
New Advances in Alpha-Beta Searching

Jonathan Schaeffer Aske Plaat
Dept. of Computing Science, University of Alberta, Dept. of Computer Science, Erasmus University,

615 General Services Building, Room H4-31, P.O. Box 1738,
Edmonton, Alberta, Canada T6G 2H1 3000 DR Rotterdam, The Netherlands

jonathan@cs.ualberta.ca plaat@cs.few.eur.nl

Abstract

Alpha-Beta has been the algorithm of choice for
game-tree search for over three decades. Its suc-
cess is largely attributable to a variety of enhance-
ments to the basic algorithm that can dramatically
improve the search efficiency. Although state-of-
the-art game-playing programs build trees that are
close in size to the minimal Alpha-Beta search
tree, this paper shows that there is still room for
improvement. Three new enhancements are pre-
sented: best-first Alpha-Beta search, better use of
transpositions, and improvingaspiration search un-
der real-time constraints. Measurements show that
these improvements can reduce search effort by
35%.

Keywords: Alpha-Beta, best-first search, SSS*, heuristic
search, computer chess.

1 Introduction
The Alpha-Beta search algorithm is at the heart of the pro-
gramming strategy for many games. Although this simplistic
depth-first, brute-force approach has not found favor in the
artificial intelligence community, it is hard to argue with its
success. Programs such as Deep Thought in chess (playing at
Grandmaster strength [10]), Chinook at checkers (the Man-
Machine World Champion [27]) and Logistello in Othello
(much stronger than all humans [4]) have achieved spectacu-
lar success with this algorithm. Alternative search strategies
are promising in theory but the results have yet to be demon-
strated in practice (for example, BPIP [1], B* [2], Conspiracy
Numbers [16]).

Three decades of research into Alpha-Beta has resulted in
a large number of enhancements to the algorithm including:

1. Transpositions. Usually the search space is referred to
as a tree. However, it is actually a directed acyclic
graph. Recognizing previously visited nodes allows
one to eliminate potentially large portions of the tree
traversed by Alpha-Beta. Transposition tables are used
to save informationabout visited nodes, in the event that
these nodes are revisited [25].

2. Move ordering. The effectiveness of Alpha-Beta cut-
offs is maximized if the best move is considered first at
all interior nodes of the search tree. Hence research has
concentrated on static (knowledge-based) and dynamic
(information extracted from the search tree) schemes
for ordering moves in a best-to-worst order. Techniques
such as iterative deepening and the history heuristic have
shown that it is possible to achieve excellent move or-
dering [25].

3. Minimal windows. Alpha-Beta searches with a lower
bound (α) and an upper bound (β) on the range of useful
search values, the so-called search window. Narrowing
this window can increase the likelihood of a cutoff [25].
The narrowest, or minimal, window occurs when α +1 =
β (for integer-valued leaf nodes).

4. Variable search depth. All moves are not equal. Some
moves are weak and should be allocated few search
resources. Other moves have potential and should
be explored further. Instead of a fixed-depth search,
many game-playing programs reduce the search depth
for weak moves and increase it for strong moves.

The effects of points 1–3 can be easily quantified. All one
has to do is build fixed-depth search trees with/without the
enhancement and compare the tree size. Unfortunately, it
is difficult to quantify the effects of variable search depths.
Here not only the size of the search tree must be considered,
but also the quality of the answer provided. We do not know
of any fair way of doing this comparison.

In this paper we consider three new enhancements to
the Alpha-Beta algorithm. The first one concerns aspira-
tion searching. An Alpha-Beta search can be called with a
lower bound of �∞ and an upper bound of +∞. Experience
shows that narrowing this window can significantly reduce
the search effort. Aspiration search makes the initial call to
Alpha-Beta with a small search window centered around the
expected value. No problems occur if the search value falls
in the window (has an accurate value) or exceeds the window
(fail high—a better value than expected). The problem oc-
curs when the value of the first move is less than the search
window (fail low).

In the fail low scenario, our search value expectations are
seriously wrong. The usual resolution of this problem is to
re-search the move with the correct search window to find
its true value, and then continue to examine other moves
looking for an improvement. In the critical period until the
program finds the right move, it may not be able to play a
reasonable move if forced to move because of (time) resource
constraints. Instead, on a fail low we propose to restart the



search and use the transposition table values to seed a new
iterative-deepening search. In this way, the new best move is
quickly found. Experiments in chess show that this not only
finds an alternative best move quickly, but also does so with
less search effort.

The second enhancement takes the idea of minimal win-
dows to the extreme: all searches are performed with a min-
imal window. The result of the search is a bound on the true
value. A series of searches allows one to converge on the
minimax value. One way of using this is to start with an up-
per bound of +∞ and search to successively lower that bound
until the exact value is found. Surprisingly, this algorithm
expands the same leaf nodes in the same order as the best-first
algorithm SSS* [28]. In effect, SSS* is now a special case
of depth-first Alpha-Beta.

Instead of starting at +∞ and lowering the bound (SSS*),
or starting at �∞ and raising the bound (DUAL* [15]), we
can start with an approximation of the bound and converge
from there. Using the score from the previous iteration of an
iterative-deepening search yields the new MTD(ƒ) algorithm.
For chess, experimental results show this to be a 9–16%
improvement over the algorithm of choice by most chess
programmers (aspiration window enhanced NegaScout [22]).

The third enhancement improves the benefit of transposi-
tions. For each node, a transposition table typically stores the
depth to which that node was searched, the score achieved
and the best move. When a node is visited in the search, if
the table entry’s value does not cause a cutoff, then the best
move saved in that entry is searched first before other moves
are considered. However, what if another move transposes
into a previously searched part of the tree and that entry has a
value sufficient for a cutoff? Conventional implementations
will miss this cheap cutoff.

The Enhanced Transposition Cutoff (ETC) attempts to
maximize the benefits of the transposition table by doing
additional lookups. By looking up all successors of a node
in the table, additional transpositions to other parts of the
tree can be detected. In particular, if one of these lookups
produces a value sufficient for a cutoff, the search can be
stopped at this node. For chess, experiments show that ETC
can reduce the search tree by 28%.

The benefits of these enhancements are not independent of
each other. Experimental results shows that the combination
of MTD(ƒ) and ETC results in a 35% reduction over con-
ventional aspiration window NegaScout. Given that some
researchers have speculated that there is little of interest left
to explore in sequential fixed-depth Alpha-Beta searching
[25], the magnitude of the improvement is both significant
and surprising.

2 Current State of the Art

There are two popular criteria for assessing the search effi-
ciency: the quality of move ordering and the closeness of the
search tree to the theoretical minimal tree. To give an idea
of the state-of-the-art, we present measurements for these
two criteria for a tournament quality chess program, Phoenix
[24].

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9

%
 S

uc
ce

ss
 (

C
U

T
 N

od
es

)

Depth

Move Ordering in Last Iteration

Phoenix

Figure 1: Quality of Move Ordering by Depth

1 : 1

1.5 : 1

2.0 : 1

2.5 : 1

2 3 4 5 6 7 8 9

T
ot

al
 n

od
es

 L
as

t I
te

ra
tio

n 
R

el
at

iv
e 

to
 M

G
 (

%
)

Depth

AspNS vs MG

MG
Phoenix

Figure 2: Efficiency Relative to Minimal Graph

2.1 Quality of Move Ordering

Considerable research effort has been devoted to improving
the move ordering, so that cutoffs will be found as soon as
possible (for example, the history heuristic, killer heuristic,
iterative deepening and transposition tables [25]). Ideally,
only one move should be considered at nodes where a cutoff
is expected.

Figure 1 shows how often the first move considered caused
a cutoff at nodes where a cutoff occurred (note the vertical
scale). The algorithm used is NegaScout enhanced with
iterative deepening, transposition tables, aspiration windows
and the history heuristic. The data points were averaged over
twenty test positions. The qualityof move ordering of the last
ply is shown. For nodes that have been searched deeply, we
see a success rate of over 90–95%, in line with results reported
by others [9]. Since the searches used iterative deepening,
all but the deepest nodes benefited from the presence of the
best move of the previous iteration in the transposition table.
Near the leaf nodes, the quality of move ordering decreases
to roughly 90%. Here the program does not benefit from
the transposition table and has to rely on move ordering



heuristics. Unfortunately, the majority of the nodes in the
search tree are at the deepest levels. Thus, there is still some
room for improvement.

A phenomenon visible in the figure is an odd/even oscil-
lation. At even levels in the tree, the move ordering appears
to be less effective than at odd levels. This is caused by the
asymmetric nature of the search tree, where nodes along a
line alternate between those with cutoffs (one child exam-
ined) and those where all children must be examined. This is
clearly illustrated by the formula for the minimal search tree,
wbd/2c + wdd/2e � 1 leaf nodes (assuming fixed width w and
depth d), whose growth ratio depends on whether d is even
or odd.

The evidence suggests that the research on move-ordering
techniques for Alpha-Beta search has been very successful.

2.2 The Minimal Tree
In a seminal paper in 1975, Knuth and Moore introduced the
notion of the minimal tree [12]. Any algorithm that wants
to find the minimax value has to search at least this tree.
For actual games, where the game tree is nonuniform, the
minimal tree is usually taken to be Alpha-Beta’s best-case.
Ebeling describes a procedure to compute the size of the
search tree in relation to Alpha-Beta’s best-case [8].

The minimal tree has been used by many authors as a yard-
stick to compare the performance of their search algorithms
in practice. For example, in chess, Belle is reported to be
within a factor of 2.2 of the minimal Alpha-Beta tree [8],
Phoenix within 1.4 (measured in 1985) [24], Hitech within
1.5 [8] and Zugzwang within 1.2 [9]. Using Ebeling’s proce-
dure, we measured the performance of the current version of
Phoenix. The results of the comparison of NegaScout against
this minimal tree are shown in figure 2 (based on all nodes
searched in the last iteration). The figure confirms that the
program can search close to the minimal tree.

An interesting feature is that Phoenix has a significantly
worse performance for even depths. The reason for this can
be found in the structure of the minimal tree. This leads to
an important point: reporting the efficiency of a fixed-depth
search algorithm based on odd-ply data is misleading. The
odd-ply iterations give an inflated view of the search effi-
ciency; even-ply data is more representative of real program
performance. In light of this, the Hitech result of 1.5 for
8-ply searches seems even more impressive [8].

3 Improvements
The measurements of the previous section indicate that the
search efficiency of Alpha-Beta is at a high level. We present
three new Alpha-Beta enhancements to further narrow the
gap between trees built in practice and the minimal search
tree.

3.1 Best-First versus Depth-First?
Alpha-Beta does a rigid depth-first, left-to-right traversal of
the tree. In contrast, the best-first approach of SSS* seems
more appealing. It was proven that SSS* will never examine
more nodes than Alpha-Beta [5, 28], and numerous simu-
lations showed it to build significantly smaller trees (recent
publications include [3, 7, 10, 11, 23]).

function AB-SSS*(n) → ƒ;
g := +∞;
repeat

β := g;
g := Alpha-Beta-with-TT(n, β � 1, β);

until g = β;
return g;

Figure 3: SSS* as a Sequence of Alpha-Beta Searches with
a Transposition Table

Despite the encouraging results, SSS* has been shunned
in practice because of a number of perceived drawbacks:

• It is a complex algorithm that is difficult to understand
or adapt. The algorithm is formulated as an implicit
finite-state machine with six ingeniously interlocking
state-space operators that manipulates a sorted OPEN
list.

• It is slow, because of the overhead of maintaining a
sorted OPEN list.

• It has memory requirements that are exponential in the
search depth. It is widely believed that this makes SSS*
unsuitable for practical use.

This unsatisfactory state of affairs has left many re-
searchers in the field with a nagging feeling. Although Alpha-
Beta-based programs achieve good results, it could be that
depth-first strategies are missing out on some fundamental
notion, and that best-first is a better way.1

Alpha-Beta Goes Best-First
The idea of minimal window search can be taken to its ex-
treme: perform all Alpha-Beta searches with a minimal win-
dow. Since the result of a minimal window search is a lower
or upper bound on the true value, a series of searches must
be conducted to converge on the value. Doing extra searches
sounds expensive, but a cache (the transposition table) can
be used to prevent unnecessary re-searching.

Figure 3 shows one instance of minimal-windows-only
search. Start with +∞ as an upper bound on the search and
then repeatedly decrease it until the true value is found. It
has been formally proven that this code, called AB-SSS*,
expands the same leaf nodes as SSS* [17, 20, 21]. Surpris-
ingly, a best-first algorithm can be reformulated as a special
case of a depth-first algorithm.

Other convergence schemes are possible. Starting with a
lower bound of�∞ and refining it upward yields the DUAL*
algorithm (AB-DUAL*) [15, 22]. Another idea is to use
the bounds that are returned by Alpha-Beta in a bisection
scheme, yielding the C* algorithm [6].

Instead of starting with an extreme initial value, one can
use a heuristic value to “guess” at an initial bound, and
then converge either upward or downward towards the min-
imax value, depending on whether the bound was a lower

1There is potential for confusion between algorithms such as
SSS*,which are principally fixed-depth best-first minimax searches,
and a very different, variable-depth, best-first minimax algorithm
by Korf and Chickering [14].



1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

1.06 : 1

1.09 : 1

1.12 : 1

1.15 : 1

2 3 4 5 6 7 8 9

L
ea

ve
s 

R
el

at
iv

e 
to

 A
sp

ir
at

io
n 

N
eg

aS
co

ut

Depth

Chess

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4: Leaf Node Count Chess

bound or an upper bound, respectively. We call this vari-
ant MTD(ƒ) (an explanation for the choice of name and
the code, a minor modification to figure 3, can be found
in [19, 20]). The intuition behind MTD(ƒ) is that starting a
sequence of minimal-window Alpha-Beta calls close to the
minimax value is cheaper than using a start value of +∞ or�∞, as in SSS* or DUAL*. Empirical tests have established
this assumption to be true, for simulations and for a number
of games [19, 20, 21, 24]. SSS* and DUAL* consists of
many searches that compute uninteresting bounds that are far
away from the target value. MTD(ƒ) consists of a few well-
placed searches, yielding bounds close to the target. In an
iterative deepening setting, a natural choice for the heuristic
start value is the value of a previous iteration.

Test Results
Experiments have been conducted for a variety of algorithms
using Phoenix. Experiments have also been performed for
checkers and Othello with results similar to those reported
here [20, 21]. All algorithms use the same base procedures
with iterative deepening, transposition tables and the history
heuristic. Forward pruning and selective search have been
turned off to ensure comparable results. Results were ob-
tained using 20 test positions that were chosen for providing
reliable and representative results. The results were cross-
checked with different positions and for deeper searches.

Figure 4 shows the number of leaf nodes evaluated by
Alpha-Beta, Aspiration NegaScout (NegaScout enhanced
with aspiration windows), AB-SSS*, AB-DUAL* and
MTD(ƒ) for different search depths. Aspiration NegaScout is
the current algorithm of choice by most chess programmers,
therefore we have chosen this algorithm as our baseline. Fig-
ure 5 shows that MTD(ƒ)’s execution time performance is
proportional to the leaf node count.

From these figures we see a number of interesting points.
First, the performance of all algorithms is within a range of
± 15%, contradicting simulation results that claim SSS* can
be significantly better than Alpha-Beta [15]. The tests differ
because Alpha-Beta-enhancements have improved the per-
formance of all algorithms, and because simulated trees lack
essential properties of real trees [20, 21]. Given these re-
sults, we find that performance comparisons based on vanilla
textbook versions of Alpha-Beta are of no value for the real

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

3 4 5 6 7 8 9

C
PU

 ti
m

e 
ID

-M
TD

(f
) R

el
at

iv
e 

to
 A

sp
N

S 
(%

)

Depth

Chess

AspNS time/leaves
MTD(f) time

MTD(f) leaves

Figure 5: Execution Time Chess

world.
Second, MTD(ƒ) performs better than all other tested al-

gorithms. The intuition that starting close to the minimax
value is efficient has been experimentally justified.

Third, the depth-first Aspiration NegaScout algorithm can
outperform the best-first SSS* algorithm. NegaScout uses
minimal-windowsearch, like our reformulationof SSS*. Us-
ing a non-optimal start value of +∞ leaves room for SSS* to
be outperformed.

Fourth, a word of caution. Since the tested algorithms per-
form quite close together, the relative differences are quite
sensitive to variations in input parameters, such as charac-
teristics of test positions. In generalizing these results, one
should keep this sensitivity in mind. Using these numbers as
absolute predictors for other situations would not do justice
to the complexities of real-life game trees. The experimental
data is better suited to provide insight on, or guide and verify
hypotheses about these complexities.

Other results borne out by experiments are that the mem-
ory requirements of all algorithms are perfectly acceptable
for typical tournament play, since only a small subset of the
visited nodes (the solution tree) has to be stored in mem-
ory. This means that the widely held belief that SSS* uses
inordinate amounts of memory is not correct [19].

SSS*: A Footnote in the Game-Tree Search Literature?
For many years, SSS* has cast doubt on the effectiveness of
depth-first minimax strategies, because a number of publica-
tions showed that best-first strategies had the potential to be
better. We show that best-first can be reformulated as depth-
first plus memory. This reformulation led us to the following
conclusions, dispelling a number of myths:

• The A*-like OPEN list-based formulation of SSS* is un-
clear and inefficient. The AB-SSS* reformulation using
a recursive depth-first procedure and a transposition ta-
ble shows more clearly how the algorithm traverses its
trees, and is easily and efficiently implemented.

• SSS* is not “better” than Alpha-Beta (contradicting,
for example, [23, 28]). It is a special case of Alpha-
Beta. Other variants of Alpha-Beta outperform AB-
SSS*. Thus, the claim should be the other way around:



A

C

B

N

Figure 6: Enhanced Transposition Cutoff

Alpha-Beta-based algorithms are better than SSS*, both
in clarity and performance.

• Best-first algorithms such as MTD(ƒ), DUAL* and
SSS* do not need too much memory in practice.

• There are many application-independent enhancements
to Alpha-Beta. Ignoring them in simulated performance
assessments leads to incorrect results.

• The boundary between best-first and depth-first algo-
rithms in minimax search is fuzzy. If best-first is outper-
formed by depth-first, and if best-first can be reformu-
lated as a special case of depth-first, perhaps we should
look for a different criterion to classify search strategies.
Interestingly, the literature on single-agent search shows
this convergence of depth-first and best-first too, IDA*
[13] being the best known example.

• MTD(ƒ) performs better than the current algorithm of
choice by chess programmers, and is just as easy (or
hard) to implement.

In light of this, we believe that SSS* should now become a
footnote in the history of game-tree search.

3.2 Effective Use of Transpositions
Transposition tables are one of the Alpha-Beta enhancements.
Normally, transpositions are checked at each visit to a node.
If no transposition table cutoff occurs, then the best move sug-
gested by the table is expanded depth-first, before its brothers
are considered. A simple and relatively cheap enhancement
to improve search efficiency is to try and make more effective
use of the transposition table. Consider interior node N with
children B and C (figure 6). The transposition table suggests
move B and as long as it produces a cutoff, move C will never
be explored. However, node C might transpose into a part
of the tree, node A, that has already been analyzed and can
potentially produce an immediate cutoff. Before doing any
search at an interior node, a quick check of all the positions
arising from this node (nodes B and C) in the transposition
table may result in finding a cutoff. We call this technique
Enhanced Transposition Cutoffs, ETC. It performs transpo-
sition table lookups on all successors of a node, looking for
transpositions into previously searched lines. In a left-to-
right search, ETC encourages subtrees in the right part of the
tree to transpose into the left.

Figure 7 shows the results of enhancing Phoenix with ETC.
For search depth 8, ETC lowered the number of expanded

1 : 1.4

1 : 1.3

1 : 1.2

1 : 1.1

1 : 1

1.1 : 1

2 3 4 5 6 7 8 9

T
ot

al
 N

od
es

 L
as

t I
te

ra
tio

n

Depth

Chess - Early Transposition Cutoff

AspNS
AspNS ETC

MTD(f) ETC

Figure 7: Effectiveness of ETC in Phoenix

total nodes by a factor of 1.28 for NegaScout enhanced with
aspiration searching. The combination of MTD(ƒ) and ETC
yields a factor of 1.35 fewer total nodes as compared to
Phoenix’s original algorithm.

The reduction in search tree size offered by ETC is, in part,
offset by the increased computation per node. For chess,
it appears that performing ETC at all interior nodes is not
optimal. A compromise, performing ETC at all interior nodes
that are more than 2 ply away from the leaves, results in
most of the ETC benefits with only a small computational
overhead. Thus, ETC is a practical enhancement to most
Alpha-Beta search programs.

In addition, we have experimented with more elaborate
lookahead schemes. For example, ETC can be enhanced to
also transpose from left to right. At an interior node, all the
children’s positions are looked up in the transposition table.
If no cutoff occurs, then check to see if one of the children
leads to a position with a cutoff score that has not been
searched deep enough. If so, then use the move leading to this
score as the first move to try in this position. Unfortunately,
several variations on this idea have failed to yield a tangible
improvement.

3.3 Failing Low at the Root

Aspiration searching anticipates where the value of a search
lies, and selects a small search window that encompasses
those expectations. If the search returns a result within the
aspiration window, then the expectations have been realized.
Exceeding the search window is usually not a problem; the
search is more favorable than anticipated. However, under
the real-time constraints of a tournament game, a first move
that returns a result below the window (failing low) can cause
serious problems. Typically, most Alpha-Beta implementa-
tions re-search the move to find its true score and then hunt
for better moves. Until the right move is found, there is a
danger that (time) resources will run out and the program
will be forced to move before resolving the difficulty. The
program needs to find an alternative best move quickly.

The solution is to restart the search. If at depth i the search
fails low, restart the search back at depth 1. Information



about the previous search is contained in the transposition
table. When the search is restarted, the best move has a bad
score allowing other moves to move ahead of it in the ordered
move list. Typically, the second best move now becomes best
and stays there until depth i is reached again. By restarting
the search, an alternative best move is quickly generated,
alleviating the problems of the real-time constraint.

This idea has been successful in the checkers program Chi-
nook [26]. To test its effectiveness in chess, the games played
by Phoenix in the recent World Computer Chess Champi-
onship (Hong Kong, 1995) were scrutinized. Three nontriv-
ial fail low scenarios occurred in the five games. Phoenix
was modified so that we could see the impact of the restart
mechanism on these three positions. Note that in the follow-
ing results, for compatibility with the results generated in the
World Championship, Phoenix is using search extensions.

1. The fail low occurred after a search of 3.1 million nodes
(8 ply). Phoenix was unable to find the correct move un-
til 10.7 million nodes had been examined. Using restart,
the program changed its mind several times before fi-
nally finding the right move at 8.4 million nodes.

2. The fail low occurred at 637,000 nodes (7 ply). Without
restart, the correct move was found at 838,000 nodes.
With restart, it is found at 638,000 (3 ply) and deeper
search only confirms the move choice.

3. A fail low occurs at 4 ply and then again at 8
ply (1,200,000 nodes). The right move is found at
12,300,000 nodes. With restart, the failure at 4 ply
restarts the search. This results in different move order-
ing and different search extensions. The correct move
is found after only 203,000 nodes!

The above examples are necessarily anecdotal. Finding inter-
esting fail low examples is difficult; there are no test suites of
fail low positions readily available. However, these results
are consistent with experience gathered from the Chinook
program, indicating that the restart may be a significant im-
provement in the search. Not only does it quickly find better
moves in critical positions, our experience is that in the pres-
ence of search extensions the search results are also more
accurate.

4 Conclusions & Future Research
Even after 30 years of research, the Alpha-Beta algorithm
continues to surprise. Despite many inventive alternatives,
none appears poised to supplant Alpha-Beta as the algorithm
of choice by practitioners. The exponential growth of the tree
with the depth of search hasn’t been an obstacle to achieving
high performance in popular games such as chess, checkers
and Othello.

This paper presents experimental results showing that in
practice it is possible to build almost minimal Alpha-Beta
trees. This is a surprising result, given that an oracle is re-
quired to achieve perfection. Further, this high performance
is achieved without any explicit domain-specific knowledge.
By taking advantage of search space properties (transposi-
tions), minimizing unnecessary information (minimal win-
dows) and using dynamic knowledge gained from the search

1 : 3.0

1 : 2.5

1 : 2.0

1 : 1.5

1 : 1

1.5 : 1

2.0 : 1

2.5 : 1

3.0 : 1

2 3 4 5 6 7 8 9

To
ta

l n
od

es
 L

as
t I

te
ra

tio
n 

R
el

at
iv

e 
to

 L
FM

G
 (%

)

Depth

Chess - Approximate Minimal Graph

AspNS
AspNS ETC

MTD(f) ETC
LFMG

LFMG ETC

Figure 8: LFMG Is Not Minimal, Phoenix

itself (history heuristic), Alpha-Beta avoids the knowledge
acquisition bottleneck which has been an obstacle for many
AI applications.

Given the already high level of Alpha-Beta performance,
it is surprising that there is still room for significant improve-
ment. MTD(f) and ETC reduce search effort in chess by
roughly 35%. Restarting fail low searches also improves the
search, but in a way that is difficult to quantify. Figure 8
is a new version of figure 2, updated to reflect the MTD(ƒ)
and ETC enhancements. This figure also shows that in prac-
tice Alpha-Beta’s best-case is not the smallest graph that
proves the minimax value. What we have been using as the
minimal tree is really the left-most minimal graph (LFMG),
constructed by a left-to-right traversal of a graph. The real
minimal graph (RMG) is smaller, requiring that if there is a
choice of cutoff move, the one building the smallest tree be
selected. Computing the RMG is computationally infeasible
for interesting search depths. The figure shows a loose upper
bound on the RMG that we have computed [18].

This leads to the obvious question: what other improve-
ments are waiting to be discovered? The minimal graph
discussion suggests that one might try to find the cheapest
cutoff. Although we have a number of ideas here, none of
them has yet translated into something usable in practice.

One area that has yet to be adequately explored is the role of
memory. Additional memory can be used to increase the size
of the transposition table, but this leads to diminishing returns
[19]. If large endgame databases are used (as in checkers),
then additional memory can be used for caching expensive
disk I/O. Most chess programs fill all of available memory
with a transposition table. Given the increased availability of
cheap memory, we pose the question: how do you improve
Alpha-Beta search when given a gigabyte of RAM?

5 Acknowledgments
Reformulating SSS* and creating MTD(ƒ) was joint research
with Wim Pijls and Arie de Bruin. We gratefully acknowl-
edge their cooperation.

Some results of this research have appeared previously in
[19].



References
[1] Eric Baum. How a bayesian approaches games like

chess. In Proceedings of the AAAI’93 Fall Symposium,
pages 48–50. American Association for Artificial Intel-
ligence, AAAI Press, October 1993.

[2] Hans J. Berliner and Chris McConnell. B* probability
based search. Artificial Intelligence, 1996. To appear.

[3] Subir Bhattacharya and A. Bagchi. A faster alternative
to SSS* with extension to variable memory. Informa-
tion processing letters, 47:209–214, September 1993.

[4] Michael Buro. Techniken für die Bewertung von Spiel-
situation anhand von Beispielen. PhD thesis, Univer-
sität-Gesamthochschule Paderborn, Germany, Septem-
ber 1994.

[5] Murray Campbell. Algorithms for the parallel search of
game trees. Master’s thesis, Department of Computing
Science, University of Alberta, Canada, August 1981.

[6] K. Coplan. A special-purpose machine for an im-
proved search algorithm for deep chess combinations.
In M.R.B. Clarke, editor, Advances in Computer Chess
3, April 1981, pages 25–43. Pergamon Press, Oxford,
1982.

[7] Arie de Bruin, Wim Pijls, and Aske Plaat. Solution trees
as a basis for game tree search. Technical Report EUR-
CS-94-04, Department of Computer Science, Erasmus
University Rotterdam, Rotterdam, The Netherlands,
May 1994.

[8] Carl Ebeling. All the Right Moves. MIT Press, Cam-
bridge, Massachusetts, 1987.

[9] Rainer Feldmann. Spielbaumsuche mit massiv
parallelen Systemen. PhD thesis, Universität-
Gesamthochschule Paderborn, Germany, May 1993.

[10] Feng-Hsiung Hsu. Large Scale Parallelization of
Alpha-Beta Search: An Algorithmic and Architectural
Study with Computer Chess. PhD thesis, Carnegie Mel-
lon University, Pittsburgh, PA, February 1990.

[11] Hermann Kaindl, Reza Shams, and Helmut Horacek.
Minimax search algorithms with and without aspira-
tion windows. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(12):1225–1235, Decem-
ber 1991.

[12] Donald E. Knuth and Ronald W. Moore. An analysis
of alpha-beta pruning. Artificial Intelligence, 6(4):293–
326, 1975.

[13] Richard E. Korf. Iterative deepening: An optimal ad-
missible tree search. Artificial Intelligence, 27:97–109,
1985.

[14] Richard E. Korf and David W. Chickering. Best-first
minimax search: Othello results. In Proceedings of
the 12th National Conference on Artificial Intelligence
(AAAI’94), volume 2, pages 1365–1370. American As-
sociation for Artificial Intelligence, AAAI Press, Au-
gust 1994.

[15] T. Anthony Marsland, Alexander Reinefeld, and
Jonathan Schaeffer. Low overhead alternatives to SSS*.
Artificial Intelligence, 31:185–199, 1987.

[16] David Allen McAllester. Conspiracy numbers for min-
max searching. Artificial Intelligence, 35:287–310,
1988.

[17] Wim Pijls, Arie de Bruin, and Aske Plaat. Solution trees
as a unifying concept for game tree algorithms. Tech-
nical Report EUR-CS-95-01, Erasmus University, De-
partment of Computer Science, Rotterdam, The Nether-
lands, April 1995.

[18] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie
de Bruin. Nearly optimal minimax tree search? Tech-
nical Report TR-CS-94-19, Department of Computing
Science, University of Alberta,Edmonton, AB, Canada,
December 1994.

[19] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie
de Bruin. Best-first fixed-depth game-tree search in
practice. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI-95), vol-
ume 1, pages 273–279, August 1995.

[20] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie
de Bruin. A minimax algorithm better than SSS*. Ar-
tificial Intelligence, 1995. Accepted for publication.

[21] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie
de Bruin. A minimax algorithmbetter than Alpha-Beta?
no and yes. Technical Report 95-15, University of Al-
berta, Department of Computing Science, Edmonton,
AB, Canada T6G 2H1, May 1995.

[22] Alexander Reinefeld. Spielbaum Suchverfahren.
Informatik-Fachberichte 200. Springer Verlag, 1989.

[23] Alexander Reinefeld and Peter Ridinger. Time-efficient
state space search. Artificial Intelligence, 71(2):397–
408, 1994.

[24] Jonathan Schaeffer. Experiments in Search and Knowl-
edge. PhD thesis, Department of Computing Science,
University of Waterloo, Canada, 1986. Available as
University of Alberta technical report TR86-12.

[25] Jonathan Schaeffer. The history heuristic and alpha-
beta search enhancements in practice. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
11(1):1203–1212, November 1989.

[26] Jonathan Schaeffer, Joseph Culberson, Norman Treloar,
Brent Knight, Paul Lu, and Duane Szafron. A world
championship caliber checkers program. Artificial In-
telligence, 53(2-3):273–290, 1992.

[27] Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin
Bryant. Chinook: The world man-machine checkers
champion. AI Magazine, 1996. To appear.

[28] George C. Stockman. A minimax algorithm better than
alpha-beta? Artificial Intelligence, 12(2):179–196,
1979.


