
IEEE TRANSAmIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

A Template-Based Approach to the
Generation of Distributed Applications

Using a Network of Workstations
Ajit Singh, Jonathan Schaeffer, Member, IEEE, and Mark Green, Member, IEEE

Abstract-Despite rapid growth in workstation and networking tech-
nologies, the workstation environment continues to pose challenging
problems to shared processing. In this paper, we present a computational
model and system for the generation of distributed applications in such an
environment. The well-known RPC model is modified by a novel concept
known as template attachment. A computation consists of a network of
sequential procedures which have been encapsulated in templates. A small
selection of templates is available from which a distributed application
with the desired communication behavior can be rapidly built. The system
generates all the required low-level code for correct synchronization,
communication, and scheduling. This results in a system that is easy to use
and flexible, and can provide a programmer with the desired amount of
control in using idle processing power over a network of workstations. The
practical feasibility of the model has been demonstrated by implementing
it for Unid-based workstation environments.

Index Terms- Coarse grain concurrency, distributed computing, dis-
tributed soflware engineering, network systems, parallel programming,
parallel programming models, workstation environment.

I. INTRODUCTION
ORKSTATION environments have been in use for more W than a decade now. In an ever increasing number of

research, industrial, and academic environments, the bulk of
the computing is now done using personal workstations. Large
time-sharing systems, however, continue to be used for jobs
that require large amounts of processing time and therefore
cannot achieve acceptable performance on a single worksta-
tion. Although a network of workstations together represents a
large amount of computing power (“the network is the super-
computer”’), a single user often cannot utilize this power for his
applications.

Harnessing the computing power of a network of machines
poses some interesting problems. First, the processors available
to a distributed application and their capabilities may vary from
one execution to another. Second, communication costs may be
high in such an environment, restricting the types of parallelisms
that can be effectively implemented. Third, users do not want
to become experts in networking or low-level communication
packages to utilize the potential parallelism. Unfortunately, there

Manuscript received April 21, 1989; revised January 12, 1990 and May
4, 1990. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada. This work is a revised and extended
version of the paper in the International Conference on Parallel Processing ’89

The authors are with the Distributed Systems Research Laboratory, Depart-
ment of Computing Science, University of Alberta, Edmonton, Alta., Canada
T6G 2H1.

1331.

IEEE Log Number 9037581.

’A generalization by Carl Hamacher of Sun Microsystems’s phrase “the
Unix is a registered trademark of AT&T.

network is the computer.”

are few systems that are aimed at providing shared processing
power in a workstation environment, while taking into account
the constraints of the environment and the user [17], [26].

In this paper, we describe the Frameworks system for writing
applications to run in a distributed environment. This system has
several important features.

1) Programs are written as sequential procedures enclosed in
templates. The templates hide all the distributed comput-
ing implementation details, such as communication and
synchronization. The code can be compiled to run in a
sequential environment or in a distributed environment with
only minor changes (if any) on the user’s part.

2) The procedures themselves contain only a small amount of
information as to how they interact with the rest of the sys-
tem. Most of it is specified separately via templates. Such
a decoupling of specifications results in an environment
where applications can be readily adapted to the number
of processors available.

3) A graphical interface facilitates the interactive construction
of a distributed application and the specification of proces-
sor allocation constraints. The same interface is also used
for querying or modifying these specifications.

4) Contractor templates provide a novel method for dis-
tributing work in environments with changing resources.
Contractors dynamically contract out work to employee
processes. They adapt to the changing constraints of the
environment.

5) A user can exercise a wide range of control over the
mapping of processes to processors. Using a high-level
notation, the user can specify the processor assignments
completely, partially, or leave it entirely up to the envi-
ronment.

6) Frameworks provides global system monitoring to achieve
load balancing, detecting when workstations fall idle or be-
come heavily loaded, and monitors the system performance
for the user.

Frameworks programs are written with the aid of a preproces-
sor for the C programming language. The user writes sequential
C code and encapsulates it in templates, and the system translates
this into an executable module that runs in the Frameworks
environment. Processes run in the background, taking advantage
of idle machines when available and recognizing when machines
become heavily loaded. In this way, we can keep the user
community happy, while having applications profitably using
machines that would otherwise be idle.

The rest of the paper is organized as follows. The concept of
modules (Section 11) and templates (Section 111) describes what
the user needs to know to write a Frameworks application.

1045-92 19/9 1 /O 1 0@0052$0 1 .OO 0 1 99 1 IEEE

SlNGH et al.: GENERATTON OF DlSTRIBUTED APPLICATlONS 53

Section IV contains examples illustrating how to program using
modules and templates. A specialized extension of the contrac-
tor template is described in Section V. The complete process
of developing distributed applications as well as the software
architecture of Frameworks are discussed in Section VI. Some
performance results are presented in Section VII. Section VI11
compares our system to work done by others. Finally, Section IX
presents some concluding remarks.

11. MODULES

We assume an environment where workstations are connected
over a local area network and run under a distributed or
network operating system that provides a basic message
passing mechanism [8], [21], [27], [37]. The overall orga-
nization of a distributed program in Frameworks has striking
similarities with the organization of a sequential program.
Therefore, an application can be quickly altered to run in
a sequential or distributed environment. At the macroscopic
level, Frameworks looks similar to several other systems that
use system calls for process communication. However, the
semantics, implementation, and user interface of Frameworks
differ significantly from other work (as described in Sections VI
and VIII), yielding a system that is easy to use and requires little
knowledge of distributed computing.

Briefly, an application consists of communicating processes.
The programmer views each process as a sequential module
or procedure. Parallelism is achieved using the simple call
statement, which the programmer treats as a procedure call. All
communication and synchronization is removed from the user’s
responsibility. Templates are used to encapsulate sequential code
and indicate how the process is to interface to other parallel
processes. From these templates, all commonly occurring forms
of distributed process graphs, such as pipelines or master/slave
relationships, can be constructed. In essence, the system provides
a few simple building blocks, from which systems can be built
quickly and reliably.

A complete application consists of modules that communicate
with each other via remote procedure calls (51. No common
variables among modules are allowed. Each module contains a
single entry procedure that can be called from other modules. In
addition, a module can have one or more local procedures that
can only be called from within the module. Each application has
one main module that contains the main procedure in addition
to its optional entry procedure and local procedures. The main
module initiates the execution of the application. In many ways,
this is analogous to programming with abstract data types, which
provide well-defined means for manipulating data structures
while hiding all the underlying implementation details from the
user.

Frameworks augments a programming language (C in our
case) with the call statement, which has the same semantics
as a procedure call, but is translated by the system into com-
munication with another process. An arbitrary module X can
communicate with a module Y by the simple

call Y (input);

with input being the set of input parameters. X and Y are the
names of modules specified by the programmer at compile-
time. With no return value expected, the semantics of such a
call are that Y is invoked asynchronously, without X waiting
for its completion (nonblocking communication). Synchronous

communication is possible using the blocking version of call

output = call Y(input);

where output is the return value(s) from Y. In this case, the calling
routine X is suspended until the reply (output) from Y is received.
The called routine replies by executing an explicit

reply(output);

statement.
The input and output of modules are in the form of structured

messages called frames. A frame is similar to a Pascal record
or C structure except that pointer type variables are not allowed.
For every module, the programmer declares an input frame (a
structure containing all the input parameters needed for a call)
and, if necessary, an output frame (containing all the reply or
output values returned).

111. TEMPLATES
Most of the information regarding a module’s interaction

with other modules is added through a separate set of attribute
bindings known as template attachments. A template represents
a prepackaged set of characteristics which can be used for
partially specifying the scheduling/synchronization structure for
a sequential module. Depending upon his needs, a user selects
a set of appropriate templates that completely describes the
behavior of a module in the application. Every module needs up
to three templates to fully describe its behavior in a concurrent
environment (input, output, and body templates). As described
below, an input template is responsible for correct scheduling
and synchronization of incoming messages. Similarly, an output
template deals with the scheduling and synchronization of calls
originating from the given module to other modules. The use
of a body template is optional. It is used to assign additional
characteristics to a module that modify the module’s execution
behavior in the distributed environment.

Templates are used to describe the interaction of a module
with other modules. Essentially, most distributed programs take
advantage of several frequently occurring communication StNC-
tures, such as pipelines, or master/slave relationships (71, [24].
After the user specifies which template(s) apply to their module,
Frameworks inserts the necessary code to set up the desired
relationship. For example, if a user wants to set up a pipeline
of processes, then they need only specify that each process gets
its input from a pipeline, and that its output goes to a pipeline.
As shown in Fig. 1, the source code in a user’s module is

extended by several layers of code generated by the Frameworks
system to allow proper communication, synchronization, and
scheduling. In addition to the code for the templates, there are two
other layers of code that are required for the low-level communi-
cation package used (similar to [5]). The data layer is concerned
with producing code necessary for sending and receiving frames
in the form acceptable to low-level communication routines. The
communication layer is concerned with the selection and routing
of messages to the appropriate instance of a process when there
are multiple executing copies of the called module. To distinguish
the original code in a module from its augmented version, the
latter is referred to as a process.

Currently three types of templates are supported. Fig. 2(a)
gives the icons for these templates as used by the graphical
interface. The templates are:

1) initial: Initial templates allow no input from other pro-
cesses. Since such a process cannot be called by any other

54 lEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

Body Template
I

t
Output Template

t
Input Template

Fig. 1. Transformation of user module in process code.

process, only the main module of the application may use
this template. For example, an application where the main
module does not have an entry procedure would require an
initial template.
in-pipeline: A process with an in- pipeline input template
can act as a server to any of its input processes, with calls
from processes accepted in an FCFS manner. For example,
this template would be used to specify the input interface
for a process that is part of a pipeline.
assimilator: The assimilator template states that a process
must have one input frame from each of its input processes
before it starts processing any of its input frames. This
template becomes handy if, for example, a process is
to merge the outputs of several processes. To keep the
semantics simple, an assimilator can only be called in a
nonblocking mode.

There are three types of output templates [Fig. 2(b)]:
out-pipeline: This template allows for the output of a
process to flow in a pipeline fashion to any process
connected to its output.
manager template: Often some processes require more
processing time than others and, to keep them in step
with other parts of the application, a user may want
multiple instances of the same process running. The man-
ager template is concerned with the management and
scheduling of multiple instances of the same module. The
calling module is unaware of the existence of multiple
instances of the called module. The manager will select
the currently available instance for placing its call. For
example, managers can be used to achieve master-slave
relationships.
terminal template: This is simply a special case of the
out- pipeline template. A process with terminal type output
template does not call any other process.

Together, input and output templates provide several ways of
structuring the interface of a module in a distributed environment.
To illustrate the expansion of a user module, consider the module
X in Example 1 of Fig. 2(d). Here, the input and output of
module X have been structured as in- pipeline and out- pipeline,
respectively. Fig. 3(a) shows a FrameWorks module that is part
of a pipeline, and the pseudocode it is translated into is shown
in Fig. 3(b). It should be noted how little programming was
required in Fig. 3(a) to achieve Fig. 3(b). Of course, the savings
are much more significant for more complicated structures such

- Q R P Q R S

Pipeline Ass i m i I at oi Initial

(a)

Terminal Pip e I i n e Manager

(b)

1 1

Executive Contractor Example 1. Example 2.

(c) (4
Fig. 2. Representation and use of templates. (a) Input templates. (b) Output

templates. (c) Body templates. (d) Examples.

as managers or contractors (described below).
Body templates [Fig. 2(c)] provide further choice for specify-

ing the behavior of a module. There are currently two choices
for the body template. An executive template is meant to serve
as a user interface to the application and hence only the main
module of an application is allowed to use it. The executive
template causes the process to have its input, output, and error
streams directed to the user's terminal. Otherwise, these streams
are directed to files whose names are based on the names of the
module and the application [35]. If there is no executive type
process in an application, then the complete application can be
run in the background without any user intervention.

The default in Frameworks is for a process to serve only
one call at a time. A frequently occurring problem arises when
some processes in an application require significantly more
computation than others, perhaps creating a bottleneck. To solve
this, one might try partitioning the work done by such a process
by breaking it into smaller modules, or try using a manager
template that distributes the work done by the process. However,
each of these structures is defined at design time and uses a fixed
number of processors. To increase flexibility at execution time in
using idle processors and relieving the designer from specifying
the exact number of processors required by such processes, the
model provides a body template type called contractor. When
a module's body is declared as a contractor, it means that the
process gets its work done by employee processes. A module
with a contractor body template is repeatedly and asynchro-
nously called by its input nodes. Depending upon the number
of available processors and the processor time requirements of
the module, a contractor hires a dynamically varying number of
employees to get the job done. The designer of the application
does not take any part in the hiring and firing of employees;
one simply specifies that the given module should function as a

SINGH et al.: GENERATION OF DISTRIBUTED APPLICATIONS 55

----------______________________________-----------------------------------
/ * The code in the user module does not have any information regarding */

interface-routine(input-frame)
I

/ * the type of templates that are used to encapsulate it. */

...
routine code

output = call Y(input) ;
...
...

1

local-procedures ... / * local procedures may issue remote calls as well */ ---------_______________________________----------------------------------
(a)

__---------------------------------
/ * The expansion of user module as shown below is based on the */

*/
* /

/ * assumption that the module is assigned in-pipeline, outgipeline,
/ * input and output templates respectively. No body template is used.

in-pipeline 0
I

while(true) {
who = CheckMessage 0 ;
if(who == A VALID CLIENT {

Receivei[jessage(who, input);
interface-routine(input 1;

ReceiveMessage(who, message) ;
if(message == REQUEST-FOR-STATUS)

SendMessage (MONITOR, status) ;
else if(message == TERMINATION-NOTICE) {

CloseBooks 0 ;
Terminate (1 ;

1
else if(who == FW MONITOR) {

1
else if {

/ * some other actions (not included) */
I
else ErrorHandler 0 ;

1
else ErrorHandler 0 ;

interface-routine(input1
i

routine code

/ * expansion of "output=call Y (input) " for out-pipeline
/ * output template.
CheckValidserver(Y 1;
status = WaitForStatus (Y ;
if (status != IDLE)

SendMessage(Y, input, REPLY-MODE 1;
ReceiveMessage (Y, output) ;
/ * end of expansion * /

...

ErrorHandlerO;

* /
* /

..

contractor. The actual process of hiring employee processes is
managed by the run-time environment and is transparent to the
designer.

Both contractors and managers provide a means of running
multiple instances of a process. In each case, replicated instances
of a process compute independently without interacting with each
other. Also, for the correctness of a computation, it is necessary
that such processes do not contain any state information within
themselves. Contractors hire and fire employees dynamically at
execution time depending upon the workload. Managers provide
a restricted form of the services provided by a contractor.

However, since a manager executes only a fixed number of
processes, its execution time overheads are lower than those
of a contractor. Example 2 of Fig. 2(d) shows the revised
representation of the process Y in Example 1, after it is declared
to function as a contractor. This is done without any change in
the source code of the modules.

The user is provided with a graphical user interface that is
used to specify the template attachments to the modules, inter-
connection between modules, processor allocation preferences for
the modules, etc. The interface between modules is checked for
consistency. For example, a process cannot call another process

56 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

whose input is an initial input template. The system also checks
that frames match between communicating modules.

IV. AN EXAMPLE OF A DISTRIBUTED ANIMATION SYSTEM
To illustrate our model, this section describes an application for

distributed animation that has been implemented using Frame-
Works [161. Computer animation involves creating a sequence
of graphical images that, when shown in rapid succession, create
the illusion of motion. The calculations required to produce these
images are compute intensive and require a high volume of data.
In the case of video, 30 images per second are required, each
image having a resolution of at least 512 x 512 pixels and each
pixel representing 8 to 24 bits of information. Determining the
value of a pixel may require hundreds of floating point operations.
Performance results related to the generation of a specific image
sequence using several different configurations of this system
are described in Section VII.

The complete system consists of about 2500 lines of code
in our extended C language and is divided into three modules:
Model, PolyConv, and Split. The overall structure of these mod-
ules, along with the frames used by them for communication,
are shown in the Appendix. Fig. 4(a) shows one possible in-
terconnection of these modules using templates, prepared using
the Frameworks system’s graphic interface called Module-Crafr.
(More on Module-Crafr will be presented in Section VI where
we describe the implementation of the complete FrameWorks
system.) The code in Model depends on the subject(s) of anima-
tion. It computes the location and motion of each object in the
image and stores the results in a file on the distributed file system.
Completion of this computation is communicated to PolyConv by
issuing a nonblocking call. After this, Model continues with the
computation of the next image in the animation sequence. At the
same time, PolyConv reads the data from the disk and performs
some data format transformations followed by viewing trans-
formation, projection, sorting, and back-face removal. PolyConv
passes the data in the image along with the image’s sequence
number to the Split module through a nonblocking call. PolyConv
then waits to serve the next incoming call. The Split process
performs hidden surface removal (using the z-buffer algorithm)
and anti-aliasing. Finally, the rendered image is stored on a disk
file.

Most of the computation done by the application comes from
the Split module. In fact, it is the computational bottleneck
for the complete system. The effect of this bottleneck can be
reduced significantly by assigning a contractor body template to
the Split module [Fig. 4(b)]. By doing so, several input images
from PolyConv are processed concurrently by Split. To do this,
Split dynamically hires a varying number of processors, each of
which is assigned a single image for processing. Now, suppose
we want to find out whether speeding up computations in the
PolyConv module will speed up the application. Once again,
this can be done by assigning a contractor body template to the
PolyConv module [Fig. 4(c)]. With this configuration, PolyConv
processes several input frames from Model concurrently, whereas
Split processes several input frames from PolyConv concurrently.
However, as shown by the performance results presented in
Section VII, attaching a contractor template to PolyConv does
not speed up the overall computation by a significant amount.
Therefore, we revert back to the configuration in Fig. 4(b), by
simply detaching the contractor template from the PolyConv
module. The speed of the overall computation now depends on
how fast Model and PolyConv can supply input data to Split.

Finally, suppose we want to ascertain how the performance of
the complete application scales as the number of processors
employed by the Split module is varied. This can be done by
modifying the configuration of Fig. 4(a) to the one shown in
Fig. 4(d). Here, the output of PolyConv has a manager template
and during each execution, a fixed number of Split processes
are specified to be run under it. Sample performance results,
for all the four configurations described here, are discussed in
Section VII.

Our simple example here serves to illustrate several important
features of Frameworks. First, the complete application can be
converted to run in a sequential environment by changing only
two call statements in the whole source code.’ This means
that development and debugging can be done in the more
familiar sequential environment and, once a correct solution is
achieved, it can be quickly modified to run in a distributed
environment. The initial version of the animation system was
developed as a sequential application without any knowledge of
the Frameworks system. However, it was possible to convert
it into a Frameworks’ form with a negligible amount of extra
effort. Second, the performance of the time consuming Split
module scales automatically. The user simply declares Split as
a contractor and as many processors as are available are used
to speed up the computation. Third, the load balancing in Split
is done dynamically. If there are idle employee processes, they
are released. If work is coming in at a faster rate, then more
employees can be hired. Fourth, unnecessary context switching
is absent. A new employee process is created only if a new
(idle) processor is available. Finally, it should be noted that the
configurations of the animation system in Fig. 4(a), (b), (c), and
(d) have all been created by simply altering a graphic diagram,
without making any modification to the code in the modules.

V. DYNAMIC TASK SCHEDULING WITHIN CONTRACTOR TEMPLATES
There is a large class of problems where the program structures

are simple yet they require an enormous amount of computing.
Often, in such programs, the strategy is to break the original
problem down into several small independent subproblems. Each
of these subproblems can be assigned to a different process
and the results received from these processes can be combined
to form a solution to the original problem. Sometimes, the
number of subproblems and their sizes can be determined at
program design time. The contractor or manager templates as
described in Section 111 can be easily used for such situations.
Often, however, the problem cannot be divided into independent
subproblems of equal size at program design time [3], [14], [23],
[29]. Rather, the creation and synchronization of subproblems
proceeds recursively and dynamically, and these subproblems can
be of widely uneven sizes. Although the contractor or manager
templates can be used in such cases as well, inefficiencies result
because there could be some processors that are idle, whereas
the rest of the solution process cannot proceed until the results
of some child processes become available (Fig. 5). Instances of
such problems are quite commonly found in problems that use
divide and conquer, depth first search, breadth first search, or
branch and bound strategies.

To efficiently handle the scheduling of dynamically evolving
medium-grained tasks, Frameworks provides two more language

3Such a conversion process can be automated for a large class of applica-
tions where the network graph is acyclic, and each module of the application
is history insensitive, i.e., the computation done by each module depends only
upon the input to that module and not on the previous inputs processed by
the module.

SlNGH er al.: GENERATION OF DISTRIBUTED APPLICATIONS 57

0 Modd

Polycom 0
Split Q

Fig. 4. (a) A pipeline structure of the animation system. (b) Split module assigned contractor template.

constructs that can be used within a module enclosed in a
contractor body template. The call

frame. The mode of call can be either blocking or nonblocking.
In the case of a blocking split- j ob call, execution in the calling
process is blocked until a new processor is available. The call
returns a positive integer in job-id that serves as the identification
number for the newly started subproblem. In the nonblocking
mode, the call returns immediately. If an idle processor is found,
the call returns a valid job identification number. Otherwise, a

job-id = split- job(job-frame, mode);

causes creation of a new employee process. The structure of the
job-frame is the same as the structure of the module's input

58 IEEE TRANSAaIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

% Splif

I I I I I I I I

PolyConv A

I I I I I I -E
I

H l l p O :

(d)
Fig. 4. (Continued) (c) PolyConv and Split assigned contractor templates. (d) PolyConv used as a manager of Split processes.

negative number is returned and no new process is started. This
allows an employee process to take advantage of any other cur-
rently idle employee in a dynamically expanding and shrinking
pool of employees. To receive the results from processes started
via split- job calls, another Frameworks call merge- job is used.
The call

result = merge- job(rep-frame, job-id, mode);

returns immediately if the nonblocking mode is used. In this
case, the call returns 0 if the subproblem given by job-id has
been completed, and -1 otherwise. If the subproblem has been
completed, the reply frame is returned in rep-frame. In the
case of blocking mode, the calling process is blocked until the
specified subproblem is completed, after which the call returns
with the reply frame being placed in rep-frame.

SINGH et al.: GENERATION OF DISTRIBUTED APPLICATIONS 59

Fig. 5 . Recursive splitting of a task.

The split-job and merge-job calls provide a powerful and
flexible method for creation and control of hierarchical threads
of execution and efficient dynamic scheduling of available pro-
cessors. Using these calls, the employee processes of a contractor
module can further subdivide their work without worrying about
complicated processor management in the workstation environ-
ment. The split-job call provides a means by which a new
process is not started until an idle processor is found. In such a
situation, the calling process has the option of trying the split- job
call later, or doing the job by itself. Although, the split-job
and merge- job calls appear similar to other known methods of
starting a new thread of execution, such as fork/join statements
and methods based on spawning a new process [lo], [l l] , there
are some significant differences. In these other methods, a new
process is started whether or not an idle processor is available.
In our case, each processor runs a single process and a new
process is added only when an idle processor is available.
This has several positive implications. It eliminates logically
pointless and expensive context switching, and avoids clogging of
systems’ job queues with jobs waiting for processor time. Also,
these calls provide greater flexibility in using idle processors
at execution time. The number of processes created can be
adjusted according to the computational requirements of the
application as well as the available processors. Allowing the idle
processors to help out the more busy ones significantly reduces
synchronization costs in the types of computations mentioned
earlier. However, the most significant difference between these
methods and the scheme based on split- job and merge- j o b is the
ease of programming applications that require dynamic creation
and control of hierarchical threads of execution. As an example,
the parallel chess playing program ParaPhoenix [29] performs dy-
namic splitting of tasks for implementing distributed alpha-beta
search. It conducts a variable depth distributed game tree search
using workstations on a local area network via a carefully hand-
crafted implementation. The implementation took several man
months of effort to obtain a relatively error-free program. The
same functionality can be derived in a rather straightforward
manner through the use of split-job and merge- j o b commands.

VI. FRAMEWORKS SYSTEM
The FrameWorks system has been implemented at the Depart-

ment of Computing Science, University of Alberta. Our general
computing environment consists of over 50 Sun workstations
connected via Ethernet cables. In addition, there are 4 VAX
11/780’s, two MIPS m/1000 machines, and several other kinds
of special purpose workstations. Most of the workstations are
situated in various laboratories and the rest are located in

individual offices. Although one of the goals of Frameworks
is to allow the user to use processors with different architectures,
in the current implementation only a homogeneous set of Unix
machines can be used within a single application. Frameworks
has been implemented mostly using tools developed in our
department. For the distributed computing aspects, the Network
Multiprocessor Package (NMP) is used [22]. NMP is built using
sockets [21] and it provides a library of high-level routines to
support remote process initiation and message passing among
processes. The visual interface is implemented for color as well
as monochrome monitors using locally developed user interface
management tools called, Diction, Chisel, and Vu [31], [32]. The
following subsections briefly describe the implementation and
functionality of Frameworks, as well as the process of developing
distributed applications using the system.

A . Developing Applications Using Frameworks

The complete process of generating a distributed application is
split over two phases as shown in Fig. 6. The first phase consists
of input from the user. Two types of input are required. First, a
user prepares source code modules as shown in the Appendix.
These modules, called FW modules, are written in an extended
version of the C language that allows call, reply, split- job, and
merge- job statements. The second type of input consists of the
assignment of templates to each module, specification of their
interconnection, and the names of the input and reply frame(s)
for each module. The interactive graphical editor Module-Craft
is used for this purpose. Sample Module-Craft screen layouts are
shown in Fig. 4. Using the command and item menus of Mod-
ule-Craft, a user prepares and edits application specifications as
shown in the previous sections. Module-Craft is also responsible
for checking compatibility and other semantic constraints in the
preparation of the communication diagram.

Allocation constraints of a module can be specified using
Module-Craft via its allocation command. The include and
exclude options allow the specification of processors that may
be selected or avoided in allocating the given process. These
commands may be repeated. The special name free-pool denotes
the available list of processors other than those specifically
specified. The list of preferences is scanned strictly sequentially
from top to bottom and, once a selection is made, the rest of the
list is left unscanned. For example, let us assume the following
sequence of preferences for a process X

include sun001 sun005;
exclude sunOl3;
include free-pool;

The allocator first attempts to allocate sun001 or sun005 if
either is available. If not, then any processor except sun013
is allocated. Processors are allocated in a depth-first manner
starting from the main module. For a module that has not
been assigned the contractor body template, the allocation of
processors takes place just prior to initiating execution of the
application. Therefore, depending upon availability of processors,
during different executions, different processors may be selected.
For a contractor module, the processors are selected for employee
processes at execution time. These processors are again selected
on the basis of allocation constraints. If the allocator cannot
satisfy a user’s allocation requirements with the current status
of processors, the allocation procedure is aborted and the user
is given an appropriate error message. The user then has two
options. He can modify his allocation constraints so that they
can be satisfied with the currently available processors, or he can

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

/
U,ser

Phase I

Fig. 6. Generation of

retry the allocation procedure later when the processors required
by him are available. This processor allocation scheme is simple
yet quite powerful. For example, it can be used to limit the
maximum number of employee processes that can be created
at execution by a certain contractor process.

The distributed design of the application, as specified through
Module-Craft, is stored in a file called the distributed-design-file
(DDF). In the second phase, a system component called the
configurer prepares a detailed distributed design, called the
configuration-file, for the application in which each process
is given a logical node identification number. The information
in the DDF, along with the application’s source modules, is
processed by the Frameworks preprocessor (FW-PP). FW-PP
generates all the code for the layers discussed in Section 111
(Fig. 1) in order to transform a module into a process executable
in the distributed environment. The output of FW-PP consists
of C language modules. Executable modules are prepared by
compiling these modules and linking them with the Frameworks
run-time library. Allocation of processors is performed by the
system component called the Allocator. The system component
Butler maintains a database (called the machine-registry) of the
status of available processors and their load averages (similar to
[26]). Allocator uses the information in the machine-registry to
allocate processors to processes. Due to the lack of a process
migration facility in the Unix operating system, processors are
bound to processes for their entire lifetime. However, as de-
scribed in the next section, Frameworks does provide a limited
facility for adding or removing processors at execution time in
the case of a contractor.

An application runs in the presence of the Butler and an
Execution-Time-Monitor (ETM) which provide execution time
services required by an application (Fig. 7). The execution time

I-
I
I
I
I

I
I Phase II

onfiguration
File

Run-Time
Library

distributed applications.

Executable
Process Code

environment of Frameworks is described briefly in the next
subsection.

B. Execution Time Environment of Frame Works

The Butler and ETM together manage the dynamic allocation
and release of processors used by contractor processes. The
contractor template is implemented as a closely related group
of processes consisting of a coordinator and its employees.
The implementation is quite different from the implementa-
tion of threads in Mach [28] in the sense that coordinator or
employees do not share address spaces. It is more similar to
the “process-groups” of V [XI with the significant difference
that the management of employee processes is transparent to
the programmer, and is handled completely by the coordinator
process. For every module which has been assigned a contractor
body template, a separate coordinator process is started. This
coordinator process is responsible for managing the employee
processes. From the users’ point of view, an employee process
represents an instance of the user module functioning as a server.
The actual number of employee processes at any time during
execution depends upon the allocation constraints specified by
the user, the number of processors available on the network, and
processing requests that arrive from client nodes. In addition to
managing the number of employee processes, the coordinator is
responsible for receiving input from the input nodes, sending this
input to a selected employee, receiving the input back from the
employee, and sending the output to output nodes. An employee
repeatedly serves calls assigned to it by its coordinator process
until it is ordered to terminate by the coordinator. Employee
processes also use the coordinator for providing services required
by the split-job and merge-job commands for dynamic task
scheduling among themselves. Thus, in addition to providing

SINGH et al.: GENERATION OF DISTRIBUTED APPLICATIONS 61

c
onfiguration Registry

(1) (i i)

f Distributed
Distributed Application Main

A'

Fig. 7. Execution time environment

the complete functionality of a contractor template as described
in Sections 111 and V, our implementation scheme avoids the
inefficiency of starting a new process for each call and then
terminating it after the call is served.

Distributed applications often need a mechanism for detect-
ing the termination condition of their processes. For example,
researchers have studied the problem of termination for the CSP
model 191, 1131. Termination of a Frameworks' application is the
other important service provided by the ETM. The modules in a
Frameworks application act as servers to modules connected to
their inputs. Therefore, each module (except the one with initial
input template), after finishing the processing of the current input
data, waits for more input to arrive. The Execution-Time-Monitor
checks for situations where some or all of the processes fall
idle, and also will not receive any further input. Such processes
are marked as ready for termination and are terminated by the
ETM. Several different termination strategies for Frameworks
applications have been investigated. These strategies and their
relative merits are discussed in detail in 1341.

In addition to the services mentioned above, ETM optionally
can provide other services such as performance data collection
for individual processes and deadlock detection at run time. The
details of these services are given in [34] and are not described
here.

VII. EXPERIMENTAL RESULTS
The FrameWorks system is being used in our department for a

variety of applications. Among them are an implementation of a
parallel chess program 1291, a distributed animation project [161,
a distributed system for choosing subsets of pattern recognition
properties from a given set 1251, a distributed version of the
Make program 1121, and several smaller applications. In the
following subsection, we present some application independent
measurements taken with the Frameworks system. These exper-
iments were performed on diskless Sun 3/50 workstations with 8
megabytes of memory. These workstations share a Sun 31180 file
server and a Sun 3/60 page server. The workstations run under the
Sun OS 3.5 and communicate over 10 Mbps Ethernet interfaces.
Some performance results for the animation system described in
Section IV are also presented. These results are not meant to
be comprehensive. Rather, they are presented to give an insight

Q p

(1 1) g
Fig. 8. (a) Experimental configurations for Fig. 9(a). (b) Experimental

configurations for Fig. 9(b).

into performance characteristics and overheads of Frame Works,
as well as some indication of speedups that may be attained by
using the system.

A . Application Independent Measurements

Two different kinds of measurements based on configurations
shown in Fig. 8(a) and (b) were taken. The results of these
measurements are shown in Fig. 9(a) and (b), respectively. The
first set of experiments were done to ascertain the cost of
executing Frameworks' blocking and nonblocking call state-
ments with varying message sizes. These results are based on
a variety of configurations shown in Fig. 8(a). Although, for the
sake of simplicity and brevity, not all possible combination of
templates are used, all different types of templates are represented
in these configurations. The time taken for 1000 calls was
measured for each configuration. The results are shown in
Fig. 9(a). Since assimilator and contractor templates are called
only in a nonblocking mode, there are no curves showing results
for blocking calls for configurations (ii) and (ivj. To provide a
basis for comparison against some well-known standard, results
for executing send and send-receive using bare sockets with the
TCP protocols are also shown.

There are several observations that can be made regarding the
results shown in Fig. 9(a). First, the overhead of executing a
call statement in the case of templates that are not concerned
with the management of replicated instances of a user's module
is small (approximately 10- 15%). However, templates which
manage replications (contractors and managers) are about 4 to 10
times more expensive. In each case, the overhead is due to two
factors: the execution of extra code associated with templates,
and the exchange of control messages for management purposes.
It should be noted that although templates add overhead in terms
of extra code and messages, a similar overhead will be there even
if the user himself writes code to achieve similar functionality as

62

I4O0 1200

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

\

50

45

40

35

30

t 25
(Seconds)

1 0

5

0 0 Nonblocking calls

0 0 0 Blocking calls
Configuration (iv)

Configuration

Configuration

Configuration

Sockets

Configuration

Configuration

Sockets

4 8 16 32 64 128 256 512 1024 2048

Message Size (Bytes)

(4

x x x Sequential Execution
o o o Contractor (Configuration (ii))
CI o Manager (Configuration (i))

Grain Size = 1 .O Second
----_- Grain Size = 0.5 Second

1600

Time
(Seconds)

1
'1 2 3 4 5 6 7 8 9 10

(iii)

(iii)

(i)

Number of Processors

(b)

Fig. 9. (a) Call times for 1000 messages for configurations in Fig. 8(a). (b) Results for configurations in Fig. 8(b).

provided by templates. Except in the case of expert users, this
overhead is not likely to be smaller than overheads associated
with Frameworks' templates. Therefore, although the overhead
would exist whether the code is hand written or generated using
templates, Frameworks simply provides an easy way to get quick
and correct code.

The second set of experiments was done to determine the be-
havior of templates that manage replication, namely the contrac-
tor and the manager. Configurations used for these experiments
are shown in Fig. 8(b). In each case, the module P iteratively
makes nonblocking calls to module Q. The module Q repeatedly
computes floating point multiplications of two variables. The time

taken in executing the module Q is controlled by the number
of times this multiplication is done. This time represents the
granularity of the work done by the replicated processes.

These results are shown in Fig. 9(b), where the number of
workstations is varied from one to ten. Two different grain sizes
were used, each having 1000 calls by module P to module Q. For
the sake of comparison, the times taken when the same task is
done sequentially are also shown. These results suggest that the
overheads of a contractor are always higher than the overheads
of a manager. Both contractor and manager perform well in cases
where the amount of work done on each call is one second. When
the work done on each call is reduced to 0.5 s, the contractor

SINGH et al.: GENERATION OF DISTRIBUTED APPLICATIONS 63

Configuration A

Model

PolyConv

SPllt

Configuration B Configuration C

k Split

Configuration D

Q
PolyConv

Fig. 10. Four configurations of the animation system.

does not do very well, but the manager still scales reasonably
well. Although, the contractor's overheads are higher than those
of manager's, in our opinion the advantages provided by the
contractor template in an environment with changing processor
resources justify its inclusion in our selection of templates.

The results in Fig. 9(a) and (b) show the overhead costs and
range of acceptable grain sizes for good performance. Coarse
grain applications, where computation times of modules are of
the order of a few seconds and often even a few minutes (refer to
the application in the following subsection), are not rare. In such
applications, the grain sizes are well within the good performance
range for the contractor as well as the manager. Even the worst
case communication cost [0.04 s per call for configuration (iv)
in Fig. 9(a)] would be quite acceptable in such cases.

B. The Animation System

In this subsection, some performance data taken using the
animation system described in Section IV are presented. The
Model module in this case deals with animating the simple
schooling behavior of fish in a tank. The modeling and motion
is computed through a model that takes into account behavioral
characteristics of the fish and the laws of physics. In addition
,to the sequential version, all four distributed configurations
discussed in Section IV were implemented. These configurations
are shown together in Fig. 10. Fig. 11 shows the real time taken
in computing 120 images. The variation of overall speedup
with the total number of processors employed for configuration
D is shown in Fig. 12, along with some of the data from
Fig. 11. No additional speedup is gained when Model cannot
supply input data faster than it can be processed by PolyConv
or Split. The contractor processes in configurations B and C
dynamically employ and release processors and therefore use
an unspecified number of processors. In such cases, significantly
better performance is observed during night times due to a larger
number of lightly loaded or idle processors that are readily
available for use.

Although this example is a simple one and is expected to
get good performance, these experiments demonstrate that it is
possible to achieve a fair amount of speedup using Frameworks.
The absolute value of the speedup is not important; given that our
graphics group ran this program sequentially, any improvement
in performance was welcome. That they achieved this with
minimal programming effort was equally welcome. Distributed
configurations, such as B, C, and D, have fairly complicated

Execution Time Speed-up
Processors (In Minutes) Ratio

Sequential Version One
Configuration A Three
Configuration B Varying Dynamically 4 2
Configuration C Varying Dynamically 4 0
Configuration D Five 3.3

Fig. 11. Speedup achieved with various configurations.

distributed structures operating behind them. Writing such an
application using low-level primitives such as sockets or RPC's
[5], [21] would require considerable effort on the programmer's
part. Since such an effort would be replicated, perhaps unwit-
tingly, by other programmers while writing different applications,
Frameworks provides an easy way of avoiding this wasted effort.

VIII. COMPARISON TO RELATED WORKS

A new approach to developing distributed applications in
which parallel operations are encoded via templates has been
presented. Each template can be looked upon as a collection
of macros. Attachment of a template to a module causes these
macros to be inserted and expanded at appropriate places in the
user's code to handle low-level synchronization and communi-
cation. This approach is not entirely novel; a technique based
on macro expansion is used in [20] to create parallel Fortran
programs. Babb uses a technique based on macro expansion to
restructure sequential Fortran programs to produce an acyclic
network of processes that can be executed in parallel [2]. How-
ever, in both cases, the prescribed macros are at a much lower
level and the programmer must insert them in the source code.
In contrast, templates are attached externally to a module. Each
template may represent encapsulation of several macros that are
automatically inserted and expended at appropriate places in the
source code. This makes the use of templates much simpler
and allows significant flexibility in restructuring the application.
Also, different templates can be used with the same procedure
in different applications.

Comparison of Frame Works to general purpose concurrent
languages [4], [6], [181, or low-level distributed computing tools
[5], [21], reveals some interesting benefits as well as some
limitations of our template-based approach.

1) Unlike CSP or Ada, FrameWorks does not embody a

64 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

(C0nfig.A)

5 0 (C0nfig.D)

Real Time
(Minutes) 50

100

0 1 2 3 4 5 6 7 8 9 1 0
____)

Number of Processors Used

Fig. 12. Variation of real time with number of processors.

complete language for concurrent programming. Rather,
it proposes a new parallel programming model which can
be implemented on top of an existing sequential language
like Pascal or C.

2) There is a large class of distributed applications where
synchronization/communication/scheduling structures are
much more restricted. It has been pointed out that such dis-
tributed applications can be generated more easily via spe-
cialized languages/systems than by general-purpose con-
current languages [7], [24]. Frameworks, along with sev-
eral other systems, can be put in the category of specialized
systems/languages that aim at providing easy generation of
commonly occurring forms of synchronization and con-
currency [2], [7], [20], [24]. For large general-purpose
programs, such as an operating system or a real-time
transaction system where a group of processes interact
or “converse” in an arbitrary manner [15], FrameWorks
may not be a suitable tool. General purpose concurrent
languages such as CSP or Ada, or low-level tools such as
sockets, may be more appropriate for such situations.

3) Although Frameworks provides a facile way of construct-
ing distributed applications, it hides overhead and commu-
nication costs from the user. Consequently, the final design
may not be as efficient as one that is custom built by an
expert programmer. Customized generation of programs
using low-level tools such as sockets is a time consuming
and tedious process even for experienced programmers.
However, it might be a suitable alternative for applications
that critically depend on achieving maximum efficiency.

4) Most high-level concurrent languages do not allow a pro-
grammer to map hidher processes to processors. This is a
handicap, especially in a workstation environment due to
the nature of the division of ownership rights commonly
found in such environments. Frameworks provides a high-
level notation in which a programmer can express his
processor allocation constraints if desired.

5) Although the contractor/employee combination involves
dynamic scheduling and termination of processes, for sim-
plicity Frameworks does not support dynamic initiation
of processes by the user. Therefore, it is more suitable
for environments where the computational structure of an
application can be specified at compile time. For more
complex situations, where the pattern of computation is
unknown at compile time, languages such as Ada or other
low-level tools [SI, [21] might be more appropriate.

In Summary, Frameworks is a special purpose tool for the
generation of applications that can be structured in terms of com-

monly occurring communication/synchronization patterns. Such
applications can be easily, quickly, and correctly generated using
Frameworks and they take advantage of available workstations
in a flexible manner. However, the approach may not be suitable
for programs with complicated communication/synchronization
structures or programs that aim to attain very high levels of
efficiency.

The idea of providing shared processing has been studied
by several researchers [SI, [17], [19], [26], [30]. Among the
earlier efforts, the worm programs of Shoch and Hupp [30]
developed some distributed applications in a workstation environ-
ment and demonstrated the feasibility of dynamically expanding
and shrinking programs that utilized idle processors. However,
their work did not concern itself with the development of any
conceptual model or language for this purpose. Some other
systems are based on managing a pool of available processors and
supplying an application with an idle processor, or a processor
with low load average, on demand [17], 1191. Yet another class
of approaches is based on distributed operating systems [SI, [27],
[37]. Some systems allow the allocated processor to be reclaimed
by a user who has a higher priority for using the processor [26].
Cosmic Environment and Reactive Kernel (CE/RK) systems [l]
provide the usual low-level process spawning and message pass-
ing functions and also handle allocation of computers on a local
area network to facilitate preparation of applications for running
on large multicomputers. The Frameworks system not only keeps
track of the available processors but also offers a complete
conceptual model for developing distributed applications, which
is consistent with the constraints of the workstation environment.
Using this model, an application can be easily modified to run
with the available number of processors. Also, the contractor
template allows processors to be gracefully added or removed
from a running application. However, we have not been able to
experiment with releasing an arbitrary processor from a running
application for the lack of a process migration facility provided
as part of the Unix operating system.

IX. CONCLUDING REMARKS AND FUTURE PLANS
We have discussed the Frameworks model and its imple-

mentation for a Unix-based workstation environment. The goals
of the Frameworks system are: 1) to relieve the program-
mer from writing low-level, error-free code for synchroniza-
tion/communication with other modules, and 2) to develop
a software tool that provides the programmer with different
levels of control over the use of processors in a workstation
environment. The underlying computational model makes it easy

SINGH et al.; GENERATION OF DISTRIBUTED APPLICATIONS 65

to develop, as well as to restructure, applications to match them
to the available resources. The approach also, to a limited extent,
facilitates the graceful addition and removal of processors from
the application. However, the presence of a process migration
facility is likely to make the use of our model much more pleasant

So far our experience with Frameworks indicates that in the
case of preexisting sequential applications, a fair amount of
performance can easily be obtained through the simple modi-
fications needed to parallelize the applications. In several cases,
partitioning of the complete application into modules was possi-
ble while keeping most of the code in the sequential version
intact. However, in some cases more efficient partitioning of
modules did require moderate amounts of work. In the case of
applications that were designed with the Frameworks system in
mind, the amount of work required to switch between sequential
and parallel versions was quite small. Also, restructuring the
applications for experimenting with different templates often
required either no modifications or only a small amount of
modifications within the modules.

Our experience during the implementation of Frameworks
revealed an unexpected aspect of the template-based approach.
We found that, unlike a compiler for a concurrent language, a
template-based environment itself can be developed incremen-
tally. New templates can be added and old templates can be
refined incrementally as long as they remain compatible with
the existing templates in the system. The initial versions of
Frameworks had fewer and less sophisticated templates. As the
need for newer and better templates was felt, they were added
incrementally.

At present, Frameworks does not have features that provide
fault tolerance in the case of node or communication failure. We
feel that it is possible to integrate such features in the model and
the system, and we plan to look at this aspect in the near future.
Also, the present form of the Frameworks model is especially
suitable for the workstation environment. However, with minor
modifications, variants of Frameworks can be developed that
would be suitable for implementation on tightly coupled MIMD
architectures. One obvious advantage of implementing under
such environments (or on faster networks) is that due to reduced
communication costs, much finer grains of concurrency can be
exploited as long as the application structures remain simple.
Finally, the network diagrams produced by the graphic interface
Module-Crafi seem rather unconventional. However, they make
the parallel structure of the application explicit. The assistance
that such an interface can provide in visualizing, experimenting,
documenting, and debugging the application makes it worth
the effort. Currently, we are working on expanding the visual
interface of Frameworks to include a subsystem for providing
visualization, debugging, and post-execution analysis. At this
point, it is not entirely clear how our visual approach would
be extended for more complex scenarios, e.g., applications with
multiple entry points, or environments where both private as
well as shared address spaces coexist. To explore the limits of
our approach, we shall have to gradually bring these situations
within our consideration.

1361.

ACKNOWLEDGMENT

We gratefully acknowledge the helpful comments of the refer-
ees in improving the earlier draft of this paper. Implementation
and documentation support was provided by G. Klettke, G. Singh,
W. Holst, and T. Breitkreutz.

REFERENCES

[l] W. C. Athas and C. L. Seitz, “Multicomputers: Message-passing
concurrent computers,” IEEE Comput. Mag., vol. 21, no. 8,
pp. 9-24, Aug. 1988.

[2] R.G. Babb 11, “Parallel processing with large grain data flow
techniques,” IEEE Comput. Mag., vol. 17, no. 7, pp. 55-61, 1984.

[3] D.H. Ballard and C.M. Brown, “Scene labeling and constraint
relaxation,” in Computer Vision. Englewood Cliffs, NJ: Prentice-
Hall, 1982, pp. 408-430, sect. 12.4.

[4] J. G. P. Barnes, “An overview of Ada,” Software-Practice and
Experience, vol. 10, pp. 851-887, 1980.

[5] A. D. Birrell and B. J. Nelson, “Implementing remote procedure
calls,” ACM Trans. Comput. Syst., pp. 38-59, Feb. 1984.

[6] P. Brinch Hansen, “Distributed processes: A concurrent program-
ming concept,” Commun. ACM, vol. 21, no. 11, pp. 934-941,
Nov. 1978.

[7] G. Butler and M. J. Kendall, “The suitability of master/slave con-
currency of Concurrent Euclid, Ada, Modula,” Sojiware-Practice
and Experience, vol. 17, no. 2, pp. 117-134, Feb. 1987.

[SI D. R. Cheriton and W. Zwaenepoel, “The distributed V kernel and
its performance for diskless workstations,” in Proc. Ninth ACM
Symp. Oper. Syst. Principles, Dec. 1983, pp. 129-140.

[9] S. Cohen and D. Lehmann, “Dynamic systems and their distributed
termination,” in Proc. Symp. Principles Distributed Comput., 1982,

[lo] M. E. Conway, “A multiprocessor system design,” in Proc. AFIPS
Fall Joint Comput. Conf, Nov. 1963, pp. 139-146.

[Il l J.B. Dennis and E.C. Van Horn, “Programming semantics for
multiprogrammed computations,” Commun. ACM, vol. 9, no. 3,
Mar. 1966.

[12] S. I. Feldman, “Make-A program for maintaining computer pro-
grams,” Sojiware-Practice and Experience, Apr. 1979.

1131 N. Francez, “Distributed termination,” ACM Trans. Pron. Lung.

pp. 29-33.

- - L A

Syst., vol. 2, 1980.
1141 J. Gaschnig. “A constraint satisfaction method for inference mak-
L 1

ing,” in PGc. 12th Allerton Con! Circuit Syst. Theory, Urbana, IL,
Oct. 1974.

[15] E.F. Gehringer, D. P. Siewiorek, and 2. Segall, Parallel
Processing: The Cm* Experience. Bedford, MA: Digital, 1987,

[16] M. Green and J. Schaeffer, “Frameworks: A distributed computer
animation system,” in Proc. Canadian lnform. Processing Soc.
Edmonton ’87, 1987, pp. 305-310.

[17] R. Hagmann, “Process Server: Sharing processing power in a work-
station environment,” in Proc. 6th Int. Conf Distributed Comput.
Syst., May 1986, pp. 260-267.

[181 C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

[19] K. Hwang, W. J. Croft, and G. H. Goble et al., “A UNIX-based
local computer network with load balancing,” IEEE Comput. Mag.,
pp. 55-65, Apr. 1982.

[20] H. F. Jordan, “Structuring parallel algorithms in a MIMD, shared
memory environment,” Parallel Computing, vol. 3, pp. 93- 110,
May 1986.

[21] S.J. Leffler, W.N. Joy, and R.S. Fabry, “4.2BSD networking
implementation notes,” Univ. of California at Berkley, July 1983.

[22] T. A. Marsland, T. Breitkreutz, and S. Sutphen, “NMP-A network
multi-processor,” Tech. Rep. 88-12, Dep. Comput. Sci., Univ. of
Alberta, Dec. 1988.

[23] J.T. McCall, J. G. Tront, F. G. Gray, R. M. Haralick, and W. M.
McCormack, “Parallel computer architectures and problem solving
strategies for consistent labeling problem,” IEEE Trans. Comput.,
vol. C-34, no. 11, pp. 973-980, Nov. 1985.

[24] P. Mehrotra and T. W. Pratt, “Language concepts for distributed
processing of large arrays,” in Proc. Symp. Principles Distributed
Comput., Aug. 1982, pp. 19-28.

[25] A. N. Mucciardi and E. E. Gose, “A comparison of seven techniques
for choosing subsets of pattern recognition properties,” IEEE Trans.
Cornput., vol. C-20, pp. 1023-1031, Sept. 1971.

(261 D.A. Nichols, “Using idle workstations in a shared computing
environment,” in Proc. Eleventh ACM Symp. Oper. Syst. Principles,

[27] M. L. Powell and B. P. Miller, “Process Migration in DEMOSIMP,”
in Proc. Ninth ACM Symp. Oper. Syst. Principles, Dec. 1983,

[28] R. F. Rashid, “Threads of a new system,” Unii Rev., Aug. 1986,

pp. 225-270.

1987, pp. 5-12.

pp. 110-119.

pp. 37- 49.

66 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 2, NO. 1, JANUARY 1991

APPENDIX
THE OVERALL STRUCTURE OF THE ANIMATION SYSTEM

...
/ * File containing definition of frames used by modules */
#include “po1ygon.h“ / * po1ygon.h contains the structure for poly-tbl */
#define MAXIMAGES 120

struct model-polyconv [

1;
struct polyconv-split {

int image-number;

int image number;
int npolyj
struct polygon poly-tblf MAWOLY I ;

1;

include “animation.h“ /* Structure of Model module */
main (1
(

..

struct model polyconv work;
for(image 5-0; image < MAXIMAGES; image++) { / * loop through images */

compute-geometry();
write-data (1 ;

1

work.image number = frame;
call PolyCOnv(work 1:

/* do modeling and motion computation */
/* write the data on disk-file */

/* Done! Send work to polyconv process */

...
#include “animation .h“ / * Structure of PolyConv module */
PolyConv (job)
struct model-polyconv job;
{

read data () ; /* read data from the disk */
do cEnversion (1 ; /* view transformation etc.on the image */
/*-assign the polygon table to frame polycnv */
polycnv.npoly = npoly; /* assign number of polygons */
strncpy(polycnv.po1y tbl, polygon-table, npoly*sizeof(struct polygon) 1;
call Split(polycnv 7; /* send data to Split */

1

#include “animati0n.h“ / * Structure of Split module */

Split(poly table)
struct polyzonv-split poly-table: ‘

...

do hidden(poly-table I ; /* Hidden surface removal and antialiasing */
write-inage (1 ; /* store image on disk */

1 ..

J. Schaeffer, ‘‘Distributed game-tree searching,’’ J. Parallel Dis-
tributed Comput., vol. 6, pp. 90-114, 1989.
J. F. Shoch and J. A. Hupp, “The Worm programs-Early expe-
rience with a distributed computation,” Commun. ACM, vol. 25,
no. 3, pp. 172-180, Mar. 1982.
G. Singh and M. Green, “Visual programming of graphical user
interfaces,” in Proc. Workshop on Visual Languages, Linkoping,
Sweden, Aug. 1987, pp. 161-173.
-, “A high-level user interface management system,” in Proc.
ACM SIGCHI’89, New York, Apr. 1989.
A. Singh, J. Schaeffer, and M. Green, “Structuring distributed
algorithms in a workstation environment: The Frameworks ap-
proach,” in Proc. Int. Conf., Parallel Processing, vol. 2, Aug. 1989,

A. Singh, “Frameworks: A distributed computing environment,”
Ph.D. dissertation, Dep. Comput. Sci., Univ. of Alberta, 1990, in
preparation.
A. Singh, J. Schaeffer, and M. Green, “Frameworks user manual,”
Dep. Comput. Science, Univ. of Alberta, 1990, in preparation.
M. Theimer, K. Lank, and D. Cheriton, “Preemptable remote
execution facilities for the V system,” in Proc. Tenth ACM Symp.
Oper. Syst. Principles, Dec. 1985, pp. 2-12.

pp. 89-97.

[37] B. Walker, G. Popek, and E. English et al., “The LOCUS dis-
tributed operating system,” in Proc. Ninth ACM Symp. Oper. Syst.
Principles, Dec. 1983, pp. 49-70.

computing using multii

&it Singh finished his undergraduate study in
Electronics and Communication Engineering in
1978 at Bihar Institute of Technology, India. ,

He worked for several years at the R & D
department of Operations Research Group, the
representative company for Sperry Univac Com-
puters in India. During his M.Sc. work at Uni-
versity of Alberta, he worked on the subject
of non-first-normal-form data models. Currently,
for his Ph.D. degree work at University of
Alberta, he is studying the problem of distributed

computer networks.

SINGH et al.: GENERATION OF DISTRIBUTED APPLICATIONS 67

Jonathan Schaeffer (S’82-M’84) received the
B.Sc. degree in computer science from the Uni-
versity of Toronto in 1979, and the M.Math
and Ph.D. degrees in computer science from
the University of Waterloo in 1980 and 1986,
respectively.

He joined the University of Alberta, Edmon-
ton, Alta., Canada, in 1985 and now is an
Associate Professor. His research interests in-
clude artificial intelligence (search algorithms,
heuristics, and learning), and parallel and dis-

tributed computing. He is the author of the chess program Phoenix, which
tied for first place in the 1986 World Computer Chess Championship,
and co-author of the checkers program Chinook, 1989 World Computer
Checkers Champion.

Dr. Schaeffer is a member of the Association for Computing Ma-
chinery, the American Association for Artificial Intelligence, and the
Canadian Information Processing Society.

Mark Green (S’79-M’82) received the M.Sc.
and Ph.D. degrees in computer science from the
University of Toronto in 1979 and 1985.

He is an Associate Professor in the Computing
Science Department at the University of Alberta.
His principle research interests are user inter-
faces, computer animation, high performance
graphics hardware, scientific computation, and
distributed processing. He was an Assistant Pro-
fessor at McMaster University from 1980 to
1983, and moved to the University of Albert in

1984.
Dr. Green founded the ACM UIST series of conferences on user

interface software and was general chairman of the first of these
conferences held in Banff Alberta on October 17-19, 1988. He is a
member of the Association for Computing Machinery and SIAM.

