varying Dynamically 4 2  
Configuration C Varying Dynamically 4 0  
Configuration D Five 3.3 

Fig. 11. Speedup achieved with various configurations. 

distributed structures operating behind them. Writing such an 
application using low-level primitives such as sockets or RPC's 
[5], [21] would require considerable effort on the programmer's 
part. Since such an effort would be replicated, perhaps unwit- 
tingly, by other programmers while writing different applications, 
Frameworks provides an easy way of avoiding this wasted effort. 

VIII. COMPARISON TO RELATED WORKS 

A new approach to developing distributed applications in 
which parallel operations are encoded via templates has been 
presented. Each template can be looked upon as a collection 
of macros. Attachment of a template to a module causes these 
macros to be inserted and expanded at appropriate places in the 
user's code to handle low-level synchronization and communi- 
cation. This approach is not entirely novel; a technique based 
on macro expansion is used in [20] to create parallel Fortran 
programs. Babb uses a technique based on macro expansion to 
restructure sequential Fortran programs to produce an acyclic 
network of processes that can be executed in parallel [2]. How- 
ever, in both cases, the prescribed macros are at a much lower 
level and the programmer must insert them in the source code. 
In contrast, templates are attached externally to a module. Each 
template may represent encapsulation of several macros that are 
automatically inserted and expended at appropriate places in the 
source code. This makes the use of templates much simpler 
and allows significant flexibility in restructuring the application. 
Also, different templates can be used with the same procedure 
in different applications. 

Comparison of Frame Works to general purpose concurrent 
languages [4], [6], [ 181, or low-level distributed computing tools 
[5], [21], reveals some interesting benefits as well as some 
limitations of our template-based approach. 

1) Unlike CSP or Ada, FrameWorks does not embody a 
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complete language for concurrent programming. Rather, 
it proposes a new parallel programming model which can 
be implemented on top of an existing sequential language 
like Pascal or C. 

2) There is a large class of distributed applications where 
synchronization/communication/scheduling structures are 
much more restricted. It has been pointed out that such dis- 
tributed applications can be generated more easily via spe- 
cialized languages/systems than by general-purpose con- 
current languages [7], [24]. Frameworks, along with sev- 
eral other systems, can be put in the category of specialized 
systems/languages that aim at providing easy generation of 
commonly occurring forms of synchronization and con- 
currency [2], [7], [20], [24]. For large general-purpose 
programs, such as an operating system or a real-time 
transaction system where a group of processes interact 
or “converse” in an arbitrary manner [15], FrameWorks 
may not be a suitable tool. General purpose concurrent 
languages such as CSP or Ada, or low-level tools such as 
sockets, may be more appropriate for such situations. 

3) Although Frameworks provides a facile way of construct- 
ing distributed applications, it hides overhead and commu- 
nication costs from the user. Consequently, the final design 
may not be as efficient as one that is custom built by an 
expert programmer. Customized generation of programs 
using low-level tools such as sockets is a time consuming 
and tedious process even for experienced programmers. 
However, it might be a suitable alternative for applications 
that critically depend on achieving maximum efficiency. 

4) Most high-level concurrent languages do not allow a pro- 
grammer to map hidher processes to processors. This is a 
handicap, especially in a workstation environment due to 
the nature of the division of ownership rights commonly 
found in such environments. Frameworks provides a high- 
level notation in which a programmer can express his 
processor allocation constraints if desired. 

5) Although the contractor/employee combination involves 
dynamic scheduling and termination of processes, for sim- 
plicity Frameworks does not support dynamic initiation 
of processes by the user. Therefore, it is more suitable 
for environments where the computational structure of an 
application can be specified at compile time. For more 
complex situations, where the pattern of computation is 
unknown at compile time, languages such as Ada or other 
low-level tools [SI, [21] might be more appropriate. 

In Summary, Frameworks is a special purpose tool for the 
generation of applications that can be structured in terms of com- 

monly occurring communication/synchronization patterns. Such 
applications can be easily, quickly, and correctly generated using 
Frameworks and they take advantage of available workstations 
in a flexible manner. However, the approach may not be suitable 
for programs with complicated communication/synchronization 
structures or programs that aim to attain very high levels of 
efficiency. 

The idea of providing shared processing has been studied 
by several researchers [SI, [17], [19], [26], [30]. Among the 
earlier efforts, the worm programs of Shoch and Hupp [30] 
developed some distributed applications in a workstation environ- 
ment and demonstrated the feasibility of dynamically expanding 
and shrinking programs that utilized idle processors. However, 
their work did not concern itself with the development of any 
conceptual model or language for this purpose. Some other 
systems are based on managing a pool of available processors and 
supplying an application with an idle processor, or a processor 
with low load average, on demand [17], 1191. Yet another class 
of approaches is based on distributed operating systems [SI, [27], 
[37]. Some systems allow the allocated processor to be reclaimed 
by a user who has a higher priority for using the processor [26]. 
Cosmic Environment and Reactive Kernel (CE/RK) systems [ l ]  
provide the usual low-level process spawning and message pass- 
ing functions and also handle allocation of computers on a local 
area network to facilitate preparation of applications for running 
on large multicomputers. The Frameworks system not only keeps 
track of the available processors but also offers a complete 
conceptual model for developing distributed applications, which 
is consistent with the constraints of the workstation environment. 
Using this model, an application can be easily modified to run 
with the available number of processors. Also, the contractor 
template allows processors to be gracefully added or removed 
from a running application. However, we have not been able to 
experiment with releasing an arbitrary processor from a running 
application for the lack of a process migration facility provided 
as part of the Unix operating system. 

IX. CONCLUDING REMARKS AND FUTURE PLANS 
We have discussed the Frameworks model and its imple- 

mentation for a Unix-based workstation environment. The goals 
of the Frameworks system are: 1) to relieve the program- 
mer from writing low-level, error-free code for synchroniza- 
tion/communication with other modules, and 2) to develop 
a software tool that provides the programmer with different 
levels of control over the use of processors in a workstation 
environment. The underlying computational model makes it easy 
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to develop, as well as to restructure, applications to match them 
to the available resources. The approach also, to a limited extent, 
facilitates the graceful addition and removal of processors from 
the application. However, the presence of a process migration 
facility is likely to make the use of our model much more pleasant 

So far our experience with Frameworks indicates that in the 
case of preexisting sequential applications, a fair amount of 
performance can easily be obtained through the simple modi- 
fications needed to parallelize the applications. In several cases, 
partitioning of the complete application into modules was possi- 
ble while keeping most of the code in the sequential version 
intact. However, in some cases more efficient partitioning of 
modules did require moderate amounts of work. In the case of 
applications that were designed with the Frameworks system in 
mind, the amount of work required to switch between sequential 
and parallel versions was quite small. Also, restructuring the 
applications for experimenting with different templates often 
required either no modifications or only a small amount of 
modifications within the modules. 

Our experience during the implementation of Frameworks 
revealed an unexpected aspect of the template-based approach. 
We found that, unlike a compiler for a concurrent language, a 
template-based environment itself can be developed incremen- 
tally. New templates can be added and old templates can be 
refined incrementally as long as they remain compatible with 
the existing templates in the system. The initial versions of 
Frameworks had fewer and less sophisticated templates. As the 
need for newer and better templates was felt, they were added 
incrementally. 

At present, Frameworks does not have features that provide 
fault tolerance in the case of node or communication failure. We 
feel that it is possible to integrate such features in the model and 
the system, and we plan to look at this aspect in the near future. 
Also, the present form of the Frameworks model is especially 
suitable for the workstation environment. However, with minor 
modifications, variants of Frameworks can be developed that 
would be suitable for implementation on tightly coupled MIMD 
architectures. One obvious advantage of implementing under 
such environments (or on faster networks) is that due to reduced 
communication costs, much finer grains of concurrency can be 
exploited as long as the application structures remain simple. 
Finally, the network diagrams produced by the graphic interface 
Module-Crafi seem rather unconventional. However, they make 
the parallel structure of the application explicit. The assistance 
that such an interface can provide in visualizing, experimenting, 
documenting, and debugging the application makes it worth 
the effort. Currently, we are working on expanding the visual 
interface of Frameworks to include a subsystem for providing 
visualization, debugging, and post-execution analysis. At this 
point, it is not entirely clear how our visual approach would 
be extended for more complex scenarios, e.g., applications with 
multiple entry points, or environments where both private as 
well as shared address spaces coexist. To explore the limits of 
our approach, we shall have to gradually bring these situations 
within our consideration. 
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APPENDIX 
THE OVERALL STRUCTURE OF THE ANIMATION SYSTEM 

............................................................................. 
/ *  File containing definition of frames used by modules */  
#include “po1ygon.h“ / *  po1ygon.h contains the structure for poly-tbl */  
#define MAXIMAGES 120 

struct model-polyconv [ 

1; 
struct polyconv-split { 

int image-number; 

int image number; 
int npolyj 
struct polygon poly-tblf MAWOLY I ;  

1; 

include “animation.h“ /*  Structure of Model module */ 
main ( 1  
( 

.............................................................................. 

struct model polyconv work; 
for( image 5-0; image < MAXIMAGES; image++) { / *  loop through images */  

compute-geometry(); 
write-data ( 1  ; 

1 

work.image number = frame; 
call PolyCOnv( work 1: 

/*  do modeling and motion computation */ 
/* write the data on disk-file */ 

/*  Done! Send work to polyconv process */  

............................................................................... 
#include “animation .h“ / *  Structure of PolyConv module */ 
PolyConv ( job ) 
struct model-polyconv job; 
{ 

read data ( )  ; /*  read data from the disk */  
do cEnversion ( 1  ; /* view transformation etc.on the image */ 
/*-assign the polygon table to frame polycnv */ 
polycnv.npoly = npoly; /*  assign number of polygons */ 
strncpy(polycnv.po1y tbl, polygon-table, npoly*sizeof(struct polygon) 1;  
call Split( polycnv 7; /*  send data to Split */  

1 

#include “animati0n.h“ / *  Structure of Split module */ 

Split( poly table ) 
struct polyzonv-split poly-table: ‘ 

............................................................................... 

do hidden( poly-table I ;  /* Hidden surface removal and antialiasing */ 
write-inage ( 1  ; /*  store image on disk */ 

1 .............................................................................. 
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