
Hex, Braids, the Crossing Rule, and XH-search

Philip Henderson, Broderick Arneson, and Ryan B. Hayward

Dept. of Computing Science, University of Alberta
{ph,broderic,hayward}@cs.ualberta.ca

Advances in Computer Games, Springer Lecture Notes in Computer Science,
Vol. 6048, H.J. van den Herik and P. Spronck (eds), 2010, 88-98

Abstract. We present XH-search, a Hex connection finding algorithm.
XH-search extends Anshelevich’s H-search by incorporating a new cross-
ing rule to find braids, connections built from overlapping subconnec-
tions.

1 Introduction

Hex is the connection game invented by Piet Hein [1] and John Nash [2]. The
board is a rhombus of hexagonal cells. On alternating turns, each player places
a stone of her colour on any vacant cell. The winner is the player who connects
her two opposing edges with a path of her stones. Hex has many nice proper-
ties: additional stones of a player’s colour are never disadvantageous, the game
cannot end in a draw, and the first player has a winning strategy [2]. However,
determining the winner of arbitrary positions is PSPACE-complete [3].

For a Hex position, a point is either a vacant cell or a maximal connected set
of same-coloured stones; the latter is a chain. We assume that board edges are
represented by stones, so a chain can include a board edge. In Hex, a common
tactical question is whether a specified pair of points can be connected. For a
Hex position, a subgame with a second-player strategy (respectively first-player
strategy) to connect two points is a virtual connection or VC (resp. virtual semi
connection or SC). For a VC/SC, the two points connected are its endpoints,
while the set of vacant cells used in the connecting strategy is its carrier. For an
SC, the initial move of the strategy is its key. See Fig. 1.

Anshelevich presented H-search [4, 5], a hierarchical VC/SC composition al-
gorithm. H-search is the foundation of Hexy, Six, and Wolve, the only gold
medal Hex programs of the Computer Games Olympiad [6–10]. H-search uses
three rules, respectively base/AND/OR:
(1) Each player has an empty carrier VC between each pair of adjacent points.
(2) If a player has VCs α1, α2 with endpoint pairs {p0, p1},{p0, p2} and carriers
C1, C2 such that C1 ∪ {p1} and C2 ∪ {p2} do not intersect, then

(i) if the midpoint p0 is vacant, then combining α1, α2 forms an SC with
endpoints p1, p2, carrier C1 ∪ C2 ∪ {p0}, and key p0,

(ii) if the midpoint p0 is a chain for the player, then combining α1, α2 forms
a VC with endpoints p1, p2 and carrier C1 ∪ C2.



12
3

4
56

1
2

3
4 5

6
+

Fig. 1. Diagrams of a Black VC (left) and a Black SC (right). Carriers are shaded,
endpoints are dotted, and the SC key is +. In Black’s VC strategy, which connects
the top dotted cell to the bottom dotted group, if White plays 1 then Black plays 2;
then, if White plays 3 then Black plays 4 and then one of {5,6}. In Black’s SC strategy,
which connects the dotted cells, after playing at the key, Black plays to get one of each
of {1,2}, {3,4}, {5,6}.

(3) If between endpoints p1, p2 a player has SCs α1, . . . , αk with carriers C1,

. . . , Ck such that C1 ∩ . . . ∩ Ck is empty, then combining the SCs forms a VC
with endpoints p1, p2 and carrier C1 ∪ . . . ∪ Ck.

When used in automated Hex players, H-search is usually restricted by lim-
iting the number of SCs used in the OR rule, for otherwise it takes too long.
However, as Anshelevich observed, even unrestricted H-search misses some con-
nections [4, 5], including the SC shown in Fig. 2. We call this SC the braid, as its
substrategies are tangled together. It is of interest to extend H-search in a way
that allows for efficient discovery of new connections.

Melis extended Anshelevich’s implementation of H-search by allowing board
edges as AND rule midpoints [11, 9]. Rasmussen et al. extended H-search by
triggering a VC search if the OR rule finds an SC set with small carrier inter-
section [12]; this finds more connections but the search time grows exponentially
in the number of cells in the search. Yang described a decomposition notation
for Hex connections, including his hand-crafted centre-opening 9 × 9 SC [13,
14], and Noshita introduced union-connections, which are useful in connection
verification but not found by H-search [15, 16]; neither of these techniques has
been used in an automated connection discovery algorithm.

In this paper we present XH-search, an easily implemented extension of H-
search. XH-search finds all connections found by H-search, as well as connections

x

a

b

y

1

2

3

Fig. 2. The braid, an SC not found by H-search. Endpoints are a, b; the key is x or y.
To connect, say after playing at key x, if the opponent blocks at 1 then respond at y

and then claim one of {2, 3}. Notice that within the braid there are VCs between each
of {a, x}, {b, y}, and SCs between each of {x, y}, {x, b}, {a, y}.



built up from braids. The Crossing Rule, a new Hex connection deduction rule,
allows for an efficient implementation of XH-search.

2 Stepping Stones

In order to describe the Crossing Rule we first need to define stepping stones.
Although defined as points that are internal to a connection, we will use them
later as braid endpoints.

Stepping Stone. For a chain X and VC or SC C, X is a stepping stone of C
if following C’s strategy guarantees that C’s endpoints will be connected by a
chain containing X.

For a VC/SC C, SS(C) denotes the set of C’s stepping stones. See Fig. 3.

+

Fig. 3. A VC (left) and SC (middle) with stepping stone. A VC (right) with none.

Lemma 1. Let C be a base rule VC. Then C has no stepping stone: SS(C) = ∅.

Proof. In a base rule VC the two endpoints are neighbours and so already con-
nected. 2

Lemma 2. Let C be a VC computed via the OR rule from SCs C1, . . . , Ck.
Then each chain which is a stepping stone for every Cj is a stepping stone of
C: ∩k

j=1
SS(Cj) ⊆ SS(C).

Proof. If a chain X is a stepping stone for every SC Cj then, regardless of which
SC is maintained, there will be a chain connecting C’s endpoints, equal to Cj ’s
endpoints, that contains X. 2

Lemma 3. Let C be an SC with key k computed via the AND rule from VCs
C1, C2 with vacant midpoint k. Then any chain which is a stepping stone of C1

or C2 is a stepping stone of C: SS(C1) ∪ SS(C2) ⊆ SS(C).

Proof. The strategy that maintains C first plays at k and then maintains both
C1 and C2. C1 connects k to one endpoint, say p1, of C and C2 connects k to the
other endpoint, say p2. Each chain created by C also follows C1 and so connects
p1 to k and contains each stepping stone s1 of C1; similarly, it follows C2 and so
connects p2 to k and contains each stepping stone s2 of C2. 2



Notice in Lemma 3 that k is vacant, so not in a chain, so not in SS(C).

Lemma 4. Let C be a VC or SC computed via the AND rule from connections
C1, C2 with chain midpoint X. Then SS(C1) ∪ SS(C2) ∪ {X} ⊆ SS(C).

Proof. Following the strategies for C1 and C2 ensures that the union of X with
connecting chains for C1 and C2, each of which connects X to an endpoint of C,
forms a connecting chain for C containing X. Thus X is in SS(C). The inclusion
of SS(C1) and SS(C2) in SS(C) follows as in the proof of Lemma 3. 2

For each connection C discovered in XH-search we compute a subset SS∗(C)
of SS(C). SS∗(C) is defined by applying the preceding lemmas, with this ex-
ception: for each VC C computed via the OR rule, SS∗(C) is the empty set. We
refer to this as the SS algorithm.

Lemma 5. Let C be a connection with endpoints p1, p2. Then for any stepping
stone s in SS∗(C) there is a partition S1, S2 of the carrier of C such that S1 is
the carrier of a VC from s to p1, and if C is a VC (resp. SC) then S2 is the
carrier of a VC (resp. SC) from s to p2.

Proof. Argue by induction. If C is a base rule VC then SS∗(C) is empty and
the lemma holds vacuously. Assume next that C is a VC built from connections
whose stepping stones satisfy the lemma. If C is built by the OR rule, then
SS∗(C) is empty and again the lemma holds vacuously. Suppose then that C is
built by the AND rule, say from VCs C1, C2 with midpoint chain p0 and endpoint
pairs {p0, p1}, {p0, p2}. Then SS∗(C) = SS∗(C1) ∪ SS∗(C2) ∪ {p0}. If s = p0,
then partitioning C into C1, C2 satisfies the lemma. Assume next that s is in
SS∗(C1). Then by the induction hypothesis, the carrier of C1 can be partitioned
into A,B with A a VC from s to p1 and B a VC from s to p0. By the AND
rule, taking the union of B and C2 with midpoint p0 yields a VC from s to p2
that is disjoint from A, and the lemma holds. Similarly, the same holds if s is in
SS∗(C2). Thus, by induction, the lemma holds for VCs. The proof is similar for
SCs. 2

It is of interest to know whether Lemma 5 holds if one replaces SS∗(C) with
SS(C). This is the case if the OR rule is restricted to combining two SCs.

1

1

2

2
2

2

21
1

Fig. 4. Illustrating Lemma 5. The VC carrier (left) partitions into S1, S2, where each
Sj is the carrier of a VC to the stepping stone. The SC carrier (right) partitions into
S1, S2, where S1 (resp. S2) is the carrier of a VC (resp. SC) to the stepping stone.



3 The Crossing Rule

Observe in Fig. 2 that if the endpoints a, b of a braid are same-coloured chains
then the braid “untangles” into three disjoint SCs between the internal vacant
cells x, y such that two of these SCs have stepping stones. The following rule
shows that finding two vacant cells with three such SCs is sufficient to conclude
the existence of an SC between particular pairs of the SC’s stepping stones.

Crossing Rule. Consider a Hex position with pairwise disjoint SCs C1, C2, C3,
each with vacant cell endpoints x, y, and with both S1 = SS∗(C1)\SS

∗(C2) and
S2 = SS∗(C2)\SS

∗(C1) nonempty. Then for any endpoints s1, s2 in S1, S2 there
is an SC C whose carrier is the union of {x, y} with the carriers of C1, C2, C3,
and with key x or y.

SCs found by the Crossing Rule are shown in Fig. 5.

x y

2

3

1

a

b

1 1 1
x 3 y

2 2 2

a

b

1 1 1
x 3 y 2

2 2 2 2
2 2 2 2 2 2

a

b

Fig. 5. Crossing Rule SCs. For j = 1, 2, 3, cells labelled j form carrier Cj of SC between
x, y. SS∗(C1) contains a and not b. SS∗(C2) contains b and not a. Combining these
SCs yields SC between a, b with carrier {x, y} ∪ C1 ∪ C2 ∪ C3 and key x or y.

Proof. By Lemma 5 we can partition C1’s carrier into VC V1 and SC W1, and
partition C2’s carrier into VC V2 and SCW2. Assume first that VCs V1, V2 have a
common endpoint: each connects their respective stepping stone endpoint s1, s2
to the same vacant cell, say x. Then by the AND rule, there exists an SC C−

connecting s1 to s2 with key x and whose carrier is the union of {x} and the
carriers of V1, V2. C is the same as C−, except with an (unnecessarily) larger
carrier, so C can follow the same strategy as C− and we are done.

Assume next that V1 and V2 have no common endpoint. By relabelling cells if
necessary, assume V1 connects s1 to x and V2 connects s2 to y. Thus W1 connects
s1 to y andW2 connects s2 to x. Notice that the carriers of V1,W1, V2,W2, C3 are
pairwise disjoint by construction. The strategy to maintain SC C is as follows:
play the key x as the first move, and then maintain VCs V1, V2 against any
probes into their carriers. If the opponent’s first probe outside V1, V2 is in W1 or
C3, then playing the key of W2 completes the connection from s1 to x to s2 via
V1,W2. If instead the opponent’s first probe is in W2, then play y next, noting
that y has a VC to s1 via application of the OR rule to two disjoint SCs whose



carriers are W1 and the series combination of C3, V1 through x. Since y also has
a disjoint VC to s2 (V2), we are done. 2

Notice that if the second case of the Crossing Rule’s proof applies then either
x or y can be key. Also, if the first case of the proof applies, then key selection
matters but C is a connection whose carrier properly contains the carrier of
a connection that can be deduced via H-search. We assume that H-search is
implemented so that a connection is deleted whenever a second connection is
discovered with the same endpoints but with a carrier that is a proper subset
of the first connection’s carrier.1 Thus the first case is not relevant, and we can
assume that any SC discovered by the Crossing Rule can have either x or y as
its key. Also, the Crossing Rule deduces an SC joining any such s1, s2. Thus we
can compute a single carrier and key, and then add the “same” SC to various
different pair-connection lists. This also holds if C3 has stepping stones. The
Crossing Rule building block SCs do not share any endpoints with the deduced
SC: in some sense, connections deduced by the Crossing Rule are orthogonal to
their subconnections, whereas the connections deduced by the AND/OR rules
are parallel to their subconnections.

The Crossing Rule can be strengthened. A cell is dead if it is not on any min-
imal path connecting either player’s two edges. A set of vacant cells is captured
by a player if she has a second player strategy on that set that leaves every op-
ponent stone in that set dead. For example, the carrier of an edge bridge, shown
in Fig 6, is captured. Filling in a player’s captured set with her stones does not
change the winner of a postion [17, 18].

Fig. 6. A black edge bridge (left). Black fill-in does not alter the winner (right).

Strong Crossing Rule. Consider a Hex position with SCs C1, C2, C3, each
with vacant cell endpoints x, y, and with both S1 = SS∗(C1) \ SS∗(C2) and
S2 = SS∗(C2) \ SS

∗(C1) nonempty. Further, assume that the player with these
SCs captures a set B by playing at y, and that C1 ∩ C2, C1 ∩ C3, C2 ∩ C3 are
each a subset of B. Then for any endpoints s1, s2 in S1, S2 there is an SC C

whose carrier is the union of {x, y} and B with the carriers of C1, C2, C3, and
with key y.

Proof. (sketch) The result follows from the Crossing Rule and the fact that filling
in captured sets does not change the winner of a game. 2

1 Such connections are provably useless and are pruned by Hex programs such as Six
and Wolve [11].



An SC found by the Strong Crossing Rule is shown in Fig. 7. XH-search
applies the Strong Crossing Rule by checking whether either of the potential
keys x or y forms a bridge with the edge; the carrier of the edge bridge is the
captured set B. When XH-search finds such an SC C, it updates SS∗(C) by
applying the next lemma.

Lemma 6. Let C be an SC computed via the (Strong) Crossing Rule on SCs
C1, C2, C3. Then SS(C) is empty.

Proof. Recalling the proof of the Crossing Rule, there is no common substrategy
among the potential outcomes: any portion of C1, C2, C3 could be omitted from
a winning path. Indeed, even the intersection of any of these SCs cannot be
valid as their strategies were partitioned into disjoint carriers. Thus, in general
we cannot conclude the existence of any stepping stones for an SC deduced from
the (Strong) Crossing Rule. 2

Using this lemma in the SS algorithm does not change the validity of Lemma
5, which holds vacuously for any empty set of stepping stones. Thus the (Strong)
Crossing Rule still holds.

1
1 1

x 1 1
2 3 3 y

2 2 3 23 23

a

b

Fig. 7. An SC found by the Strong Crossing Rule. For j = 1, 2, 3, cells labelled j form
carrier Cj of SC between x, y. Cells labelled both 2,3 form set B and are captured if
Black plays y. SS∗(C1) contains a and not b. SS∗(C2) contains b and not a. Combining
these SCs yields an SC between a, b with carrier {x, y} ∪B ∪ C1 ∪ C2 ∪ C3 and key y.

4 Crossing Rule Connections

We now show some Hex connections found by XH-search but not H-search. Our
implementation of XH-search computes stepping stones via the SS algorithm,
with each connection storing all of their stepping stones, and applies the Strong
Crossing Rule with edge bridges as the only captured sets considered. The three
VCs in Fig. 8 are common edge VCs, also known as templates (see King’s web-
page for more templates [19]). In each of these examples H-search fails to find an
SC which does not use the marked cell. These respective three “missing SCs”,
found by XH-search, are those shown in Figs. 5 and 7.



x y
x y x

y

Fig. 8. Edge VCs found by XH-search but not H-search. Each SC found by H-search
uses the marked cell. The “missing SCs”, which do not use this cell, are in Fig. 5 or 7.

If the Crossing Rule could only find common edge VCs, then adding a library
of VC patterns to check would be an effective alternative. Thus, in Fig. 9 we show
more connections from games played by our Hex programs in which XH-search
proved advantageous.

x
y

x
y

Fig. 9. More edge VCs found by XH-search but not H-search. Each SC found by H-
search uses the marked cell. The two “missing SCs” are each similar to that of Fig. 7.

The Crossing Rule requires both endpoints of the deduced SC to be chains,
and most connections found by XH-search but not H-search are near an edge.
Thus, when using XH-search we ensure that the AND Rule allows edges as
midpoint; this allows edges to be stepping stones.

XH-search is not complete: there are connections, some easily recognizable
by humans, that it cannot find. See Fig. 10. It is of interest to find some efficient
connection recognition algorithm which can find all connections recognizable by
human players.

Fig. 10. XH-search finds neither the SC (left) nor the VC (right).



5 Implementation and Complexity

It is straightforward to implement XH-search by starting with H-search, adding
stepping stone deductions to the AND/OR rules, and adding the (Strong) Cross-
ing Rule. In the following pseudocode, the queue holds endpoint pairs, each of
which has a VC carrier list and an SC carrier list; omitting the crossing rule
computation leaves H-search.

Algorithm XH-search.

initialize VC/SC carrier lists:

for each pair E of endpoints

E.VCList.makeEmpty(); E.SCList.makeEmpty();

initialize queue Q with base VCs:

Q.makeEmpty()

for each pair E of adjacent endpoints

Q.add(E); E.VCList.add(baseVC(E))

while (not Q.isEmpty())

E <- Q.remove()

compute crossing rule on E’s SCs:

for each new SC Z with endpoint pair F found,

Q.add(F); F.SCList.add(Z)

compute OR rule on E’s SCs:

for each new VC Z found

E.VCList.add(Z)

compute AND rule on E’s VCs with both of E’s endpoints:

for each new VC/SC Z with endpoint pair G found,

Q.add(G); G.(VC/SC)List.add(Z)

end while

end XH-search

Extending H-search by adding stepping stone deductions does not increase
the runtime complexity:

Lemma 7. Let f(n) be the worst-case running time of H-search on a board
with n cells. Then the worst-case running time of H-search with stepping stone
deductions is in O(f(n)). 2

Regarding memory requirements, our H-search implementation stores the
two endpoints and carrier for each connection. In order to store stepping stones,
two options are possible: store all stepping stones in the same manner as the
carrier, or store only a single stepping stone per connection. The second solution
is appealing, since a complete set of stepping stones is not required in order
to find new connections, and since many connections have few stepping stones;
however, it forces us to choose which stepping stone to keep if there are several
available. The first solution provides more information, but nearly doubles the
memory per connection; the second increases the memory per connection only
marginally. Since memory is not a bottleneck for our Hex program, we opted
for the first solution.



The running time of XH-search depends not only on the number of points and
the sizes of connection lists, but also on the number of discovered connections as
well as their type (VC or SC). Nonetheless, we can at least analyze the relative
computational efficiency of the different deduction rules in terms of the known
factors.

Aside from the AND rule, OR rule, and Crossing Rule, we also include naive
deduction of missing SCs of the form shown in Fig. 2. This naive deduction would
involve finding four distinct points a, b, x, y such that x, y are vacant, and such
that there exists five pairwise disjoint connections with two VCs joining pairs
a, x and b, y and three SCs joining pairs a, y and b, x and x, y. Since the OR rule’s
complexity is parameterized by the maximum number of SCs it may combine in
parallel, we have included entries for parameter values of both three and four,
which are the common selections for Hex programs. Table 1 summarizes our
analysis, with n representing the number of points and lV , lS representing the
list sizes for VCs and SCs, respectively. We distinguish between these two list
lengths, as the number of SCs usually far exceeds the number of VCs.

Deduction rule running time

AND rule n3l2V
OR-3 rule n2l3S
OR-4 rule n2l4S

crossing rule n2l3S
naive rule n4l2V l3S

Table 1. Worst-case runtime (within constant factor) of connection deducing rules.

We can now clearly see the benefit of using stepping stones: the complexity
of the Crossing Rule is roughly the square root of a naive implementation, and
roughly the same order of complexity as the regular deduction rules in H-search.

6 Experiments

To test the effectiveness of the crossing rule, we played an 11×11 tournament
between Monte Carlo players H (using H-search) and XH (using XH-search).
Each player is a version of MoHex, the UCT Hex player that won silver at the
2008 Computer Games Olympiad in Beijing [7]. Each player uses 100K rollouts to
analyze UCT tree nodes and computes connections with our normal tournament
settings: the AND rule is computed over the edge (so the edge of the board
can be the midpoint of an AND connection) and the OR-rule combines up to 4
SCs. Neither player uses an opening book or endgame solver. The tournament
comprises 4-rounds, with each player opening at each position once as Black and
once as White (with no swap move allowed), for a total of 4×121×2=968 games.

XH defeated H 501 games to 467, 17 games above a breakeven score of
484, taking on average 1.099 times as long as H per move. The time increase



is roughly in line with the analysis in Table 1: an 11 × 11 board has roughly
n = 100, lV = 10, lS = 25, and finding more connections with the Crossing Rule
increases the number of iterations for all rules.

The crossing rule thus added roughly 12 ELO in strength in exchange for
9.9% more computation time on average. While this gain might seem negligible,
strength gains measured via all-opening no-swap tournaments are muted due
to the forced inclusion of many very strong and very weak opening moves. By
comparison, each doubling of MoHex’s number of rollouts results in an average
ELO gain of 31.8 (averaged over 7 rollout doublings, from 1s to 128s, when
competing against a 1s version). Thus, per unit time invested, the crossing rule
represents a more significant strength gain than simply increasing the number
of rollouts.

7 Conclusions

XH-search is efficient and easily implemented. Furthermore, it identifies impor-
tant Hex connections that cannot be found with H-search.

In future work we hope to identify further efficient deduction rules, particu-
larly those that identify the most common connection omissions. The captured
sets of the Strong Crossing Rule need not be restricted to edge bridges; it would
be interesting to find other efficient methods that allow for carrier overlap within
connection deduction rules.

Acknowledgements

We gratefully acknowledge NSERC and iCORE for funding this work, and the
University of Alberta’s Hex and GAMES group members for providing support
and feedback.

References

1. Hein, P.: Vil de laere Polygon? Series of articles in Politiken newspaper (December
1942)

2. Nash, J.: Some games and machines for playing them. Technical Report D-1164,
RAND (1952)

3. Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15 (1981) 167–191
4. Anshelevich, V.V.: The game of Hex: An automatic theorem proving approach to

game programming. In: AAAI/IAAI. (2000) 189–194
5. Anshelevich, V.V.: A hierarchical approach to computer Hex. Artificial Intelligence

134(1–2) (2002) 101–120
6. Anshelevich, V.V.: Hexy wins Hex tournament. ICGA Journal 23(3) (2000) 181–

184
7. Arneson, B., Henderson, P., Hayward, R.B.: Wolve Wins Hex Tournament. ICGA

31(4) (2008)
8. Hayward, R.B.: Six wins Hex tournament. ICGA Journal 29(3) (2006) 163–165



9. Melis, G., Hayward, R.: Six wins Hex tournament. ICGA Journal 26(4) (2003)
277–280

10. Willemson, J., Björnsson, Y.: Six wins Hex tournament. ICGA Journal 27(3)
(2004) 180

11. Melis, G.: Six. http://six.retes.hu/ (2006)
12. Rasmussen, R., Maire, F.: An extension of the H-search algorithm for artificial

Hex players. In: Australian Conference on Artificial Intelligence. (2004) 646–657
13. Yang, J.: Jing Yang’s web site. www.ee.umanitoba.ca/~jingyang/ (2003)
14. Yang, J., Liao, S., Pawlak, M.: A decomposition method for finding solution in

game Hex 7x7. In: ADCOG. (2001) 96–111
15. Kohei, N.: Union-connections and a simple readable winning way in 7 × 7 Hex.

Proceedings of 11th Game Programming Workshop (2004) 72–79
16. Kohei, N.: Union-connections and straightforward winning strategies in Hex. ICGA

Journal 28(1) (2005) 3–12
17. Hayward, R.B.: A note on domination in Hex. Technical report, University of

Alberta (2003)
18. Hayward, R.B., Björnsson, Y., Johanson, M., Kan, M., Po, N., van Rijswijck, J.:

Solving 7×7 Hex: Virtual connections and game-state reduction. In van den Herik,
H.J., Iida, H., Heinz, E.A., eds.: Advances in Computer Games. Volume 263 of
International Federation for Information Processing. Kluwer Academic Publishers,
Boston (2003) 261–278

19. King, D.: Hall of hexagons - the game of Hex.
http://www.drking.plus.com/hexagons/hex/index.html (2007)


