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Abstract. Single-agent search is a powerful tool for solving a variety of
applications. Most of the academic application domains used to explore
single-agent search techniques have the property that if you start with
a solvable state, at no time in the search can you reach a state that is
unsolvable (it may, however, not be minimal). In this paper we address
the implications that arise when states in the search are unsolvable.
These so-called deadlock states are largely responsible for the failure of
our attempts to solve positions in the game of Sokoban.
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1 Introduction

Single-agent search (A*) has been extensively studied in the literature. There are
a plethora of enhancements to the basic algorithm — a programmer’s tool box —
that allows one to tailor the solution to the problem domain to maximize program
performance (such as iterative deepening [Kor85a], transposition tables [RM94]
and pattern databases [CS96]). The result has been some impressive reductions
in the search effort required to solve challenging applications (see [Kor97] for a
recent example).

Many of the academic applications used to illustrate single-agent search (such
as sliding-tile puzzles and Rubik’s Cube) are “easy” in the sense that they have
some (or all) of the following properties: simple and effective lower-bound estima-
tors, small branching factors and moderate solution depths. These domains also
have the nice property that given a solvable starting state, every move preserves
the solvability. This means that one can construct a real-time search (anytime
algorithm) that can be guaranteed to find a (non-optimal) solution [Kor90].

* This is a revised and updated version of a paper presented at the IJCAI workshop
on Using Games as an Experimental Testbed for Artificial Intelligence Research,
Nagoya, August, 1997.



In the real world, one often has to make irrevocable decisions. Similarly,
search applications (particularly if they are real-time) have to deal with this
complexity. In competitive games programs (such as for chess), the irreversible
moves mean that one may play a move that loses. In the context of single-agent
search, an irreversible move means that one may move from a solvable state to
an unsolvable one. A short-term decision (within the constraints of real time)
may lead to a long-term disaster (problem cannot be solved). How to deal with
this is a difficult problem.

Sokoban is a popular one-player game. Given a topology of rooms and pas-
sageways, the object is to push a number of stones from their current locations
to goal locations. Of interest is that since you can only push, never pull, a single
move can transform the problem from being solvable to being unsolvable. Many
of these so-called deadlock states are trivial to identify (and avoid in the search),
but some require extensive analysis to prove their existence. For example, one
can easily construct an unsolvable Sokoban position that will require a massive
search tree that is hundreds of moves deep to verify the deadlock.

Sokoban is a difficult search application for many reasons:

1. it has a complex lower-bound estimator,

2. the branching factor is large and variable (potentially over 100),

3. the solution may be very deep in the search tree (some problems require over
500 moves to solve optimally), and

4. some states are provably unsolvable (deadlock).

For sliding tile puzzles, for example, there are easy algorithms for generating
a non-optimal solution. In Sokoban, because of the presence of deadlock, often
it is very difficult to find any solution. Finding an optimal solution is much more
difficult.

In this paper, we evaluate the standard single-agent search techniques while
trying to optimally solve Sokoban problems. We identify the existence of dead-
lock as a new property of the search space that has not been addressed in pre-
vious research. We argue that even though standard search techniques have a
dramatic impact on the size of the search, they are insufficient to solve most of
the standard Sokoban problems.

We have constructed an IDA*-based program to solve Sokoban problems
(Rolling Stone). In addition to using the standard single-agent search enhance-
ments (such as transposition tables and move ordering) we introduce a good
lower-bound estimator, deadlock tables, the inertia heuristic and macro moves
that preserve the optimality of the solution. Despite these enhancements chop-
ping orders of magnitude from the search tree size, we can solve only 16 of the 90
benchmark problems. Although this sounds rather poor, it is the best reported
result to date. We believe our techniques can be extended and more problems
will be solved. However, we also conclude that some of the Sokoban problems
are so difficult as to be effectively unsolvable using standard single-agent search
techniques.



2 Sokoban

Sokoban is a popular one-player game. The game apparently originated in Japan,
although the original author is unknown. The game’s appeal comes from the sim-
plicity of the rules and the intellectual challenge offered by deceptively difficult
problems.

The rules of the game are quite simple. Figure 1 shows a sample Sokoban
problem (problem 1 of the standard 90-problem suite available at http://xsoko-
ban.les.mit.edu/xsokoban.html). The playing area consists of rooms and passage-
ways, laid out on a rectangular grid of size 20x20 or less. Littered throughout
the playing area are stones (shown as circular discs) and goals (shaded squares).
There is a man whose job it is to move each stone to a goal square. The man can
only push one stone at a time and must push from behind the stone. A square
can only be occupied by one of a wall, stone or man at any time. Getting all the
stones to the goal nodes can be quite challenging; doing this in the minimum
number of moves is much more difficult.

To refer to squares in a Sokoban problem, we use a coordinate notation. The
horizontal axis i1s labeled from “A” to “I”, and the vertical axis from “a” to “t”
(assuming the maximum sized 20x20 problem), starting in the upper left corner.
A move consists of pushing a stone from one square to another. For example, in
Figure 1 the move Fh-Eh moves the stone on Fh left one square. We use Fh-FEh-
Dh to indicate a sequence of pushes of the same stone. A move, of course, is only
legal if there i1s a valid path by which the man can move behind the stone and
push it. Thus, although we only indicate stone moves (such as Fh-FEh), implicit
in this is the man’s moves from its current position to the appropriate square
to do the push (for Fh-FEh the man would have to move from Li to Gh via the
squares Lh, Kh, Jh, Th and Hh).

The standard 90 problems range from easy (such as problem 1 above) to
difficult (requiring hundreds of stone pushes). A global score file is maintained
that gives the best solution achieved to date (at the above www address). Thus
solving a problem is only part of the satisfaction; improving on one’s solution is
equally important.

Note that there are two definitions of an optimal solution to a Sokoban prob-
lem: the number of stone pushes and the number of man movements. For a few
problems there is one solution that optimizes both; in general they conflict. In
this paper, we have chosen to optimize the number of stone pushes. Both opti-
mization problems are computationally equivalent. Using a single-agent search
algorithm, such as IDA* [Kor85a], one stone push decreases the solution length
by at most one, but may increase it by an arbitrary amount. Optimizing the man
movements involves using non-unitary changes to the lower bound (the number
of man movements it takes to position the man behind a stone to do the push).

Sokoban has been shown to be NP-hard [Cul97,DZ95]. [DZ95] show that
the game is an instance of a motion planning problem, and compare the game
to other motion planning problems in the literature. For example, Sokoban is
similar to Wilfong’s work with movable obstacles, where the man is allowed to
hold on to the obstacle and move with it, as if they were one object [Wil8§].
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Oh-Ph-Qh-Rh Hd-He-Ge-Fe-Ff-Fg-Fh-Gh- Hh-Ih-Jh-Kh-Lh- Mh- Nh-Oh- Ph-Pi- Qi
Ch-Dh-Eh-Fh-Gh- Hh-1h- Jh- Kh-Lh- Mh- Nh- Oh- Ph-Qh

Fig. 1. Sokoban problem 1 and a solution

Sokoban can be compared to the problem of having a robot in a warehouse move
a number of specified goods from their current location to their final destination,
subject to the topology of the warehouse and any obstacles in the way. When
viewed in this context, Sokoban is an excellent example of using a game as an
experimental test-bed for mainstream research in artificial intelligence.

3  Why is Sokoban so Interesting?

Although the authors are well-versed in single-agent search, it quickly became
obvious that Sokoban is not an ordinary single-agent search problem. Much of
the single-agent search literature concentrates on “simple” problems, such as
the sliding tile puzzles or Rubik’s Cube. The following is a listing of problems
encountered with Sokoban that make 1t difficult and essentially cause a program
based solely on the standard single agent-search techniques to fail to solve more
than a handful of problems.

3.1 Lower Bound

In general, it is hard to get a tight lower bound on the solution length for
Sokoban problems. The tighter the bound, the more efficient a single-agent search
algorithm can be. The stones can have complex interactions, with long elaborate
maneuvers often being required to reposition stones. For example, in problem 50
(see Figure 2), the solution requires moving stones through and away from the
goal squares to make room for other stones. Our best lower bound is 100 stone



pushes (see section 4.1), whereas the best human solution required 370 moves
— clearly a large gap, and an imposing obstacle to an efficient IDA* search. For
some problems, without a deep understanding of the problem and its solution,
1t 1s difficult to get a reasonable bound.
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Fig. 2. Sokoban problem 50

3.2 Deadlock

In most of the single-agent search problems studied in the literature, all state
transitions preserve the solvability of the problem (but not necessarily the op-
timality of the solution). This is a consequence of all state transitions (moves)
being reversible (there exists a move sequence which can undo a move). Sokoban
has irreversible moves (e.g. pushing a stone into a corner), and these moves can
lead to states that provably cannot lead to solutions. In effect, a single move can
change the lower bound on the solution length to infinity. If the lower bound
function does not reflect this, then the search will spend unnecessary effort ex-
ploring a sub-tree that has no solution. We call these states deadlocks because
one or more stones will never be able to reach a goal.

Deadlocks can be as trivial as, for example, moving a stone into a corner
(in Figure 1, moving Ch-Bh' creates a deadlock state; the man can never get

! This is in fact an illegal move in that position, since the man can’t reach the stone.
We assume here, that the stone on Fh was not in the maze.



behind the stone to push it out). Some deadlocks can be wide ranging and quite
subtle, involving complex interactions of stones over a large portion of the maze
(in Figure 1, moving Fh-Fg creates a deadlock). Any programming solution to
Sokoban must be able to detect deadlock states so that unnecessary search can
be curtailed.

The presence of deadlock states in a search space creates a serious dilemma
for a real-time search applications (anytime applications). If we have to commit
to a move (because of resource constraints) we may move to a deadlock state,
guaranteeing insolvability. Since many of these deadlock scenarios cannot be
determined without search, the real-time algorithm will have a difficult time
allocating resources to guarantee that a solution will be found.

3.3 Size of Search Space

Sliding tile puzzles have a branching factor of less than 4 and the maximum
solution length for the 15-puzzle is 80. Rubik’s Cube has a branching factor of
18 and a maximum solution length of 20 [Kor97].

The large size of the search space for Sokoban is due to potentially large
branching factors and long solution lengths, compared to the previously studied
problem domains. The number of stones ranges from 6 to 34 in the standard
problem set. With 4 potential moves per stone, the branching factor could be
well over 100! The solution lengths range from nearly 100 to over 650 pushes.
The trees are bushier and deeper than previously studied problems, resulting in
a search space that is considerably larger.

The large size of the search space for Sokoban gives rise to a surprising result.
Consider problem 48 (Figure 3). Our program computes the lower bound as 200
moves. Since human players have solved it in 200 moves, we can conclude that the
optimal solution requires exactly 200 moves. Knowing the solution length is only
part of the answer — one has to find the sequence of moves to solve the problem.
In fact, problem 48 is difficult to solve because of the large branching factor.
Although TDA* will never make a non-optimal move according to its heuristic
estimate of the distance to the goal, it has no idea what order to consider the
moves in. An incorrect sequence of moves can lead eventually to deadlock. For
this problem, to IDA* one optimal move is as good as another. The program
builds a huge tree, trying all the optimal moves in all possible orders. Hence,
even though we have the right lower bound, our program builds an exponentially
large tree and fails to solve problem 48.

4 Towards Solving Sokoban

Although we believe that standard search algorithms, such as IDA* will be
inadequate for solving all 90 Sokoban problems, as a first step we decided to
invest our efforts in pushing the IDA* technology as far as possible. Our goal is
to eventually demonstrate the inadequacy of single-agent search techniques for
this puzzle. This section discusses our work with IDA* and the problems we are
encountering.
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Fig. 3. Sokoban problem 48

4.1 Lower Bound

A naive but computationally inexpensive lower bound is the sum over the dis-
tances of all the stones to their respective closest goal. It is clear however that
only one stone can go to any one goal in any solution. Since there are as many
stones as there are goals and every stone has to be assigned to a goal, we are try-
ing to find a minimum cost (distance) perfect matching on a complete bipartite
graph. Edges between stones and goals are weighted by the distance between
them, and assigned infinity if the stone cannot reach a goal.

Essentially the problem can be summarized as follows. There are n stones
and n goals. For each stone, there is a minimum number of moves that is required
to maneuver that stone to each goal. For each stone and for each goal, there 1s a
distance (cost) of achieving that goal. The problem then is to find the assignment
of goals to stones that minimizes the sum of the costs.

Minimum cost perfect matching for a bipartite graph can be solved using
minimum cost augmentation [Kuh55]. Given a graph with n nodes and m edges,
the cost of computing the minimal cost matching is O(n * m * log(2+m/n)n).
Since we have a complete bipartite graph, m = n?/4 and the complexity is
O(n® x log(a4n/ayn). Clearly this is an expensive computation, especially if it
has to be computed for every node in the search. However, there are several
optimizations that can reduce the overall cost. First, during the search we only
need to update the matching, since each move results in a single stone changing
its distance to the goals. This requires finding a negative cost cycle [Kle67]
involving the stone moved. Second, we are looking for a perfect matching, which
considerably reduces the number of possible cycles to check. Even with these



optimizations, the cost of maintaining the lower bound dominates the execution
time of our program. Most of the lower bounds used in single-agent search in
the literature, such as the Manhattan distance used for sliding tile puzzles, are
trivial in comparison.

One advantage of the minimum matching lower bound is that it correctly
returns the parity of the solution length (Manhattan distance in sliding tile
puzzles also has this property). Thus, if the lower bound is an odd number, the
solution length must also be odd. Using IDA* | this property allows us to iterate
by two at a time.
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Fig. 4. lllustrating lower bound calculations

There are a number of ways to improve the minimum matching lower bound.
Here we introduce two useful enhancements. First, if two adjacent stones are in
each other’s way towards reaching their goal, then we can penalize this position
by increasing the lower bound appropriately. We call this enhancement linear
conflicts because of its similarity to the linear conflicts enhancement in sliding-
tile puzzles [HMY92]. Figure 4 shows an obvious example. The four stones on
If, Ig, Ik and i are obstructing each others’ optimal path to the goals?. We have
to move two stones off their optimal paths to be able to solve this problem (for
example, Ig-Hg to allow the man to push If, and Ii- Hi to move the stone on Ih).
In each case, two additional moves are required. In addition, the stones on Cd
and Ce have a linear conflict. Hence, in this example, the lower bound will be
increased by six.

The second enhancement notes that sometimes stones on walls have to be
backed out of a room, and then pushed back in just to re-orient the position of

2 The optimal path is defined as the route a stone would take if no other stone was in
the maze obstructing its movements.



the man. In Figure 4, the stone on Gt has a backout conflict. Consider this stone
while pretending there are no other stones on the board. The man must move the
stone to a room entrance ((Gi-Gh), push it out of the room (Gh-Fh-Eh-Dh), and
then push it back into the room it came from (Dh-Eh-Gh-HR). This elaborate
maneuver is required because the man has to be on the left side of the stone
to be able to push it off the wall. In this problem, there is only one way to get
to the left of the stone — by backing it out and then back into the room. This
conflict increases the lower bound by six3.

Table 1 shows the effectiveness of our lower bound estimate. The table shows
the lower bound achieved by minimum matching (MM), inclusion of the linear
conflicts enhancement (+LC), inclusion of the backout enhancement (+BO), and
the combination of all three features (ALL). The upper bound (UB) is obtained
from the global Sokoban score file. Since this file represents the best that human
players have been able to achieve, it is an upper bound on the solution length.
The table is sorted according to the last column (Diff), which shows the difference
between the lower and upper bound. Clearly for some problems (notably problem
50) there is a huge gap. Note that the real gap might be smaller, as it is likely
that some of the hard problems have been non-optimally solved by the human
players.

4.2 Transposition Table

The search tree is really a graph. Two different sequences of moves can reach
the same position. The search effort can be considerably reduced by eliminating
duplicate nodes from the search. A common technique is to use a large hash table,
called the transposition table, to maintain a history of nodes visited [SA77]. Each
entry in the table includes a position and information on the parameters that
the position was searched with. Transposition tables have been used for a variety
of single-agent search problems [RM94].

One subtlety of Sokoban is that saving exact positions in the transposition
table misses many transpositions. While the exact positions of the stones is
critical, the exact position of the man is not. Two positions, A and B, are
identical if both positions have stones on the same squares and if the man in
A can move to the location of the man in B. Thus, when finding a match in
the transposition table, a computation must be performed to determine the
reachability of the man. In this way, the table can be made more useful, by
allowing a table entry to match a class of positions.

4.3 Deadlock Tables

Our nitial attempt at avoiding deadlock was to hand-code a set of tests for simple
deadlock patterns into Rolling Stone. This quickly proved to be of limited value,

? Another increase by 4 is achieved by observing that stones moving into the goal
room and targeted at the two lower goals need two extra pushes each to allow the
man into the room, before pushing it to the right.
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Table 1. Lower bounds



since it missed many frequently occurring patterns, and the cost of computing
the deadlock test grew as each test was added. Instead, we opted for a more
“brute-force” approach.

Rolling Stone includes a pattern database [CS96] that we call deadlock tables.
An off-line search is used to enumerate all possible combinations of walls, stones
and empty squares for a fixed-size region. For each combination of squares and
square contents, a small search is performed to determine if deadlock is present
or not. This information is stored in a tree data structure. There are many opti-
mizations that make the computation of the tree efficient. For our experiments,
we built two differently shaped deadlock tables for regions of roughly 5x4 squares
(containing approximately 22 million entries).

When a move Xz-Yy is made, the destination square Yy is used as a base
square in the deadlock table and the direction of the stone move is used to rotate
the region, such that it is oriented correctly. In Figure 4 if the move Gi-Gh is
made, then a deadlock table could cover the bx4 region bounded by the squares
Eh, Ee, Ie and [h. Note that the table can be used to cover other regions as well.
To maximize the usage of the tables, reflections of asymmetric patterns along
the direction the stone was moved in are considered.

Although a 5x4 region may sound like a significant portion of the 20x20
playing area, in fact many deadlocks encountered in the test suite extend well
beyond the area covered by our deadlock tables. Unfortunately, it 1s not practical
to build larger tables.

Note that if a deadlock table pattern covers a portion of the board containing
a goal node, most of the effectiveness of the deadlock table is lost. Once a stone
is on a goal square, it need never move again. Hence, the normal conditions for
deadlock do not apply. Usually moving a stone into a corner creates a deadlock,
but if the square is a goal node, then the position is not necessarily a deadlock.

4.4 Macro Moves

Macro moves have been described in the literature [Kor85b]. Although they
are typically associated with non-optimal problem solving, we have chosen to
investigate a series of macro moves that preserve the solution’s optimality. We
implemented the following two macros in Rolling Stone.

Tunnel Macros In Figure 1, consider the man pushing a stone from Jh to Kh.
The man can never get to the other side of the stone, meaning the stone can
only be pushed to the right. Eventually, the stone on K'h must be moved further:
Jh-Kh-Lh-Mh-Nh-Oh-Ph. Once the commitment is made (Jh-Kh), there is no
point in delaying a sequence of moves that must eventually be made. Hence, we
generate a macro move that moves the stone from Jh to Ph in a single move.
The above example is an instance of our tunnel macro. If a stone 1s pushed
into a one-way tunnel (a tunnel consisting of articulation points? of the underly-
ing graph of the maze), then the man has to push it all the way through to the

* Squares that divide the graph into two disjoint pieces.



other end. Hence this sequence of moves is collapsed into a single macro move.
Note that this implies that macro moves have a non-unitary impact on the lower
bound estimate.

Goal Macros As soon as a stone i1s pushed into a room that contains goals,
then the single-square move 1s substituted with a macro move to move the stone
directly to a goal node. Unlike with the tunnel macro, if a goal macro is present,
it 1s the only move generated. This 1s illustrated using Figure 1. If a stone is
pushed onto the room containing the goal squares (such as square Oh), then this
move is substituted with the goal macro move. This pushes the stone all the
way to the next highest priority empty goal square (Rg or Ri if it is the first
stone into the goal area). The goals are prioritized in a pre-search phase. This is
necessary to guarantee that stones are moved to goals in an order that precludes
deadlock and preserves optimality of the solution.

In Figure 1 a special case can be observed: the end of the tunnel macro
overlaps with the beginning of the goal macro. The macro substitution routine
will discover the overlap and chain both macros together. The effect is that one
longer macro move is executed. In the solution given in Figure 1, the macro
moves are underlined (an underlined move should be treated as a single move).

No Macros
a d
b d a e
d b e b e a f
d cle cle b’ f| c|le b/ f b/ f a
e e fl el deg cf be cf e b ¢f\b b

ab-c d Tunnel Macro Goa Macro ¢

Fig.5. The impact of macro moves



Figure 5 shows the dramatic impact this has on the search. At each node
in the figure, the individual moves of the stone are considered. There are two
stones that can each make a sequence of 3 moves, a-b-c for the first stone, and
d-e-ffor the second stone. The top tree in Figure b shows the search tree with no
macro moves; essentially all moves are tried, whenever possible, in all possible
variations. The left lower tree shows the search tree, if a-b-c¢ is a tunnel macro
and the lower right tree if a-b-c is goal macro.

4.5 Move Ordering

We have experimented with ordering the moves at interior nodes of the search.
For IDA*, move ordering makes no difference to the search, except for the last
iteration. Since the last iteration is aborted once the solution is found, it can
make a big difference in performance if the solution is found earlier rather than
later ([RM94] comment on the effectiveness of move ordering in single-agent
search). One could argue that our inability to solve problem 48 (Figure 3) is
solely a problem of move ordering. For this problem, we have the correct lower
bound - it is just a matter of finding the right sequence of moves.

We are currently using a move ordering schema that we call inertia. Looking
at the solution for problem 1 (Figure 1), one observes that there are long runs
where the same stone is repeatedly pushed. Hence, moves are ordered to preserve
the inertia of the previous move — move the same stone in the same direction if
possible.

5 Experimental Results

Given 20 million nodes of search effort, our program can currently solve 16
problems. Table 2 shows these problems and contains in the second column the
number nodes needed to find a solution (all search enhancements enabled).

These results illustrate just how difficult Sokoban really is. Even with a good
lower bound heuristic and many enhancements to dramatically reduce the search
cost, most problems are still too difficult to solve.

The later columns in table 2 attempt to quantify the benefits of the vari-
ous enhancements made to IDA*. The table shows the results for IDA* using
minimum matching enhanced with: a transposition table (128k entries — TT),
deadlock table (5x4 region — DT), macro moves (goal and tunnel macros — MM),
linear conflicts and backout enhancements (CB), and inertia move ordering (IN).
The ALL column is the number of nodes searched by Rolling Stone with all the
above features enabled. The columns thereafter show the tree size when one of
these features is disabled.

These experiments highlight several interesting points:

1. Because of macro moves, the size of the search tree for problem 1 i1s smaller
than the solution path length!



Problem ALL] ALL-TT| ALLDT| ALL-MM| ALLCB] ALLIN
1 61 61 70 116 61 160
2 1,646| 1,036,503 6,855 370,213|>20,000,000 1,798
3 876 42,732 15,225 16,289 26,940 1,470
4| 213,670|>20,000,000|>20,000,000|>20,000,000|>20,000,000 743,639
6|  10,004|>20,000,000 10,846 >20,000,000 11,393 10,003
7| 88,890/>20,000,000| 6,166,124 744,912 253,404 77,539

17| 126,121|>20,000,000 155,506>20,000,000|>20,000,000 133,439
38| 1,063,178|>20,000,000{ 2,958,995 8,999,852 1,267,181 450,017
51| 125,413]>20,000,000 182,125| 19,817,875|>20,000,000 103,021
63|  256,835|>20,000,000 415,011|>20,000,000{>20,000,000| 6,233,537
65| 4,203,390(>20,000,000| 6,438,584| 13,561,416|>20,000,000|>20,000,000
78 76 76 76 154 1,195 1,902
80 237 237 237 627|>20,000,000 2,524
81|11,887,844(>20,000,000|>20,000,000|>20,000,000| >20,000,000| 7,864,587
82| 1,167,457|>20,000,000| 1,989,577|>20,000,000| 1,359,703| 1,101,122
83 200 232 200 764 13,003 318

Table 2. Experimental Data

. The program can find deep solutions with nominal depth. For example, the
solution to problem 78 is 136 moves, and yet it is found by building a tree
that is only 64 levels deep!

. Problem 63 has a solution length of 431 moves and yet it is found with a
search of only 257,000 nodes.

. Transpositions tables are much more effective than seen in other single-
agent and two-player games. For example, removing transposition tables for
problem 6 increases the search by more than a factor of 2000!

. Without the improvements of the lower-bound estimator (linear and backout
conflict), the search tree for problem 80 increases by over a factor of 84,000!
All the other improvements on the other hand have no or only minor effect
on the search tree size.

. Each of the enhancements can have a dramatic impact on the search tree
size (depending on the problem).

Rolling Stone spends 90% of its execution time updating the lower bound.

Clearly this is an area requiring further attention.

6 Enhancing the Current Program

Our program is still in its infancy and our list of things to experiment with is long.

The following details some of the ways we intend to extend our implementation.

— To help detect larger deadlocks, we propose using localized searches that
prove that for a certain stone combination no solution exists to push them
to goals. It remains to be investigated if the search effort spent in testing for



deadlocks will be offset by the savings gained from avoiding sub-trees with
no solution.

— Our version of IDA* considers all legal moves in a position (modulo goal
macros). For many problems, local searches make more sense. Typically, a
man rearranges some stones in a region. Once done, it then moves on to an-
other region. It makes sense to do local searches rather than global searches.
A challenge here will be to preserve the optimality of solutions.

— The idea of partition search may be useful for Sokoban [Gin96]. For example,
partition search could be used to discover previously seen deadlock states,
where irrelevant stones are in different positions.

— A pre-search analysis of a problem can reveal constraints that can be used
throughout the search. For example, in Figure 1 the stone on Ch cannot
move to a goal until the stone on Fh is out of the way. Knowing that this
is a prerequisite for Ch to move, there is no point in even considering legal
moves for that stone until the right opportunity.

— So far, we have constrained our work by requiring an optimal solution. Intro-
ducing non-optimality allows us to be more aggressive in the types of macros
we might use and in estimating lower bounds.

— Looking at the solution for Figure 1, one quickly discovers that having placed
one stone into a goal, other stones follow similar paths. This is a recurring
theme in many of the test problems. We are investigating dynamically learn-
ing repeated sequences of moves and modifying the search to treat them as
macros.

— Sokoban can also be solved using a backward search. The search can start
with all the stones on goal nodes. Now the man pulls stones instead of pushing
them. The backward search may be useful for discovering some properties of
the correct order that stones must be placed in the goal area(s) (the inverse
of how a backward search can pull them out). This is an interesting approach
that needs further consideration.

7 Conclusions and Future Work

Sokoban is a challenging puzzle — for both man and machine. The traditional
enhanced single-agent search algorithms seem inadequate to solve the entire 90-
problem test suite, even with their dramatic impact on the search tree size.

The property of deadlocks contained in a search space adds considerable com-
plexity to the search. Since deadlock situations are an important consideration in
real world applications, the notion of deadlock needs further attention. Deadlock
tables are beneficial but inadequate to handle these situations. Further work is
needed to identify when deadlocks are likely to occur and either avoid them (if
possible) or invest the resources (search) to verify their existence. The problem
of deadlocks is critical for any real-time application.
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