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Abstract

We exhibit a theoretically founded algorithm T2
for agnostic PAC-learning of decision trees of at
most 2 levels, whose computation time is almost
linear in the size of the training set. We evalu-
ate the performance of this learning algorithm T2
on 15 common “real-world” datasets, and show
that for most of these datasets T2 provides simple
decision trees with little or no loss in predictive
power (compared with C4.5). In fact, for datasets
with continuousattributes its error rate tends to be
lower than that of C4.5. To the best of our knowl-
edge this is the first time that a PAC-learning al-
gorithm is shown to be applicable to “real-world”
classification problems.
Since one can prove that T2 is an agnostic PAC-
learning algorithm, T2 is guaranteed to produce
close to optimal 2-level decision trees from suffi-
ciently large training sets for any (!) distribution
of data. In this regard T2 differs strongly from all
other learning algorithms that are considered in
applied machine learning, for which no guaran-
tee can be given about their performance on new
datasets.
We also demonstrate that this algorithm T2 can
be used as a diagnostic tool for the investigation
of the expressive limits of 2-level decision trees.
Finally, T2, in combination with new bounds on
the VC-dimension of decision trees of bounded
depth that we derive, provides us now for the
first time with the tools necessary for comparing
learning curves of decision trees for “real-world”
datasets with the theoretical estimates of PAC-
learning theory.

1 INTRODUCTION

Numerous articles have been written about the de-
sign and analysis of algorithms for PAC-learning, since

�
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Valiant [Val84] had introduced the model for probably
approximately correct learning in 1984. In applied ma-
chine learning an even larger literature exists about the
performance of various other learning algorithms on “real-
world” classification tasks. However, curiously enough,
this article apparently marks the first time that the perfor-
mance of a PAC-learning algorithm for a model powerful
enough to cover “real-world” datasets as a special case, is
evaluated on “real-world” classification tasks. The PAC-
learning algorithm T2 that we have developed for this pur-
pose is described in section 2 of this article, and results
about its performance on “real-world” classification prob-
lems are discussed in the subsequent sections. In this intro-
duction we will define some basic notions from theoretical
and applied machine learning, and also address some obsta-
cles which one has to overcome in order to combine both
approaches. It should be mentioned in this context, that
although T2 is apparently the first PAC-learning algorithm
that is tested on “real-world” classification problems, there
has previously been already a fruitful migration of various
ideas from PAC-learning theory into applications (see e.g.
[DSS93]).

In applied machine learning concrete datasets from quite
diverse application domains are viewed as prototypes for
“real-world” classification problems. The performance of
many practical learning algorithms on these datasets is
described in a number of interesting comparative studies
(see e.g. [Min89], [WGT90], [WK90], [WK91], [BN92],
[Hol93]). Each dataset is a list of items (typically be-
tween a few dozen and several thousand), each item con-
sisting of � attribute values (typically ��� 40) and an
associated classification. The attributes might be contin-
uous, ranging over R, or categorical, ranging over some
finite set. For some items some of the attribute values
might be missing (i.e. unknown). We will denote items by���	�
�

1 �
���
��� ��� � � 0 � where �
0 ��� 1 �
����������� is the clas-

sification of � out of � possible classes (typically � � 2),
and ��� , � � 1 �
������� � , is the value of attribute � . If �
is continuous then � � � R � � missing � , if � is cate-
gorical then ��� ��� 1 ���
����� �!� missing � for some fixed � ,
usually �#" 6. $ � denotes the space of attribute vectors�
�

1 �����
� � � � � .



A learning algorithm � computes for any list � train of items
from $ ��� � 1 �
����������� a hypothesis ����� train � , which rep-
resents a function from $ � into � 1 �
���
� ����� . The goal
of a learning algorithm is to provide correct classifica-
tions for new items that are produced by the same dis-
tribution � as the training set � train. From this point
of view one can consider a concrete dataset � with 	
items as a result of 	 random drawings according to
this distribution � . The true error (also called gener-
alization error) of a hypothesis 
 : $ ��� � 1 �
���
���
� �
(with respect to the underlying distribution � ) is given by
�������� 
�� : ��� �����

1 ������� � ��� � � 0  "! � � 
#� � 1 ���
� � � � ��$� �
0 � . Of

course

�������� 
�� is not available in practice, but it can be

estimated by the error-rate

�����%

test
� 
�� of 
 (1) on a test

set � test of randomly drawn items from the dataset � . Of
course the expected value of the true error


����&��� ���'� train � �
will in general depend not only on � , but also on the size	 of � train and on the underlying distribution � .

“Agnostic” PAC-learning (due to [Hau92] and [KSS92]) is
the variant of PAC-learning (due to [Val84]) most relevant
to practical machine learning. It differs from normal PAC-
learning in two important ways. In normal PAC-learning,
training data is generated by sampling examples according
to a probability distribution over the space $ � of attribute
vectors, and then classifying them according to a target con-
cept from a known concept class. In agnostic PAC-learning,
the probability distribution is over the product of $ � and
the set � 1 ���
��������� of possible classifications; there is no
notion of target concept or class, and no restriction on the
distribution. The term agnostic emphasizes that the learn-
ing algorithm has no a priori knowledge whatsoever about
the process that classifies examples. The second distinctive
characteristic of agnostic PAC-learning is its definition of
“successful” learning. In normal PAC-learning, an algo-
rithm is required to find an arbitrarily close approximation
to the target concept. In agnostic PAC-learning, the tar-
get is not a concept from a known class but an arbitrary
probability distribution. For many targets there will be no
good approximation in the learning algorithm’s hypothesis
class, ( . To “succeed” in this setting a learning algorithm
is required to find a hypothesis in ( , that approximates the
target distributionnearly as close as possible. An algorithm
is an efficient agnostic learning algorithm (for hypothesis
class ( ) if, for any target distribution, it can find a hypoth-
esis arbitrarily close to the best approximation in ( of the
target distribution, in polynomial time with a polynomially-
sized sample. More precisely, in PAC-learning theory one
says that � is an agnostic PAC-learning algorithm if there
exists a function 	 : R2 � N � N that is bounded by a
polynomial, such that for any given ) �+*-, 0, any � � N,
for any distribution � over $ � � � 1 �����
� ����� , and any se-
quence � train of ./	0� 1 1�) � 1 1 *�� � � items drawn according to� , 2 
���� � � ���'� train � �43 inf 5 !76 � 
���� � � 
��+2 " ) with prob-
ability . 1 3 * (with regard to the random drawing of� train). One says that � is an efficient agnostic PAC-learning
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algorithm if ����� train � can be computed with a number of
computation steps that is bounded by a polynomial in the
(bit-length) size of the representation of � train. [Hau92] and
[KSS92] have shown that there is an efficient PAC-learning
algorithm for a family of hypothesis classes ( � if and only
if the VC-dimension of ( � grows polynomially in � and
there is a polynomial time algorithm that computes for any
set � train of items a hypothesis 
 � ( � that minimizes
����&%

train
� 
�� .

In other attempts to make the original version of PAC-
learning (where one focuses on hypothesis classes ( � and
distributions � such that there is some “target concept”_a` � ( � with


������b� _a` � � 0) more realistic, it has been ex-
tended to include certain “noise models” (see e.g. [AL88],
[EK91], [Elo92], [Kea93], [KL93], [Dec93]): the target
concept

_a` � ( � is either disguised by a large amount of
“white” noise, or by a small (in comparison with the desired
error rate of the learner) fraction of arbitrary (even “mali-
cious”) noise. Unfortunately the version with “white” noise
does not model the situation that one encounters in the here
considered “real-world” classification problems � (e.g. the
systematic noise reported in [DP93]). On the other hand, in
the model with malicious noise the PAC-learner can only
achieve error rates that are intolerably large from the point
of view of applied machine learning.

Although it is rather obvious that the model for agnostic
PAC-learning is the most adequate one for the investigation
of “real-world” classification tasks, relatively few results
are known for this model. One reason is perhaps that there
do exist two remarkable negative results. It has been shown
that neither for ( � � � halfspaces over R

�
� [HSV93] nor

for ( � � � monomials over � boolean attributes � [KSS92]
does there exist an efficient agnostic PAC-learning algo-
rithm (unless ced �]f d ). These negative results are quite
disappointing, since in learning theory one usually views
these as the “simplest” nontrivial hypothesis classes for con-
tinuous and boolean attributes respectively. On the other
hand one did succeed in designing agnostic PAC-learning
algorithms for a few hypothesis classes ( � ([KSS92],
[Maa93], [Maa94], [DGM95]). However, for these classes( � , either the polynomial time bound of the algorithm is too
large, or ( � is less interesting for most applications, since
one expects that the least possible error inf 5 !�6 � 
���� % � 
g�
that one can achieve with hypotheses from this class is, for
“real-world” datasets � , substantially larger than the error
actually achieved by existing heuristic algorithms.

In this article we present not only a polynomial but a nearly
linear time agnostic PAC-learning algorithm T2 for the hy-
pothesis class ( � of 2-level decision trees over � attributes.
The results of our experiments demonstrate that this hypoth-
esis class is rich enough to contain good classifiers for most
of the common “real-world” datasets.

A straightforward exhaustive search algorithm which looks
for the 2-level decision tree with the least error-rate on the
training set runs in polynomial time and satisfies the re-
quirements for efficient agnostic PAC-learning. But notice
that for training sets of size 	 with continuous attributes in



general 	 3 decision trees have to be considered. The main
advantage of our algorithm T2 is that it finds the 2-level
decision tree with the least error-rate on the training set in
nearly linear time � �'	 log 	 � . Thus T2 is applicable even
to very big datasets.

A main difference between an agnostic PAC-learning al-
gorithm and those learning algorithms that are usually
considered in applied machine learning is that an agnos-
tic PAC-learning algorithm � “performs well” for any (!)
distribution � over $ � � � 1 �����
���
� � , in the sense that it
computes, given an � train (sufficiently large relative to the
VC-dimension of ( � ) drawn according to � , a hypothesis���'� train � whose true error (with high probability) is arbi-
trarily close to the least true error of any hypothesis from
the associated hypothesis class ( � . On the other hand, in
applied machine learning one finds out at best that a par-
ticular learning algorithm “performs well” for certain com-
monly considered datasets (“distributions”), and usually it
is quite hard to predict whether such a learning algorithm
will perform well for an entirely new dataset. In fact, even
for extremely successful practical learning algorithms such
as C4.5 [Qui92] it is relatively easy to construct distribu-
tions (respectively datasets) for which they do not “perform
well” in the abovementioned sense, and hence these are not
agnostic PAC-learning algorithms.

In practice, however, training sets are virtually always
smaller than the size needed for these theoretical perfor-
mance guarantees. An important practical question is,
how do agnostic PAC-learningalgorithms perform on “real-
world” training sets? This question is investigated in sec-
tion 3 and 4, where T2 is experimentally evaluated on a
wide variety of “real-world” datasets, and its performance
is compared to C4.5, a state of the art decision tree learning
algorithm.

2 THE AGNOSTIC PAC-LEARNING
ALGORITHM T2

We will describe in this section the new learning algorithm
T2, we prove in Theorem 1 that T2 is a computationally
efficient agnostic PAC-learning algorithm, and we exhibit
some extensions of our approach in Theorems 2 and 3. The
algorithm T2 computes for any given list � of 	 examples� from $ � � � 1 �����
���
� � and any given � � N in � ��� 2 �� 2 � 	 � log 	 � computation steps (on a RAM with uniform
cost criterion) a 2-level tree � that makes a minimal number
of incorrect classifications for points in � (compared with
all other trees in TREE � 2 � � ��� � � � )2.
The hypothesis class TREE � 2 � � �
� � � � consists of all func-
tions � : $ � � � 1 ���
��������� that can be represented by a 2-
level decision tree � in the usual fashion. At the root of � ( �
first level of � ) one queries either a categorical attribute �
with � ��� � " � possible values (in which case � �	� ��
 1 edges
leave the root of � , labeled by 1, ����� , � �	� � , missing), or

2For a special case of depth 2 decision trees (“corners”) a� :	
 log 
 @ algorithm was already given in [Lub94]

one queries a continuous attribute � (in which case 3 edges
leave the root, labeled by � 1 � � 2 � missing, for some par-
tition � 1 � � 2 of R into two intervals)3. On the second level
of � each node � is either labeled by some classification� � � 1 �
����������� , or it queries another attribute � ( � � � is
also allowed). If � is a categorical attribute, the � � � ��
 1
edges with labels 1 ���
� � � � � � � missing, leave the node � .
If � is a continuous attribute, then � ��� ��
 1 " � 
 1
edges leave � with labels � 1 �����
��� ��������� � missing , where
� 1 ���
��� � ��������� is some partition of R into � ��� � " � inter-
vals. Notice that at the root a continuous attribute is only
split into 2 intervals, whereas on the second level it can be
split into up to � intervals. All leaves of � are labelled by
classifications � � � 1 �����
���
� � . It should be noted that up to
2 
 � attributes may be queried altogether in such a 2-level
tree � , and � can have up to � ��
 1 � � � 1 
 max � �!� � � �
leaves.
We will also discuss on the side the hypothesis class
TREE � 1 � � ��� � � � of functions � : $ ��� � 1 ���
��������� that
are defined by 1-level trees. In a 1-level tree only a single
attribute � is queried (at the root of the tree), which has
similarly as the nodes on level 2 of the 2-level trees either
� � � ��
 1 outgoing edges (if � is a categorical attribute), or
up to � 
 1 edges (if � is a continuous attribute). Note
that TREE � 1 � � �
� � � � is the hypothesis class that is used
by Holte’s learning algorithm 1R [Hol93]. In our exper-
iments we have always chosen � : � ��
 1. Further-
more we always identify a decision tree � with the function
� : $ � � � 1 ���
��������� that is computed by � , and occasion-
ally we write TREE ��� � instead of TREE ��� � � ��� � � � .
The algorithm T2 essentially tries out all possible assign-
ments of attributes to the up to ��
 2 query-nodes in a
2-level tree � . This is done in a careful manner so that it
only gives rise to a factor � 2 in the time-bound (instead of�� �! 2). For each assignment of attributes to query nodes
the algorithm T2 computes in � �'	 log 	 � steps (i.e. up
to constant factors as fast as sorting the list � according
to one of its continuous attributes) an optimal assignment
of labels to the edges and leaves in � . More precisely, T2
computes endpoints for the up to max � 2 
 3 � � � �"
 1 � � �
intervals for continuous attributes in � , and it assigns clas-
sifications � � � 1 ���
��� �
� � to all leaves of � , so that the
resulting number of misclassifications of items in � is min-
imal among all 2-level trees with the same assignment of
attributes to query nodes. Of course in case that continuous
attributes are queried both on level 1 and level 2, the as-
sociated intervals cannot be optimized independently from
each other, and the most delicate part of the algorithm T2
is the reduction of this 2-dimensional optimization prob-
lem to a 1-dimensional problem that is more complicated,
but which can be solved in � ��	 log 	 � computation steps
(see [Maa94], [DGM95] for other applications of such a
method).

We create “from below” more complex datastructures,
which not only tell us for an interval � of the range of

3Observe that we treat missing as another attribute value.



a continuous attribute � an optimal split of � into " �
intervals with associated classifications (where “optimal”
refers to minimizing the number of incorrect classifications
of items in � with � � � � ). In addition, we also com-
pute for any � " � the optimal split into � intervals with
associated classifications, and we do this separately for all
possible choices of the classification �

left of the leftmost in-
terval, and all possible choices of the classification �

right of
the rightmost interval. The advantage is, that if we have all
these data available for two adjacent intervals � and ��� , we
can compute rather easily via the procedure MERGE the
corresponding data for the union � � � � of both intervals. In
order to illustrate this, we consider a scenario where � � lies
to the right of � , and for any optimal split of � � � � into �
intervals one of its � intervals has a nonempty intersection
with both � and � � . One can detect (and exhibit) this opti-
mal split if one examines for all � � � 1 ���
��������� and for all
� � � � � � 1 �
������� � � with � 
 � � 3 1 � � the total number
of misclassifications that result from combining an optimal
split of � into � intervals with �

right
� � , and an optimal

split of � � into � � intervals with �
left

� � .
However the procedure for computing an optimal split for
an attribute � that is queried by a node on level 2 has to be in-
tertwined with the search for an optimal decision boundary
for another continuous attribute � that is queried on level 1
(i.e. at the root) of the same decision tree, since otherwise
we would just get an � ��	 2 log 	 � algorithm (instead of
the desired � ��	 log 	 � algorithm). This combination of
2 simultaneous search procedures makes the algorithm T2
conceptually a bit more complicated. We have to assemble
for each interval � the previously described data separately
for each sublist ˜� that may result from � by a split of the
range R of the other attribute � into two intervals �Y3�� � � �
and

� � � � � , where � is the value ��� of attribute � for some� � � with � � � � . This strategy causes another small
technical complication, since the set of values � that arises
in this way, will in general be different for different inter-
vals � � � � . However it turns out to suffice if one combines
in the procedure MERGE the data for some � in the datas-
tructure for � with the next larger value � � that occurs in
the datastructure for � � (since we may in this case conclude
that there does not exist any point � � � with � � � � � and� � � � � � � � � , hence no additional misclassification of points
in � can arise in this way).

More precisely, the algorithm T2 proceeds as fol-
lows. Assume that two continuous attributes � � � �
� 1 �
���
��� � � have been fixed. T2 computes for various
lists ˜� of items from $ � � � 1 �
����������� , for any � �
� 1 �
���
��� � � , and any �

left � � right � � 1 �
���
���
� � , a partition
OPTSPLIT

�
� � � left � � right

� ˜� � of the range R of the attribute �
into � intervals � 1 ���
��� � � � (numbered from left to right),
together with a classification

_ ���	� � � � 1 �
���
���
� � for each
 � � 2 ���
����� �-3 1 � , so that in combination with the clas-
sifications

_ ��� 1 � : � �
left and

_ ��� � � : � �
right this split

minimizes the number of items � in ˜� for which �
0 dif-

fers from the classification
_ ���	� � of the interval ��� with��� � ��� . Formally OPTSPLIT

�
� � � left � � right

� ˜� � is a vec-

tor whose components are the endpoints of those inter-
vals � 1 ���
��� � � � together with their chosen classifications_ ��� 2 � ���
��� � _ ��� ��
 1 � . In addition its last component speci-
fies the number of incorrect classifications of items � � ˜�
that result from this split. The second considered attribute
� determines for which sublists ˜� of � the preceding data
are assembled. Ignoring missing values, all sublists ˜� are
of the form ˜� : � ��� � � : � � � � and � � ��� � or
˜� : � ��� � � : ��� � � and ��� . � � for some interval �
and some � � R. We will focus on the handling of lists ˜�
of the first type, since the handling of lists ˜� of the second
type is analogous. Thus we consider arrays of the form� � � �� � � � : � � OPTSPLIT

�
� � � left � � right

� ��� � � : � � � � and
� � ��� � ��� � left � � right !�� 1 ������� � ���� !�� 1 ��������� ��� � and we write

� � � �� for the list
of all

� � � �� � � � such that ��� ˜��� for some ˜� � � with
˜� � � � , sorted according to � .
We employ a procedure MERGE which computes

� � � ��	�����
from

� � � �� and
� � � �� � for certain pairs � � � � of adjacent in-

tervals (with � � to the right of � ). Consider some � � R
such that � � ˜��� for some ˜� � � with ˜��� � � � � � . In
the case where ˜� � � � , the procedure MERGE combines
data from

� � � �� � � � and
� � � ��	� � � � � , where � � is the least value

ˆ� � for any ˆ� � � with ˆ� � � � � and ˆ� � . � (we had mo-
tivated this choice in our informal remarks). If ˜� � � � � ,
we go to some analogously chosen � � � ˆ��� . � for some
ˆ� � � with ˆ� � � � , and combine data from

� � � �� � � � � and� � � �� � � � � . Since the arrays in the lists
� � � �� and

� � � �� � are
assumed to be sorted according to � , the total number of
computation steps of MERGE is proportional to the product
of � 2 and the number of items � � � with ��� � � � � � (we
assume that � is a constant).
The algorithm T2 initializes these operations with a partition
of R into at most 	 intervals � , such that each � contains
exactly one value ��� of the attribute � of the items � in
� , and it computes

� � � �� for each of these intervals. In
the next phase it merges pairs of adjacent intervals � and
� � (so that each � and � � occurs in exactly one pair), and it
computes

� � � ��	���	� with the help of the procedure MERGE for
each of the resulting larger intervals � � � � . After repeating
this phase � log 	�� 3 1 times, we have in this way computed� � � �

R . Obviously the total number of computation steps in
each phase can be bounded by � ��� 2 � 	 � . Hence we have
computed

� � � �
R in altogether � ��� 2 � 	 log 	 � steps.

From
� � � �

R one can read off in � ��� � 	 � steps for each
value � of the attribute � of some item in � an optimal
assignments of labels to edges and leaves for a subtree
of a decision tree from TREE � 2 � � �
� � � � that queries the
attribute � on level 2, and which is connected by an edge
with label �Y3�� � � � to the node on level 1 where attribute �
is queried.
Analogously one can also compute in altogether � ��� 2 �
	 log 	 � steps such optimal assignment of labels for a
similar subtree which is connected by an edge with label



� � � � � or label “missing” to the node on level 1 where
attribute � is queried.

The algorithm T2 carries out the preceding computations
successively for all attributes � � � , which gives rise to a
factor � 2 in its time bound. In the case where � or � are
categorical attributes, one can replace in the previously de-
scribed subroutines the rather sophisticated computation of
optimal intervals ��� R as labels for edges by an exhaus-
tive search over all of the up to � 
 1 values of a categorical
attribute. Thus we have proven the following result.

Theorem 1 The algorithmT2 computes for any � � N, any
� � N, and any list � of 	 items from $ �#� � 1 �
���
���
� �
in � ��� 2 � � 2 � 	 log 	 � computation steps a decision tree
from TREE � 2 � � ��� � � � that misclassifies a minimal number
of items in � .

Theorem 2 T2 is an algorithm for efficient agnostic PAC-
learning with hypothesis class TREE � 2 � � ��� � � � .

Proof: It is easy to show (see section 4) that for fixed �
the VC-dimension of TREE � 2 � � ��� � � � is bounded by a
polynomial in � and � . This fact, in combination with
Theorem 1, implies according to [Hau92] that T2 is an
efficient agnostic PAC-learning algorithm.

According to Theorem 1 the algorithm T2 outputs a tree �
that minimizes the “disagreement between � and � ”, i.e.2 � � � � : � � � 1 ���
��� � � � �0$� �

0 � 2 . However T2 can eas-
ily be adapted to optimize instead of the “disagreement”
any other “additive split criterion” in the sense of Lubinsky
[Lub94]. In particular it can be used to minimize the total
cost of all misclassifications for any given “confusion ma-
trix” [WK91]. As a special case T2 yields a computational
tool for choosing optimal multi-variate splits with regard to
the split criterion weighted inaccuracy (“wacc”). Lubinsky
[Lub94] has shown that this split criterion “wacc” performs
for many datasets as well as “Gini” [BFOS84], if used as
a criterion for greedy algorithms that build decision trees
of unbounded depth. Another extension of algorithm T2 is
considered in the following result, which may be of some
practical interest for small datasets with few attributes and
� � 3, or even � � 4.

Theorem 3 One can design for any �e. 2 an algorithm T �
that computes in � ��� 2 � ��� � 	 � 
 1 � log 	 � computation
steps for any � � N, any � � N, and any given list � of 	
items from $ � � � 1 �
���
���
� � a tree � � TREE ��� � � �
� � � �
that makes a minimal number of misclassifications of items
in � . Analogously T1 computes in � ��� 2 � � � 	 � log 	 �
steps an optimal tree from TREE � 1 � � �
� � � � . Hence T � , for
� . 1, are algorithms for efficient agnostic PAC-learning
with hypothesis classes TREE ��� � � �
� � � � .

3 EVALUATION OF T2 ON
“REAL-WORLD” CLASSIFICATION
PROBLEMS

In this section, T2’s performance on a diverse set of “real-
world” datasets is experimentally compared with that of
C4.5 ([Qui92]), a state-of-the-art heuristic machine learning
algorithm. C4.5’s hypothesis class includes decision trees
of arbitrary depth, but with only binary splits on continuous
attributes. Of the fifteen datasets used in the experiments
nine (BC,CH,G2,HD,HE,IR,LA,SE,SO) have already been
used in [Hol93], and six are new. AP, the appendicitis
dataset in [WGT90], was kindly supplied by S. Weiss of
Rutgers University. The other five new datasets were ob-
tained from the UCI repository.4 Table 1 gives the datasets’
main characteristics. “Size” is the total number of exam-
ples in the dataset. “Classes” is the number of classes in the
dataset. “Baseline Accuracy” is the percentage of exam-
ples in the most frequently occurring class in the dataset.
“Missing values” indicates whether there are any exam-
ples in the dataset for which the value of some attribute is
unknown. The remaining columns give the number of con-
tinuous (“cont.”) attributes and categorical attributes with
various numbers of values. Attributes that have the same
value on all examples are not counted.
The accuracy ( � percentage of correct classifications on the
testing set) for T2 and C4.5 reported in Table 2 is the aver-
age of 9 independent 25-fold cross-validation5 estimates (a
total of 225 runs were made of each system on each dataset).
The tiny numbers in these lines give the standard deviation
of the 9 crossvalidation estimates6. The complexity of the
trees produced by C4.5 was measured on each run in 3 dif-
ferent ways: “dynamic complexity” ( � � � � ) is the number of
attributes queried in order to classify the average example;
“% , 2” is the percentage of examples classified at depth
greater than 2; and “depth” is the depth of the tree. Table
2 gives the average of each complexity measure over all
the runs. Sky2 is the optimal accuracy of any 2-level tree
on the entire dataset; it was obtained by running T2 on the
whole dataset.

Comparing the accuracy results, we observe several effects.
On HE and LA the difference between T2’s and C4.5’s ac-

4FTP site ics.uci.edu, directory pub/machine-learning-
databases. The subdirectories in the repository correspond-
ing to these datasets are: credit-screening (CR), ionosphere
(IO), pima-indians-diabetes (PI), molecular-biology/promoter-
gene-sequences (PR), and molecular-biology/splice-junction-
gene-sequences (SP).

5To evaluate a learning algorithm � on a dataset 8 by � -fold
cross-validation one partitions 8 randomly into � pieces of about
equal size. For each of the resulting � pieces 8�� one computes the
hypothesis � : 8 train @ for 8 train : 9 8	� 8 � and records its error-rateEFGIG�H test J � : 8 train @ L for 8 test : 9 8�� . One then takes the average
of the resulting � error-rates EFGIG H test J � : 8 train @ L as a measure for
the performance of learning algorithm � on dataset 8 .

6The standard deviation gives a very rough estimate on the
significance of the difference between the averages for T2 and
C4.5.



Attributes ... number of distinct values
Baseline Missing

Dataset Size Classes accuracy values cont. 2 3 4 5 6 � 6 Total

AP 106 2 80.2 yes 8 8
BC 286 2 70.3 yes 3 2 1 1 2 9
CH 3196 2 52.2 no 35 1 36
CR 690 2 55.5 yes 6 4 2 1 2 15
G2 163 2 53.4 no 9 9
HD 303 2 54.5 yes 5 3 3 2 13
HE 155 2 79.4 yes 6 13 19
IO 351 2 64.1 no 32 1 33
IR 150 3 33.3 no 4 4
LA 57 2 64.9 yes 8 3 5 16
PI 768 2 65.1 no 8 8
PR 106 2 50.0 no 57 57
SE 3163 2 90.7 yes 7 18 25
SO 47 4 36.2 no 13 3 4 1 21
SP 3190 3 51.9 yes 60 60

Table 1: Datasets used in the experiments

Datasets

HE LA AP G2 IR PI CH SP BC PR SE SO HD IO CR

Sky2 89.0 98.2 96.2 87.7 98.7 78.0 86.9 79.6 79.4 92.5 97.6 100. 82.5 92.9 87.7
T2 78.6 3.1 86.6 2.0 88.6 0.8 79.7 1.4 95.7 0.6 74.8 0.6 86.9 0.0 79.4 0.2 66.3 1.2 69.3 1.8 97.3 0.1 91.1 1.4 67.1 1.2 86.1 0.6 84.2 0.1

C4.5 80.2 1.1 86.1 2.3 85.1 0.8 76.5 1.3 94.1 0.9 73.4 1.1 99.2 0.0 94.4 0.1 75.2 0.4 76.6 1.7 98.0 0.1 97.8 0.6 74.5 0.8 94.3 0.5 84.9 0.4

d.c. 1.91 1.86 1.93 4.37 2.00 6.77 4.56 3.55 1.22 1.65 1.56 1.81 3.22 4.66 2.85
% � 2 10 17 1 90 34 78 58 68 1 10 13 2 83 76 33
depth 4.82 3.00 3.00 9.82 4.00 33.3 13.0 8.00 3.86 3.00 7.56 2.97 14.0 11.2 18.3

Table 2: Experimental comparison of T2 and C4.5

curacy is virtually zero. On AP, G2, IR, and PI (whose
attributes are all continuous) T2’s trees are slightly more
accurate than C4.5’s, which means that for these datasets
T2’s optimal choice of the decision tree (in respect to the
training set) is superior to C4.5’s heuristic choice. On CH
and SP the performance of T2 is limited by the expressive-
ness of the hypothesis class TREE(2) (see the values of
Sky2). On these datasets, and only on these, the restriction
to 2-level trees definitely reduces accuracy.

For the datasets BC, PR, SE, and SO C4.5 found trees
of small depth (compare the complexity measures) with a
higher accuracy than T2’s trees. This suggests that T2 was
overfitting the training data in these cases. This provides a
useful reminder of the fact that the theoretical guarantee of
T2’s performance is not significant when the training set is
small. C4.5 outperformed T2 on HD and IO, too. Note that
for these datasets most examples were classified by C4.5
beyond level 2 of the trees, but that the Sky2 values of HD
and IO were considerable higher than the accuracy of T2.
Dataset CR seems to be a borderline case where C4.5 took
advantage of using a more complex hypothesis than T2,

but also it is likely that T2 was overfitting the training data
(observe that this dataset has two multi-valued categorical
attributes).

Overall we would like to point to the somewhat curious fact
that T2, which is the straightforward implementation of a
simple theoretical approach, produces results that are not
altogether incomparable to those which are produced by a
state-of-the-art learning algorithm such as

_
4 � 5, which is

the result of many years of experimenting and fine-tuning.
This suggests that there exists, especially for domains that
have mostly continuous attributes, substantial room for de-
signing learning algorithms that output simpler hypotheses
and achieve higher accuracy.

Turning to the complexity results, C4.5’s trees had an aver-
age dynamic complexity of 2.93, and an average depth of
9.32. T2’s trees, of course, are guaranteed to have a dy-
namic complexity and depth of at most 2. Depth (or some
other measure of static complexity) is a suitable complex-
ity measure if the tree is to be interpreted by humans. In
this case, “a simple, although only approximately accurate



concept definition may be more useful than a completely
accurate definition which involves a lot of detail” (p.223
[BB94]). From this perspective, C4.5’s trees for G2, CR,
PI, and SE are clearly too complex. For HD and IO, C4.5’s
trees are considerably more complex than T2’s but only
moderately more accurate. For the purposes described in
[BB94], T2’s trees are the more desirable. CH and SP are
special cases since they absolutely require a complex tree
to attain high accuracy.
In the framework defined in [BB94], the hypotheses pro-
duced by “learning algorithms” are not used to predict un-
seen instances, but to summarize the contents of a dataset.
An intriguing question is whether common “real-world”
classification problems � can in fact be characterized ac-
curately by a simple hypothesis of a given type, see e.g.
[Elo94]. Unfortunately very little information of this type
is available at this point, since it is usually too time consum-
ing to compute min 5 !76 
����&% ��
 � for interesting classes (
of simple hypotheses and common datasets � (for an ex-
ception see [WGT90] for the case of production rules of
length " 3 on the dataset � � ). It should be noted here that,
because OPT[BB94] and 1Rw[Hol93] are heuristic mea-
sures, these values underestimate the ability of simple rules
to summarize a dataset. However with the help of the algo-
rithms T � from section 2, it is feasible now to calculate the
true capacity for summarization for the hypothesis spaces
TREE ��� � � ��� � � � for small values of � . The average of the
Sky2 values in Table 2 is 89.8%, and it is below 85% on
only 4 of the datasets. Clearly, T2 is an excellent algorithm
for the task of summarizing datasets defined in [BB94].

4 LEARNING CURVES FOR DECISION
TREES OF SMALL DEPTH

At the heart of learning theory are certain statistical results
(due to [Vap82], [BEHW89], [Hau92], [Tal94], [DL95] and
others) that provide for any distribution � , and any size of
the training set � train drawn according to � , an upper bound
for the difference between the true error 
���� � � ˆ
-� of a
hypothesis ˆ
 � ( that minimizes


���� %
train
� 
�� and the

least true error inf 5 !�6 
���� � � 
g� of any hypothesis in ( .
However, because of the previous lack of algorithms that
are sufficiently efficient so that one can actually compute
such hypotheses ˆ
 for interesting hypothesis classes ( and
“real-world” data, these theories have so far been tested only
an artificial data (see e.g. [SSSD90], [CT92]).

Our new algorithm T2 now permits us, for the first time,
to actually compute a hypothesis ˆ
 � TREE � 2 � that min-
imizes


����&%
train , hence we can evaluate the predictions of

this essential piece of PAC-learning theory on “real-world”
classification problems. This is of quite some interest, be-
cause the abovementioned results hold for the worst case
distribution � of data and hence also for those distribu-
tions that “generate” the common benchmark datasets � .
But so far it is unknown whether the distributions � that
generate these “real-world” datasets � behave enough like

worst-case distributions to make these theoretical estimates
significant.

There is an important difference between decision trees of
a fixed depth � for classification problems with categori-
cal attributes, and decision trees of depth � that also have
continuous attributes. In the latter case the number of trees
that cause different classifications for some points in � train
grows with the number of examples in � train, whereas it is
fixed in the first case. This might suggest that choosing
a 2-level decision tree that optimally fits the training set
is especially harmful (because of “overfitting”) for those
learning problems that possess some continuous attributes.
However the abovementioned theoretical results entail that
not really the size of the hypothesis class ( � (respectively
of � 
�� � train : 
 � ( � �7� is relevant in this context, but
only the VC-dimension of ( � . We will show in Theorem 4
that continuous attributes do not increase the VC-dimension
of decision trees by very much. To the best of our knowl-
edge, Theorem 4 provides the first significant bounds for
the VC-dimension of decision trees of bounded depth. Its
proof requires nontrivial combinatorial arguments.

Theorem 4 The VC-dimension of TREE ��� � � ��� � � � can be
bounded by Θ � log � � for any fixed � �
� � � . Furthermore the
contribution of a continuous attribute to this VC-dimension
is not larger than that of a categorical attribute with �#� 1 

log log � � different values.

More precise bounds depend on the specific structure of
the trees (respectively on the relative sizes of � � � � � ��� � � ,
where � is the maximal number of values of a categorical
attribute). For example the VC-dimension of the class of
decision trees from TREE ��� � � � 2 � � � that query on levels
1 ���
��� � � 3 1 categorical attributes with � values, and which
query continuous attributes on level � , lies between � ��

1 � � 
 1 � log � � 
 1 3 � � 
 max ��� � �I�Y� and � � ��
 1 � � 3 1 � log � 
� � � 
 1 � � 
 1 ���]3 1 �Y��
 1 � log log � , where we have to assume
for the upper bound that � is sufficiently large.

Because of space limitations we can report here our experi-
mentally determined learning curves for T1 and T2 only for
the datasets CR and SE. In order to compare these learning
curves with the abovementioned upper bounds on the differ-
ence ) between


�������� ˆ
�� and inf 5 !�6 
������b� 
�� , we have
plotted in Figure 1 the size 	 of � train as a function of the
inverse 1 1�) of this difference ) for the hypothesis classes
TREE � 1 � and TREE � 2 � . We have measured this ) by sub-
tracting from the true errors of the hypotheses T1 �'� train �
respectively T2 �'� train � our best “guesses” Sky1 and Sky2
for the true errors of the best hypotheses for the considered
datasets � . These guesses are somewhat unsatisfactory, but
arguably the best approximation that we can achieve (with-
out having access to further examples from the distribution� that generated � ).
[Hau92], [Tal94], [DL95] have achieved the best known
theoretical bounds for the minimal size 	 of a training set
that is needed to guarantee a certain value (respectively up-
per bound) for the abovementioned difference ) . Ignoring
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Figure 1: Learning curves for CR and SE: functional dependency of 	 on 1 1�)
log-factors and the dependency on the confidence parameter
* , these yield an upper bound 	 � �

�
VC-dim � 6 �� 2 � which

holds for any distribution � [Tal94], and a lower bound
	 � Ω

�
inf 5 !76 
���� � � 
�� � VC-dim � 6 �� 2 � which holds for

some distribution � [DL95].

Unfortunately these upper and lower bounds differ by large
constant factors, and hence one cannot predict from these
bounds for concrete distributions � the actual functional de-
pendency of 	 on ) . However these bounds do predict that	 depends on ( only through the VC-dimension of ( , and
through inf 5 !76 
���� � � 
�� in the case of the lower bound.
One easy way of testing this prediction (at least heuristi-
cally) is to estimate the size of the terms VC-dim � TREE � 2 ���

VC-dim � TREE � 1 ��� ,
respectively inf ��� TREE � 2 �	��
�
���
 5���� VC-dim � TREE � 2 � �

inf ��� TREE � 1 �	��
�
���
 5���� VC-dim � TREE � 1 � � , by which
these upper and lower bounds differ for the two considered
hypothesis classes TREE � 1 � and TREE � 2 � . Our bounds
for the VC-dimension of decision trees indicate that for CR
these terms have values between 17 and 25, and that for SE
the first term has a value around 4 and the second term a
value around 2. These theoretically predicted values match
quite well the “factors” by which the curves for T1 and T2
differ in Figure 1.

With regard to the functional dependencies of 	 on ) the
diagram for SE in Figure 1 suggests a growth that is con-
sistent with the bounds with 	�� 1 1�) 2. The diagram for
CR rather suggests a functional dependence of the form	�� log 1 1�) , that has previously already been theoretically
predicted and experimentally verified for some artificial
datasets ([TLS89],[SSSD90],[CT92],[HKST94]).

Altogether we believe that the possibility to compute with
the help of our new algorithms T1 and T2 optimal hypothe-
sis 
 � ( for arbitrary (even larger) datasets opens a new
chapter in the experimental investigation of learning curves

for “real-world” data.

5 CONCLUSION

In this paper we presented a novel algorithm, T2, which
computes a decision tree of depth 2 or less in time
� �'	 log 	 � which optimally fits a training set of size 	 .
We derived bounds for the VC-dimension of decision trees
of bounded depth, and proved that T2 is an agnostic PAC-
learning algorithm. The latter guarantees that T2 will pro-
duce close to optimal (in respect to the distribution gener-
ating the examples) 2-level decision trees from sufficiently
large training sets, for any distribution. These theoretical
results were directly applied to several matters of genuine
practical interest. First, T2 was experimentally evaluated
as a learning algorithm by comparing its performance with
that of C4.5 on 15 “real-world” datasets. The accuracy of
T2’s trees rivalled or surpassed C4.5’s on 8 of the datasets,
including all but one of the datasets having only continuous
attributes. In many cases, C4.5’s trees were considerably
more complex than T2’s. T2 was also evaluated as an algo-
rithm for summarizing a dataset. On this task it performed
extremely well. On average, T2’s decision tree summarizes
a dataset with 90% accuracy. Finally, T2, in combination
with VC-dimension bounds we derived, provides us now
for the first time with the tools necessary for comparing
learning curves of decision trees for “real-world” datasets
with the theoretical estimates of PAC-learning theory.
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