
Fringe Search: Beating A* at Pathfinding on Game Maps
Yngvi Björnsson Markus Enzenberger, Robert C. Holte and Jonathan Schaeffer

School of Computer Science Department of Computing Science
Reykjavik University University of Alberta

Reykjavik, Iceland IS-103 Edmonton, Alberta, Canada T6G 2E8
yngvi@ru.is {emarkus,holte,jonathan}@cs.ualberta.ca

Abstract- The A* algorithm is the de facto standard used
for pathfinding search. IDA* is a space-efficient version
of A*, but it suffers from cycles in the search space (the
price for using no storage), repeated visits to states (the
overhead of iterative deepening), and a simplistic left-
to-right traversal of the search tree. In this paper, the
Fringe Search algorithm is introduced, a new algorithm
inspired by the problem of eliminating the inefficiencies
with IDA*. At one extreme, the Fringe Search algo-
rithm expands frontier nodes in the exact same order
as IDA*. At the other extreme, it can be made to ex-
pand them in the exact same order as A*. Experimental
results show that Fringe Search runs roughly 10-40%
faster than highly-optimized A* in our application do-
main of pathfinding on a grid.

1 Introduction

Pathfinding is a core component of many intelligent agent
applications, ranging in diversity from commercial com-
puter games to robotics. The ability to have autonomous
agents maneuver effectively across physical/virtual worlds
is a key part of creating intelligent behavior. However, for
many applications, especially those with tight real-time con-
straints, the computer cycles devoted to pathfinding can rep-
resent a large percentage of the CPU resources. Hence,
more efficient ways for addressing this problem are needed.

Our application of interest is grid-based pathfinding. An
agent has to traverse through a two-dimensional world.
Moving from one location in the grid to another has a
cost associated with it. The search objective is to travel
from a start location in the grid to a goal location, and
do so with the minimum cost. In many commercial com-
puter games, for example, pathfinding is an essential re-
quirement for computer agents (NPCs; non-player charac-
ters) [Stout, 1996]. For real-time strategy games, there may
be hundreds of agents interacting at a time, each of which
may have pathfinding needs. Grid-based pathfinding is also
at the heart of many robotics applications, where the real-
time nature of the applications requires expensive pathfind-
ing planning and re-planning [Stentz, 1995].

A* [Hart et al., 1968] and IDA* [Korf, 1985] (and their
variants) are the algorithms of choice for single-agent opti-
mization search problems. A* does a best-first search; IDA*
is depth-first. A* builds smaller search trees than IDA* be-
cause it benefits from using storage (the Open and Closed
Lists), while IDA* uses storage which is only linear in the
length of the shortest path length. A*’s best-first search does
not come for free; it is expensive to maintain the Open List
in sorted order. IDA*’s low storage solution also does not

come for free; the algorithm ends up re-visiting nodes many
times. On the other hand, IDA* is simple to implement,
whereas fast versions of A* require a lot of effort to imple-
ment.

IDA* pays a huge price for the lack of storage; for a
search space that contains cycles or repeated states (such
as a grid), depth-first search ends up exploring all distinct
paths to that node. Is there any hope for the simplicity of a
depth-first search for these application domains?

A* has three advantages over IDA* that allows it to build
smaller search trees:

1. IDA* cannot detect repeated states, whereas A* ben-
efits from the information contained in the Open and
Closed Lists to avoid repeating search effort.

2. IDA*’s iterative deepening results in the search re-
peatedly visiting states as it reconstructs the frontier
(leaf nodes) of the search. A*’s Open List maintains
the search frontier.

3. IDA* uses a left-to-right traversal of the search fron-
tier. A* maintains the frontier in sorted order, expand-
ing nodes in a best-first manner.

The first problem has been addressed by a transposition
table [Reinefeld and Marsland, 1994]. This fixed-size data
structure, typically implemented as a hash table, is used to
store search results. Before searching a node, the table can
be queried to see if further search at this node is needed.

The second and third problems are addressed by intro-
ducing the Fringe Searchalgorithm as an alternative to
IDA* and A*. IDA* uses depth-first search to construct
the set of leaf nodes (the frontier) to be considered in each
iteration. By keeping track of these nodes, the overhead of
iterative deepening can be eliminated. Further, the set of
frontier nodes do not have to be kept in sorted order. At
one extreme, the Fringe Search algorithm expands frontier
nodes in the exact same order as IDA* (keeping the fron-
tier in a left-to-right order). At the other extreme, it can be
made to expand them in the exact same order as A* (through
sorting).

This paper makes the following contributions to our un-
derstanding of pathfinding search:

1. Fringe Search is introduced, a new algorithm that
spans the space/time trade-off between A* and IDA*.

2. Experimental results evaluating A*, memory-
enhanced IDA*, and Fringe Search. In our test
domain, pathfinding in computer games, Fringe
Search is shown to run significantly faster than a

highly optimized version of A*, even though it
examines considerably more nodes.

3. Insights into experimental methodologies for compar-
ing search algorithm performance. There is a huge
gap in performance between “textbook” A* and opti-
mized A*, and a poor A* implementation can lead to
misleading experimental conclusions.

4. Fringe Search is generalized into a search framework
that encompasses many of the important single-agent
search algorithms.

Section 2 motivates and discusses the Fringe Search al-
gorithm. Section 3 presents experimental results comparing
A*, memory-enhanced IDA*, and Fringe Search. Section 4
illustrates the generality of the Fringe Search idea by show-
ing how it can be modified to produce other well-known
single-agent search algorithms. Section 5 presents future
work and the conclusions.

2 The Fringe Search Algorithm

We use the standard single-agent notation: g is the cost of
the search path from the start node to the current node; h is
the heuristic estimate of the path cost from the current node
to the goal node; f = g + h; and h∗ is the real path cost to
the goal.

Consider how IDA* works. There is a starting thresh-
old (h(root)). The algorithm does a recursive left-to-right
depth-first search, where the recursion stops when either a
goal is found or a node is reached that has an f value bigger
than the threshold. If the search with the given threshold
does not find a goal node, then the threshold is increased
and another search is performed (the algorithm iterates on
the threshold).

IDA* has three sources of search inefficiency when com-
pared to A*. Each of these is discussed in turn.

2.1 Repeated states

When pathfinding on a grid, where there are mul-
tiple paths (possibly non-optimal) to a node, IDA*
flounders [Korf and Zhang, 2000]. The repeated states
problem can be solved using a transposition table
[Reinefeld and Marsland, 1994] as a cache of visited states.
The table is usually implemented as a (large) hash table to
minimize the cost of doing state look-ups. Each visit to
a state results in a table look-up that may result in further
search for the current sub-tree being proven unnecessary.

A transposition table entry can be used to store the min-
imal g value for this state and the backed-up f value ob-
tained from searching this state. The g values can be used
to eliminate provably non-optimal paths from the search.
The f values can be used to show that additional search at
the node for the current iteration threshold is unnecessary.
In this paper, IDA* supplemented with a transposition table
is called Memory-Enhanced IDA* (ME-IDA*).

2.2 Iterating

Each IDA* iteration repeats all the work of the previous
iteration. This is necessary because IDA* uses essentially
no storage.

Consider Figure 1: each branch is labeled with a path
cost (1 or 2) and the heuristic function h is the number
of moves required to reach the bottom of the tree (each
move has an admissible cost of 1). The left column illus-
trates how IDA* works. IDA* starts out with a threshold
of h(start) = 4. Two nodes are expanded (black circles)
and two nodes are visited (gray circles) before the algorithm
proves that no solution is possible with a cost of 4. An
expanded node has its children generated. A visited node
is one where no search is performed because the f value
exceeds the threshold. The f threshold is increased to 5,
and the search starts over. Each iteration builds a depth-
first search, starting at start, recursing until the threshold
is exceeded or goal is found. As the figure illustrates, all
the work of the previous iteration i must be repeated to re-
construct the frontier of the search tree where iteration
i + 1 can begin to explore new nodes. For domains with
a small branching factor, the cost of the iterating can domi-
nate the overall execution time. In this example, a total of 17
nodes have to be expanded (start gets expanded 3 times!)
and 27 nodes are visited.

IDA∗ Fringe Search flimit

2 1 1

2 2 2

1 2

1 1 2 1 1

goal

start

2 1 1

2 2 2

1 2

1 1 2 1 1

goal

start

4

2 1 1

2 2 2

1 2

1 1 2 1 1

start

goal

2 1 1

2 2 2

1 2

1 1 2 1 1

start

goal 5

2 1 1

2 2 2

1 2

1 1 2 1 1

start

goal

2 1 1

2 2 2

1 2

1 1 2 1 1

start

goal 6

Figure 1: Comparison of IDA∗ and Fringe Search on an
example graph. Visited nodes (gray) and expanded nodes
(black) are given for each iteration

There exist IDA* variants, such as IDA* CR
[Sarkar et al., 1991], that can reduce the number of it-
erations. However, IDA* could be further improved if the
repeated states overhead of iterating could be eliminated all
together. This can be done by saving the leaf nodes (the
frontier) of the iteration i search tree and use it as the
starting basis for iteration i + 1.

The middle column of Figure 1 illustrates how this algo-
rithm works. It starts with start and expands it exactly as in
IDA*. The two leaf nodes of the first iteration are saved, and
are then used as the starting point for the second iteration.
The second iteration has 3 leaf nodes that are used for the
third iteration. For the last iteration, IDA* has to visit ev-
ery node in the tree; the new algorithm only visits the parts
that have not yet been explored. In this example, a total of
9 nodes are expanded and 19 nodes are visited. Given that
expanded nodes are considerably more expensive than vis-
ited nodes, this represents a substantial improvement over
IDA*.

This new algorithm is called the Fringe Search, since the
algorithm iterates over the fringe (frontier) of the search
tree1. The data structure used by Fringe Search can be
thought of as two lists: one for the current iteration (now)
and one for the next iteration (later). Initially the now list
starts off with the root node and the later list is empty. The
algorithm repeatedly does the following. The node at the
head of the now list (head) is examined and one of the fol-
lowing actions is taken:

1. If f(head) is greater than the threshold then head is
removed from now and placed at the end of later.
In other words, we do not need to consider head on
this iteration (we only visited head), so we save it for
consideration in the next iteration.

2. If f(head) is less or equal than the threshold then we
need to consider head’s children (expand head). Add
the children of head to the front of now. Node head
is discarded.

When an iteration completes and a goal has not been found,
then the search threshold is increased, the later linked list
becomes the now list, and later is set to empty.

When a node is expanded, the children can be added to
the now list in any order. However, if they are inserted at
the front of the list and the left-to-right ordering of the chil-
dren is preserved (the left-most child ends up at the front of
the list), then the Fringe Search expands nodes in the exact
same order as IDA*. The children can be added in different
ways, giving rise to different algorithms (see the following
section).

2.3 Ordering

IDA* uses a left-to-right traversal of the search frontier. A*
maintains the frontier in sorted order, expanding nodes in a
best-first manner.

1Note that Frontier Search would be a better name, but that name has
already been used [Korf and Zhang, 2000].

The algorithm given above does no sorting — a node is
either in the current iteration (now) or the next (later). The
Fringe Search can be modified to do sorting by having mul-
tiple later buckets. In the extreme, with a bucket for every
possible f value, the Fringe will result in the same node
expansion order as A*. The Fringe Search algorithm does
not require that its now list be ordered. At one extreme one
gets the IDA* left-to-right ordering (no sorting) and at the
other extreme one gets A*’s best-first ordering (sorting). In
between, one could use a few buckets and get partial order-
ing that would get most of the best-first search benefits but
without the expensive overhead of A* sorting.

2.4 Discussion

The Fringe Search algorithm essentially maintains an Open
List (the concatenation of now and later in the previous
discussion). This list does not have to be kept in sorted or-
der, a big win when compared to A* where maintaining the
Open List in sorted order can dominate the execution cost
of the search. The price that the Fringe Search pays is that it
has to re-visit nodes. Each iteration requires traversing the
entire now list. This list may contain nodes whose f values
are such that they do not have to be considered until much
later (higher thresholds). A* solves this by placing nodes
with bad f values at/near the end of the Open List. Thus,
the major performance differences in the two algorithms can
be reduced to three factors:

1. Fringe Search may visit nodes that are irrelevant for
the current iteration (the cost for each such node is a
small constant),

2. A* must insert nodes into a sorted Open List (the cost
of the insertion can be logarithmic in the length of the
list), and

3. A*’s ordering means that it is more likely to find a
goal state sooner than the Fringe Search.

The relative costs of these differences dictates which algo-
rithm will have the better performance.

2.5 Implementation

The pseudo-code for the Fringe Search algorithm is shown
in Figure 2. Several enhancements have been done to make
the algorithm run as fast as possible (also done for A* and
ME-IDA*). The now and later lists are implemented as
a single double-linked list, where nodes in the list before
the current node under consideration are the later list, and
the rest is the now list. An array of pre-allocated list nodes
for each node in the grid is used, allowing constant access
time to nodes that are known to be in the list. An additional
marker array is used for constant time look-up to determine
whether some node is in the list. The g value and iteration
number (for ME-IDA*) cache is implemented as a perfect
hash table. An additional marker array is used for constant
time look-up to determine whether a node has already been
visited and for checking whether an entry in the cache is

Initialize:
Fringe F ← (s)
Cache C[start] ← (0, null),
C[n] ← null for n �= start
flimit ← h(start)
found ← false

Repeat until found = true or F empty
fmin ← ∞
Iterate over nodes n ∈ F from left to right:

(g, parent) ← C[n]
f ← g + h(n)
If f > flimit

fmin ← min(f, fmin)
continue

If n = goal
found ← true
break

Iterate over s ∈ successors(n) from right to left:
gs ← g + cost(n, s)
If C[s] �= null

(g′, parent) ← C[s]
If gs ≥ g′

continue
If F contains s

Remove s from F
Insert s into F after n
C[s] ← (gs, n)

Remove n from F
flimit ← fmin

If found = true
Construct path from parent nodes in cache

Figure 2: Pseudo-code for Fringe Search

valid. As for ME-IDA* (see below), the marker arrays are
implemented with a constant time clear operation.

If the successors of a node n are considered from right-
to-left, then they get added to the Fringe list F such that the
left-most one ends up immediately after n. This will give
the same order of node expansions as IDA*.

3 Experiments

In this section we provide an empirical evaluation of the
Fringe Search algorithm, as well as comparing its perfor-
mance against that of both Memory-Enhanced IDA* (ME-
IDA*) and A*. The test domain is pathfinding in computer-
game worlds.

3.1 Algorithm Implementation Details

For a fair running-time comparison we need to use the
“best” implementation of each algorithm. Consequently,
we invested a considerable effort into optimizing the algo-
rithms the best we could, in particular, by use of efficient
data structures. For example, the state spaces for game and
robotics grids are generally small enough to comfortably fit
into the computer’s main memory. Our implementations

take advantage of this by using a lookup table that pro-
vides a constant-time access to all state information. Ad-
ditional algorithm-dependent implementation/optimization
details are listed below. It is worth mentioning that the most
natural data structures for implementing both Fringe Search
and ME-IDA* are inherently simple and efficient, whereas
optimizing A* for maximum efficiency is a far more in-
volved task.

3.1.1 A∗ Implementation.

The Open List in A∗ is implemented as a balanced binary
tree sorted on f values, with tie-breaking in favor of higher
g values. This tie-breaking mechanism results in the goal
state being found on average earlier in the last f -value pass.
In addition to the standard Open/Closed Lists, marker ar-
rays are used for answering (in constant time) whether a
state is in the Open or Closed List. We use a “lazy-clearing”
scheme to avoid having to clear the marker arrays at the be-
ginning of each search. Each pathfinding search is assigned
a unique (increasing) id that is then used to label array en-
tries relevant for the current search. The above optimiza-
tions provide an order of magnitude performance improve-
ment over a standard “textbook” A∗ implementation.

3.1.2 ME-IDA* Implementation.

Memory-Enhanced IDA* uses a transposition table that is
large enough to store information about all states. The ta-
ble keeps track of the length of the shortest path found
so far to each state (g value) and the backed-up f -value.
There are three advantages to storing this information. First,
a node is re-expanded only if entered via a shorter path
(g(s) < gcached(s)). Second, by storing the minimum
backed-up f -value in the table (that is, the minimum f -
value of all leaves in the sub-tree), the algorithm can detect
earlier when following a non-optimal path (e.g., paths that
lead to a dead-end). Combining the two caching strategies
can drastically reduce the number of nodes expanded/visited
in each iteration.

There is also a third benefit that, to the best of our knowl-
edge, has not been reported in the literature before. When
using non-uniform edge costs it is possible that ME-IDA*
reduces the number of iterations by backing up a larger f -
limit bound for the next iteration. We show an example of
this in Figure 3. The current iteration is using a limit of
10. In the tree to the left transpositions are not detected (A
and A’ are the same node). Nodes with a f -value of 10 and
less are expanded. The minimum f -value of the children is
then backed up as the limit for the next iteration, in this case
min(12, 14) or 12. In the tree to the right, however, we de-
tect that A’ is a transposition into A via an inferior path, and
we can thus safely ignore it (back up a f -value of inf to B).
The f -limit that propagates up for use in the next iteration
will now be 14.

3.2 Testing Environment

We extracted 120 game-world maps from the popular fan-
tasy role-playing game Baldur’s Gate II by Bioware Inc.

f=12

f=14 f=14

next_limit=min(12,14)=12

limit=10 limit=10

next_limit=14

f=10 A A’

B B

A A’

Figure 3: Caching reducing the number of iterations

Rectangular grids were superimposed over the maps to
form discrete state spaces ranging in size from 50 × 50 to
320 × 320 cells, depending on the size of the game worlds
(with an average of approximately 110 × 110 cells). A typ-
ical map is shown in Figure 4.

For the experiments we use two different grid-movement
models: tiles, where the agent movement is restricted to the
four orthogonal directions (move cost = 100), and octiles,
where the agent can additionally move diagonally (move
cost = 150). To better simulate game worlds that use
variable terrain costs we also experiment with two different
obstacle models: one where obstacles are impassable, and
the other where they can be traversed, although at threefold
the usual cost. As a heuristic function we used the mini-
mum distance as if traveling on an obstacle-free map (e.g.
Manhattan-distance for tiles). The heuristic is both admis-
sible and consistent.

On each of the 120 maps we did 400 independent
pathfinding searches between randomly generated start and
goal locations, resulting in a total of 48,000 data points
for each algorithm/model. We ran the experiments on a
1GHz Pentium III computer (a typical minimum required
hardware-platform for newly released computer games), us-
ing a recently developed framework for testing pathfinding
algorithms [Björnsson et al., 2003].

3.3 Fringe Search vs. ME-IDA*

The main motivation for the Fringe Search algorithm was
to eliminate IDA*’s overhead of re-expanding the internal
nodes in each and every iteration. Figure 5 shows the num-
ber of nodes expanded and visited by Fringe Search rela-
tive to that of ME-IDA* (note that the IDA* results are not
shown; most runs did not complete). The graphs are plot-
ted against the initial heuristic estimate error, that is, the
difference between the actual and the estimated cost from
start to goal (h∗(start) − h(start)). In general, the error
increases as the game maps get more sophisticated (larger
and/or more obstacles). We can see that as the heuristic

Figure 4: Example map

error increases, the better the Fringe Search algorithm per-
forms relative to ME-IDA*. This can be explained by the
observation that as the error increases, so will the number
of iterations that IDA* does. The data presented in Tables
1 and 2 allows us to compare the performance of the al-
gorithms under the different pathfinding models we tested.
They are based on pathfinding data on maps with impass-
able and passable obstacles, respectively. The tables give
the CPU time (in milliseconds), iterations (number of times
that the search threshold changed), visited (number of nodes
visited), visited-last (number of nodes visited on the last it-
eration), expanded (number of nodes expanded), expanded-
last (number of nodes expanded on the last iteration), path
cost (the cost of the optimal path found), and path length
(the number of nodes along the optimal path).

The data shows that Fringe Search is substantially faster
than ME-IDA* under all models (by roughly an order of
magnitude). The savings come from the huge reduction in
visited and expanded nodes.

3.4 Fringe Search vs. A*

The A* algorithm is the de factostandard used for pathfind-
ing search. We compared the performance of our new algo-
rithm with that of a well-optimized version of A∗. As we
can seen from Tables 1 and 2, both algorithms expand com-
parable number of nodes (the only difference is that because
of its g-value ordering A∗ finds the target a little earlier in
the last iteration). Fringe Search, on the other hand, vis-
its many more nodes than A*. Visiting a node in Fringe
Search is an inexpensive operation, because the algorithm
iterates over the node-list in a linear fashion. In contrast
A* requires far more overhead per node because of the ex-
tra work needed to maintain a sorted order. Time-wise the
Fringe Search algorithm outperforms A* by a significant

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

%
 N

od
es

 F
R

IN
G

E
 /

M
E

-I
D

A
*

Pathcost - heuristic

Expanded nodes

Tiles/impassable
Octiles/impassable

Tiles/passable
Octiles/passable

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

%
 N

od
es

 F
R

IN
G

E
 /

M
E

-I
D

A
*

Pathcost - heuristic

Visited nodes

Tiles/impassable
Octiles/impassable

Tiles/passable
Octiles/passable

Figure 5: Comparison of nodes expanded/visited by Fringe Search vs. ME-IDA*

Table 1: Pathfinding statistics for impassable obstacles
Octiles Tiles

A* Fringe ME-IDA* A* Fringe ME-IDA*

CPU/msec 1.7 1.3 33.7 1.2 0.8 5.6
Iterations 25.8 25.8 26.9 9.2 9.2 9.2
N-visited 583.4 2490.7 91702.9 607.0 1155.3 11551.3
N-visited-last 27.7 79.5 620.1 54.5 103.8 276.9
N-expanded 582.4 586.5 14139.1 606.0 613.2 4327.6
N-expanded-last 26.7 30.7 115.9 53.5 60.7 127.8
P-Cost 5637.7 5637.7 5637.7 6758.6 6758.6 6758.6
P-Length 46.1 46.1 46.1 68.6 68.6 68.6

margin, running 25%-40% faster on average depending on
the model.

Note that under the passable obstacle model, there is
a small difference in the path lengths found by A* and
Fringe/ME-IDA*. This is not a concern as long as the costs
are the same (a length of a path is the number of grid cells
on the path, but because under this model the cells can have
different costs it is possible that two or more different length
paths are both optimal cost-wise).

Our implementation of Fringe Search is using the IDA*
order of expanding nodes. Using buckets, Fringe Search
could do partial or even full sorting, reducing or eliminat-
ing A*’s best-first search advantage. The expanded-last row
in Tables 1 and 2 shows that on the last iteration, Fringe
Search expands more nodes (as expected). However, the
difference is small, meaning that for this application do-
main, the advantages of best-first search are insignificant.

The ratio of nodes visited by Fringe Search versus A* is
different for each model used. For example, in the impass-
able and passable obstacles model these ratios are approx-
imately 4 and 6, respectively. It is of interest to note that
a higher ratio does not necessarily translate into worse rel-
ative performance for Fringe Search; in both cases the rel-
ative performance gain is the same, or approximately 25%.
The reason is that there is a “hidden” cost in A* not reflected
in the above statistics, namely as the Open List gets larger
so will the cost of maintaining it in a sorted order.

4 Related Algorithms

The Fringe Search algorithm can be seen either as a variant
of A* or as a variant of IDA*.

Regarded as a variant of A*, the key idea in Fringe
Search is that the Open List does not need to be fully sorted.
The essential property that guarantees optimal solutions are
found is that a state with an f -value exceeding the largest f -
value expanded so far must not be expanded unless there is
no state in the Open List with a smaller f -value. This obser-
vation was made in [Bagchi and Mahanti, 1983], which in-
troduced a family of A*-like algorithms based on this prin-
ciple, maintaining a record of the largest f -value of nodes
expanded to date. This value, which we will call Bound,
is exactly analogous to the cost bound used in iterative-
deepening (f -limit); it plays the same role as and is updated
in an identical manner.

Analogous to the FOCAL technique (pp. 88-89,
[Pearl, 1984]) it is useful to distinguish the nodes in the
Open List that have a value less than or equal to Boundfrom
those that do not. The former are candidates for selection to
be expanded in the present iteration, the latter are not.

This is a family of algorithms, not an individual algo-
rithm, because it does not specify how to choose among
the candidates for expansion, and different A*-like algo-
rithms can be created by changing the selection criterion.
For example, A* selects the candidate with the minimum f -
value. By contrast algorithm C [Bagchi and Mahanti, 1983]
selects the candidate with the minimum g-value.

Table 2: Pathfinding statistics for passable obstacles
Octiles Tiles

A* Fringe ME-IDA* A* Fringe ME-IDA*

CPU/msec 2.5 1.9 52.2 1.9 1.1 11.6
Iterations 14.2 14.2 14.2 5.0 5.0 5.0
N-visited 741.7 4728.3 132831.0 800.5 1828.3 23796.2
N-visited-last 27.0 119.7 1464.2 54.8 143.2 817.0
N-expanded 740.7 748.4 18990.1 799.5 816.3 7948.1
N-expanded-last 26.0 33.7 226.1 53.8 70.6 290.1
P-Cost 5000.6 5000.6 5000.6 5920.1 5920.1 5920.1
P-Length 39.5 39.5 39.5 56.3 56.5 56.5

If the heuristic being used is admissible, but not consis-
tent, A* can do an exponential number of node expansions
in the worst case, even if ties are broken as favorably as
possible [Martelli, 1977]. By contrast, C can do at most
a quadratic number of expansions, provided that ties in its
selection criterion are broken in favor of the goal (but oth-
erwise any tie-breaking rule will do)2. If the heuristic is
not admissible, C maintains this worst-case speed advan-
tage and in some circumstances finds superior solutions to
A*.

Fringe Search is also a member of this family. It chooses
the candidate that was most recently added. This gives it a
depth-first behaviour mimicking IDA*’s order of node gen-
eration.

Among the variants of IDA*, Fringe Search is most
closely related to ITS [Ghosh et al., 1994]. ITS is one of
several “limited memory” search algorithms which aim to
span the gap between A* and IDA* by using whatever mem-
ory is available to reduce the duplicated node generations
that make IDA* inefficient. As [Ghosh et al., 1994] points
out, ITS is the only limited memory algorithm which is
not “best first”. SMA* [Russell, 1992], which is typical of
the others, chooses for expansion the “deepest, least-f -cost
node”. ITS, by contrast, is left-to-right depth first, just like
IDA* and Fringe Search. New nodes are inserted into a data
structure representing the search tree, and the node chosen
for expansion is the deepest, left-most node whose f -value
does not exceed the current cost bound. ITS requires the
whole tree structure in order to retract nodes if it runs out of
memory. Because Fringe Search assumes enough memory
is available, it does not need the tree data structure to sup-
port its search, it needs only a linked list containing the leaf
(frontier) nodes and a compact representation of the closed
nodes.

5 Conclusions

Large memories are ubiquitous, and the amount of mem-
ory available will only increase. The class of single-agent
search applications that need fast memory-resident solu-
tions will only increase. As this paper shows, in this case,
A* and IDA* are not the best choices for some applica-

2“Exponential” and “quadratic” are in terms of the parameter N defined
in [Bagchi and Mahanti, 1983].

tions. For example, Fringe Search out-performs optimized
versions of A* and ME-IDA* by significant margins when
pathfinding on grids typical of computer-game worlds. In
comparison to ME-IDA*, the benefits come from avoid-
ing repeatedly expanding interior nodes; compared to A*,
Fringe Search avoids the overhead of maintaining a sorted
open list. Although visiting more nodes than A* does, the
low overhead per node visit in the Fringe Search algorithm
results in an overall improved running time.

Since we ran the above experiments we have spent sub-
stantial time optimizing our already highly-optimized A*
implementation even further. Despite of all that effort A*
is still not competitive to our initial Fringe implementation,
although the gap has closed somewhat (the speedup is ca.
10% for octiles and 20% for tiles). This is a testimony of
one of Fringe search greatest strengths, its simplicity.

As for future work, one can possibly do better than
Fringe Search. Although the algorithm is asymptotically
optimal with respect to the size of the tree explored (since
it can mimic A*), as this paper shows there is much to be
gained by a well-crafted implementation. Although our im-
plementation strove to be cache conscious, there still may
be performance gains to be had with more cache-friendly
data structures (e.g., [Niewiadomski et al., 2003]). Also,
our current implementation of the Fringe Search algorithm
traverses the fringe in exactly the same left-to-right order
as IDA* does. Fringe Search could be modified to traverse
the fringe in a different order, for example, by using buckets
to partially sort the fringe. Although our experimental data
suggests that this particular application domain is unlikely
to benefit much from such an enhancement, other domains
might.

Acknowledgments

This research was supported by grants from the Natural
Sciences and Engineering Council of Canada (NSERC)
and Alberta’s Informatics Center of Research Excellence
(iCORE). This work benefited from the discussions of the
University of Alberta Pathfinding Research Group, includ-
ing Adi Botea and Peter Yap. The research was inspired by
the needs of our industrial partners Electronic Arts (Canada)
and Bioware, Inc.

Bibliography

[Bagchi and Mahanti, 1983] Bagchi, A. and Mahanti, A.
(1983). Search algorithms under different kinds of
heuristics – a comparative study. Journal of the Asso-
ciation of Computing Machinery, 30(1):1–21.

[Björnsson et al., 2003] Björnsson, Y., Enzenberger, M.,
Holte, R., Schaeffer, J., and Yap., P. (2003). Compari-
son of different abstractions for pathfinding on maps. In
International Joint Conference on Artificial Intelligence
(IJCAI’03), pages 1511–1512.

[Ghosh et al., 1994] Ghosh, S., Mahanti, A., and Nau, D. S.
(1994). ITS: An efficient limited-memory heuristic tree
search algorithm. In National Conference on Artificial
Intelligence (AAAI’94), pages 1353–1358.

[Hart et al., 1968] Hart, P., Nilsson, N., and Raphael, B.
(1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybernet.,
4(2):100–107.

[Korf, 1985] Korf, R. (1985). Depth-first iterative-
deepening: An optimal admissible tree search. Artificial
Intelligence, 27:97–109.

[Korf and Zhang, 2000] Korf, R. and Zhang, W. (2000).
Divide-and-conquer frontier search applied to optimal
sequence alignment. In National Conference on Artifi-
cial Intelligence (AAAI’02), pages 910–916.

[Martelli, 1977] Martelli, A. (1977). On the complexity
of admissible search algorithms. Artificial Intelligence,
8:1–13.

[Niewiadomski et al., 2003] Niewiadomski, R., Amaral,
N., and Holte, R. (2003). Crafting data structures: A
study of reference locality in refinement-based path find-
ing. In International Conference on High Performance
Computing (HiPC), number 2913 in Lecture Notes in
Computer Science, pages 438–448. Springer.

[Pearl, 1984] Pearl, J. (1984). Heuristics: Intelligent
Search Strategies for Computer Problem Solving. Ad-
dison & Wesley.

[Reinefeld and Marsland, 1994] Reinefeld, A. and Mars-
land, T. (1994). Enhanced iterative-deepening search.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 16:701–710.

[Russell, 1992] Russell, S. J. (1992). Efficient memory-
bounded search methods. In European Conference on
Artificial Intelligence (ECAI’92), pages 1–5, Vienna,
Austria. Wiley.

[Sarkar et al., 1991] Sarkar, U., Chakrabarti, P., Ghose, S.,
and Sarkar, S. D. (1991). Reducing reexpansions in
iterative-deepening search by controlling cutoff bounds.
Artificial Intelligence, 50:207–221.

[Stentz, 1995] Stentz, A. (1995). The focussed D* algo-
rithm for real-time replanning. In International Joint
Conference on Artificial Intelligence (IJCAI’95), pages
1652–1659.

[Stout, 1996] Stout, B. (1996). Smart moves: Intelligent
path-finding. Game Developer Magazine, (October):28–
35.

