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Stronger Virtual Connections in Hex

Jakub Pawlewicz and Ryan Hayward and Philip Henderson andelBioik Arneson

Abstract—For connection games such as Hex or Y or Havan- method in state-of-the-art Hex players. The strength gaias
nah, finding guaranteed cell-to-cell connection strategies can k&  sjgnificant.
computational bottleneck. In automated players and solvers, ¢& In 4l we review the rules of Hex and the algebra of

of such virtual connections are often found with Anshelevich’s fi fi tratedi . .
H-search algorithm: initialize trivial connections, and then re- computing connection strategies. #illwe review previous

peatedly apply an AND-rule (for combining connections in series) iImplementations, and improvements, for this algebragl¥i
and an OR-rule (for combining connections in parallel). we present our modification of H-search. §d] we describe

We present FastVC Search, a new algorithm for finding such semis-combiner, a new way of performing the OR-rule that
connections. FastVC Search is more effective than H-search bypasses a computational bottleneck. This new algoritiasie

when finding a representative set of connections quickly is more . . .
important than finding a larger set of connections slowly. to an explosive growth in the number of connections that can

We tested FastVC Search in an alpha-beta player Wolve, a P€ found in a short time. IfVllwe tackle the problem of
Monte Carlo tree search player MoHex, and a proof number dealing with such large sets of connections difilllwe give
search implementation called Solver. It does not strengthen experimental results and #VIITlwe conclude.

Wolve, but it significantly strengthens MoHex and Solver.

Index Terms—Hex, connection games, virtual connection, H- II. CONNECTION STRATEGY ALGEBRA
Search A. Rules of Hex

Hex is played on amxn board with hexagonal cells.
I. INTRODUCTION Two players, Black and White, alternate turns coloring any

uncolored cell with their color. The winner is the player who

EX is a two-player perfect information connection gamg, . N . . .
. . . . s a path of their color joining their opposing two sides.
invented independently by Piet Hein in 1942 [1] an%?e Figupréjl J g pPosing

John Nash in 1948 [2]=[4]. Hex has been an active domain 0
artificial intelligence research since Claude Shannormisirsal
work in the 1950s/[[b]. It is likely to remain an active domain,
as the game is easy to implement yet challenging to master,
and solving arbitrary Hex positions is PSPACE-complgte [6]
Automated Hex players rely on the computation of connec-

tion strategies[[7]. This computation is costly and so reduc
the number of positions that can be explored in a tree search, ) o o o
whether alpha-beta, monte-carlo, or proof number seardh, E|g. 1. White has a path of cells joining the two White sides, sat#hins.

usually pays off by finding wins early. For 111 games, oy cannot end in a draw, and farn boards there exists a
Anshelevu;h reports that H-search connection computatlovrqlinning strategy for the first player. This first-player adiage
routinely find a win 20 or more ply before the end of thes yticeable in practice, especially on relatively smaltgs.
game and yield significant move prunirig [8]. These gains if, yiigate it, theswap ruleis often adopted: the first player
lookahead and pruning are ofte_n worth the_ computationdl CO(fsolors a cell black; then the second player chooses whether
~ But the number of connection strategies of a Hex posf5 pe Black; then White colors a cell, and play continues
tion can grow exponentially with the number of cells. Evefy giternating fashion. When played with the swap rule, the
on modyerately—s;ed boards such as9 finding all of & gecong player has a winning strategy, but to play perfectly
position’s connection strategies is computationally asiele. 1, st know the win/loss value of every opening move. To date,

Finding a critical subset of these connections, and doing §Qomated solvers have found all such values for all board
more efficiently than has been done before, would signifigant;;, g up to §9. Computer tournaments often usexIl

increase the strength of current connection-based playats boards: 1313 and 1% 19 boards are also popular. On all
solvers [9]. these boards the average branching factor in a typical game i
In this paper, we give a new method for computing cof,ore than 100.
nections. Rather than finding many connections, we find a
representative subset of critical connections. And rathan B. Connection strategies and their application
r

the usual search, we use a more efficient search. We test ou N o )
In a Hex position, a&hainis a maximal connected group of
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set of empty cellsP requires to carry out the alternating-turnC. Connection strategy algebra
strategy. An endpoint is either an empty cell orPachain  Anpshelevich gave a hierarchical algebra that computes some
or a P-colored side. Following Anshelevich [10], @rtual __ ¢ not all — VCs and VSCE [10]. Aonnection strategy
connection (VC)s a second-player connection strategy, and a triple S = (z, C, y) wherez, y are the endpoints;' is the
a virtual semi-connection (VSQ} a first-player connection carrier, andz,y ¢ C, i.e. neither endpoint is in the carrier. If
strategy. The first move of a VSC — which yields a VC withy is a4 vSC for playerP with key &, then(z, C'\ {k},) is a
smaller carrier between the same endpoints — ikeis VC in the position obtained by-coloring cell k.

A VC (VSC) between: andy is anz-y VC (VSQ. Anz,y A pase VCis a connection strategy, 0, y), namely with
V(S)C carrier isminimal if it is not a strict superset of some ;. ., adjacent. For example, for playé, adjacent empty cells

other V(S)C carrier. _ form a base VC, as does an empty cell adjacent I>@hain
Obviously, recognizing VCs and VSCs is useful. If a playes, p_side.

has aside-to-sidevC — one whose endpoints are the player's giariing with base connection strategies, one can itelgtiv

two sides — then the player has a winning strategy. We c@lnstruct more construction strategies using the AND- and

such a VC awinning VC the player can win even if it is oR-rules. The former combines connections in serial; ttierla
the opponent’s turn to play. Similarly, if the player-to-v80 compines them in parallel.

has aside-to-side VSChen the player-to-move has a winning 1) AND-rule If o o
strategy. We call such a VSCwinning VSC ) P-VCrsu (:m d Oflm_(];i (0;1 ’xu;é gr;d ;2? El(qf[hgfl’y) are

a) if u is P-colored,(z,C; U Cs,y) is P-VC,

b) if u is uncolored,(z, C; U {u} U Cs,y) is a P-VSC.
2) OR-rule If S, = (z,C,,y) are P-VSCs, and\ C, = 0,

then (z,|JC.,y) is a P-VC.
Each iteration of this construction algorithm applies the
Fig. 2. From left: The first two figures each show the carriedl kay of a  AND-/OR-rules to all possible known connection strategies
winning White VSC. So, if Black moves next, Black must play in 8 teat using the current Strategies to produce a new generation
intersects both carriers, as shown in the third figure. . . . . .

of strategies. Iteration continues until no new strate@ies

If the player-to-moveP finds a winning opponent-VSC, produced. This hierarchical (by generation) AND-/OR- oles
P must move within its carrier to avoid reaching a losin@/gorithm is called H-search][8].
position (assuming that the opponent will also find this VSC) For a position and player, the set of V(S)Cs found by an
Similarly, if P finds several winning opponent-VSCB,must iteration-limited H-search depends on the order in whiah th
move in the intersection of the associated carriers to avaidND- and OR-rules are applied to particular endpoint pairs.
reaching a losing position. Hayward et al. call this intetisen  But if H-search is computed to completion — i.e. until no
the mustplay and use it to prune the list of possible movesew V(S)C can be created — then the set of minimal V(S)C
(and so reduce the branching factor) when playing and splvigarriers that are found is fixed. For this position and player
Hex positions[[1l]. See Figuféd 2. we call these theninimal VC and VSC carrier sets
As in other cell-coloring games such as Go or Havannah,
Hex positions can sometimes be decomposed into independent I1l. PREVIOUS APPROACHES
subgames. A four-sided subgame is essentially a smallerrhere are many ways to implement H-search. Here are some
subgame on a possibly irregularly-shaped board. For suckygorithmic tips from various approaches.
subgame, finding a VC for the winnef (who can connect | piscard any V(S)Q3 that is a superdbof another V(S)C
their two opposingP-sides) allows one tdill the subgame’s o with the same endpoints. Both deduction rules require
empty cells (|.eP—'coIor them) Wlthout changing the position's the carriers being combined to have empty intersection,
value_, thu_s pruning all moves in the subgame from future o, ne set of strategies generated from aSsebntaining
consideration[[12],[13]. See Figufé 3. « is equal to the set generated frosnJ {3} [14], [15].
« Before applying the OR-rule to all currenty VSCs,
confirm that the intersection of all such carriers is empty.
If it is not empty then the intersection of every non-empty
subset of carriers is not empty, so no nevwy VCs can
be created [15].
« If applying the OR-rule recursively, then backtrack when-
ever the most recent-y VSC does not reduce the
intersection of all such VSCs. This VSC cannot help

Fig. 3. Left: a four-sided subgame of a larger position. Theriary of

the subgame is defined by the two White chains, the two Blacknshaind
the three dotted cell pairs (each such pair forms a bridgeestiom between
opposite-colored chains). Black has a VC whose endpoietshar two Black
bounding chains and whose carrier lies within the subganegiant so — as
shown at right — one can Black-fill the subgame interior witholianging
the position’s value.

construct new VCs, and will only increase the carrier
size of any new VC[[16].

Limit OR-rule application by considering VSC subsets of
size at most 3 or 4. Checking df subsets of a set of

1We often identify a V(S)C by its carrier.
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k VSCs usually takes too long, and yields diminishing For efficiency reasons we need some extra structures. For
strength returns fok > 5 [15]. each endpoint: we maintain the set of all endpointswith

o When applying the AND-rule, allow board sides to bevhich z is connected via a VC. We denote tmsighborhood
midpoints. This might seem counter-intuitive, since siddsy N(x). For each endpoint paifz,y) we maintain the
are final destinations, but it allows the discovery of corintersection of processed VCs and all VSCs, denoted by
nection strategies not otherwise deducible by H-searéfi(z,y) and Is(z,y) respectively. As we will see, we will
[14], [15]. update¢(x,y) when a VC becomes processed aflr, y)

« Due to diminishing performance returns, limit either thevhen a new VSC is created.
number of V(S)Cs stored for each endpoint pairy We direct our algorithm using queuék andQs. Q. main-
(hard limit), or the number of such V(S)Cs considered itains triples(x, C,y) of all unprocessed VCs that are AND-
constructing larger V(S)Cs (soft limit). If such limits arerule candidates()s keeps candidates for semis-combiner, but
used, sort V(S)Cs by carrier size, so that smaller (mostores only those endpoint pairs, y) for which there is some
useful) connection strategies will be used in constructiamprocessed VSC idfg(z,y) and Is(z,y) = 0. Thus there
[14], [15]. is a chance that semis-combiner applied to &l VSCs

Several variations and/or enhancements of H-search h&fgduces new VCsQ)s stores only endpoint pairs because
been proposed, including generalized H-search, the c,g,ss$em|s-comb|ner will process all such current VSCs at once.
rule, captured set intersection, and common miai carrieir-in See{Vl
section [12], [1¥]-+18].

TABLE |

SUMMARY OF DATA STRUCTURES
IV. COMPUTING VCS

symbol meaning

) Mi(z,y) | set of carriersC' such that(z, C,y) isa VC (¢ =c) or
To find set of VCs that strengthened our player and solverp? (z,y) | VSC (¢ = s); superscripp (u) denotes subset of

we changed many aspects of the general and/or-rule closurg}(z,y) | Processed (unprocessed) VCs/VSCs

algorithm. One change is to store connections more effigient N () VC-neighborhood ofe: {y : Mc(x,y) # 0}

seeIV-B] This allows many search optimizations: sfi§-Cl I¢(z,y) | intersection of processetry VCs: (| M& (z,y)

Another change is to apply the OR-rules so that all VQs Is(z,y) | intersection ofz-y VSCs: ) Ms(z,y)

between two fixed endpoints are created by an operatiordcalle Q¢ queue of unprocessed VCs

semis-combinerRather than considering separately all VSC ¢, queue of endpoint pairgz, y) with an unprocessed-y

. . . . . VSC, and withls(z,y) = 0
subsets that might give rise to new VCs, semis-combiner acts
on all input VSCs at once: sef/]

A. Our new method

C. Search

We now describe the pseudocode of Algorithm 1, our new
Before outlining our new algorithm, we describe our datalgorithm.

structures. To store VCs and VSCs, we use mafgsand Ms 1) Function VCSEARCH: Create all base VCs, i.e. those

indexed by endpoint pairsM(x,y) (respectivelyMs(x,y)) between adjacent cells. Mark these as unprocessed and push

storesz-y VCs (VSCs). For each pait, y, we store only the onto Q..

minimal carriersC for which (z,C,y) is a VC (VSC). This  Loop until both queues are empty (libk 3). The loop invari-

set of carriers is stored in a vector. Previous implemeoati ant is that processed VCs/VSCs have been used in all possible

used a linked list, which allowed lists to be easily maintgin AND-rule/OR-rules with all other processed VCs/VSCs, and

in sorted order by carrier size. We prefer to use a vectorchvhiunprocessed VCs/VSCs have never been used in either rule.

allows for faster updates even if elements are occasionallyAt each iteration, try the AND-rule, and — via semis-

inserted at arbitrary locations. Rather than maintainghistés combiner — try the OR-rule only if the AND-rule fails. We

in guaranteed sorted order, we use a move-to-front teckniquostpone applying the OR-rule as long as possible, because

which is just as effective but does not guarantee the liss aemis-combiner uses all VSCs between a given endpoint pair

sorted: seg[V-C7| Each carrier has a flag indicating whetheand finds all VCs at once. S&¥/]

it has been processed. In our pseudocode,tfer c,s (for If some VC remains unprocessed (S@MEMPTY(Q.) is

VCs,VSCs) we denote by} (x,y) (resp.M;*(x,y)) a subset true), pop a VC(z, C,y) from Q. (line[B) and in the rest of

of M;(x,y) with only processed (unprocessed) VCs/VSCs. fis iteration try the AND-rule only on this VC together with

VC is processednce it has been used in the AND-rule withall processed VCs. Try both ends as the AND-rule midpoint

all other processed VCs to create new VCs and VSCs. A VSlthe [6). After the two DDAND calls finish, mark the VC as

is processeance it has been used by semis-combiner to cregimcessed (linEl7) and updaté(z,y) (line [8).

new VCs. Sed]lV-Cl After all VCs are processed — the AND-rule has been
Our approach is minimalist with respect to VC storage. Weied on all pairs of current VCs — try the OR-rule. Pop the

do not store a VSC'’s key: if needed, it is recomputed cendpoint pair(z,y) from Qs (line[10) and call DOR, which

demand by AND-rule calls. We prefer this approach, as fapplies semis-combiner (line]11) to the sets of all VSCs.kMar

our purposes it is faster to operate on vectors rather tisé li these VSCs as processed (Iiné 12).

B. Storage
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4) Function DOOR(z,y): SEMISCOMBINER returns all

1: function VCSEARCH newly created VCs. These might not be minimal, so consider
2: initialize structures with base VCs them one by one with RYADDVC.
3:  while NONEMPTY(Qc) or NONEMPTY(Qs) do 5) FunctionTRYADDVC(z,C,y): If C is a new minimal
4: if NONEMPTY(Q.) then z-y VC carrier, as checked byRVADD, push it ontaQ).. Mark
5 (z,C,y) + PoP(Qc) newly created VC as unprocessed.
6: DOAND(z, C, y), DOAND(y, C, x) 6) Function TRYADDVSC(z, C,y): Check whetherC' is
7: mark VC (z, C,y) processed minimal by calling TRYADD. If yes, update the intersection
8: B(z,y) «+ E(z,y)NC of all z-y VSCs; if this set is empty then push—y onto Qs.
9: else Mark newly created VCS as unprocessed.
10: (z,y) <+ POP(Qs) 7) Function TRYADD(C, Chew): This is the function in
11: DoOOR(x, y) which the most time is spent. Check whether a newly created
12: mark all z-y VSCs as processed carrier Chey is minimal, i.e. is not the superset of an existing
13: function DOAND(z, C1, ) carrier. This must be done efficiently, so we use a move-to-
14:  for all y € N(u) — (Cy U{z}) do front technique.
15: if (CyU{z})NIE(u,y) =10 then Iterate over all carriers in the vectatr. The first carrier
16: for all Cy € ME(u,y) do C found that is a subset of'ey (line [38) is arejecting
17: ANDRULE(z, C1, u, Cs, ) carrier. It rejects the new connection, and might rejectirieit
18: function ANDRULE(z, C1,u, Cs, ) conne_ctlons, SO move it to the front 6_f(l|ne [37). This takes_
19: if (CyU{z})NCs#0 then return amort|z_ed consFant time, since we iterated over all carier
v precedingC. Using move-to-front, the best rejecting carriers
20: if w is coloredthen ; o X
quickly collect at the front ofC, significantly reducing the
21 TRYADDVC(z,C7 Uy, y) L . . . X Lo
0. else rgjectlon time qf non-m|n|mrilll carriers. "I'h|sI mt_attﬁod is cl:allric
since new carriers are usually non-minimal, with new mirdima
23 . TRYADDVSC(M(,y), C1 U {u} U C2) VCs/VSCs discovered rarely.
24: function DOOR(z, y) A new connection that is not rejected is added as a new
25:  for all C' € SEMISCOMBINER(Ms(z,y), Mc(x,y)) dO  carrier. Also, all carriers which become non-minimal are re
26: TRYADDVC(z, C,y) moved (ling39). Again, this is amortized-time efficient vees
27: function TRYADDVC(z, C,y) already iterated over all carriers. However, we need to igpda
28:  if TRYADD(Mc(z,y), C) then PUSH(Qc, (7, C,y)) VC information carefully: if filtering removes a processe@ V
29: function TRYADDVSC(z, C,y) recalculatel? (x, y); if it removes an unprocessed VC, remove
30: if TRYADD(Ms(z,y),C) then the VC from Q..
31 Is(x,y) < Is(z,y) N C
32: if Is(z,y) =0 and(z,y) ¢ Qs then V. SEMIS-COMBINER
33: PUSH(Qs, (2, %)) A. The previous approach
34: function TRYADD(C, Chew) Considerz-y connections. Le€ (resp.S) be the set of all
35 for subsequent’ < C do z-y VC (VSC) carriers. A straightforward application of the
36: if €' C Chew then OR-rule is to iterate over all subse$$of S. If the intersection
ar move C' to front of C of the subsets of’ is empty then combining these strategies
38: return false yields a new VQC’ whose carrier is the union of these subsets.
3 C :— {C; €C : Chew C} U {Chen} One must check whethét’ covers(is a superset of) the carrier
40: return true

2) Function DOAND(z, C1, u):

For the AND-rule, given

a VC (z,Cq,u), find a companion VC with endpoints, y.

of any current VC; if not, therC’ is minimal and so can be
added toC.

There are2#S such subsets, so iterating over all of them is
in general infeasible. A usual previous approach is to titera
only over subsetsS’ C S of bounded size, say 3 or 4. But

Iterate over all feasibley (line [14). Ilterate over the VC- this reduces the set of new connections that can be found,

neighborhoodN (u), rather than all cells on the board; thisvhich in turn reduces the strength of the program that uses
saves time. the VC engine, while still leaving iteration over VSCs as a

Fix y and iterate over alk,y VCs, applying the AND- Ccomputational bottleneck.
rule by calling ANDRULE. First check whether the intersection
IZ(u,y) of these VCs is small enough (lihie]15) to allow &8. Our new approach

suitable VC. This check often avoids a futile loop. We now describe our semis-combiner algorithm. The main
3) Function ANDRULE(z,Cy,u,Cs,y): Check the re- idea of our approach is to focus on what we call blocked cells,

maining AND-rule condition and try to add new a VC or VSCas we shall explain.

Depending on whether is colored, call RYADDVC (yes) or To start, supposé is empty (so there is no-y VC). Then

TRYADDVSC (no). we create a new VG2’ whose carrier is the union of all
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strategies ofS only if the intersection of all correspondingC contains at least one blocked cell (6bn B # ) and the

carriers is empty. intersection of all VSCs which do not contain any blocked cel
Next, suppos& is non-empty. Assumé contains exactly is empty (so S’ = (), whereS’ = {S € S| SN B = 0}).

one carrier, say’. The carrier of a new V@' cannot cover Given a setB of blocked cells, the union of the strategies of

C, so there must be some celthat is inC but not inC’, and S’ is the carrier of a new VC.

C'’ can be created only from VSCs not containingNe calla Following this approach, we implement Algorithid 2 in

a blocked cellfor constructingC’. Let S’ = {S € S|a ¢ S} a backtracking manner. The main function I®dXTRACK,

be the set of all such VSCs not containing some blocked cell

Create a new VC only if the combined intersection&fis Algorithm 2 SEMISCOMBINER(S, C)

empty. So ifC contains one carrief, it suffices to iterate over Require: VSCsS and existing VC carrier sets

all a in C. Ensure: Return a set of carriers of newly created VCs

1: function SEMISCOMBINER(S, C)

2:  return BACKTRACK(D,S,C) —C

3: function BACKTRACK(F,S,C)

4:  if NS # 0 then return C
Consider an example. Above, between the black side and if ¢ =0 then C « {US}

the dotted stone, we create VCs from four VS&sB, C, D
(left to right, top to bottom):

6: loop

7: A < a smallest set frodC — F : C € C}
8: if A =0 then return C

9: a + choose element fromt

10: F«+ FU{a}

11: S’ < FILTER(S, a), C’ + FILTER(C, a)
12: C + C UBACKTRACK(F,S',C")

13: function FILTER(A,a) return {A € A : a & A}

The intersection of4,

of A.B.SOAUB i VC, say I called initially at depth 0 in 8mMISCoMBINER. When called

at depthy, the set of blocked cell® = {a1,...,a;} has size
j. From here, all possible supersets Bfare searchedB is
not stored explicitly. Instead, filtered VSC and VC carrietss
are passed as argumewisandC, where afiltered carrier set
is one in which each carrier contains no blocked cell (so is
disjoint with B). Additionally, we pass a sef’ of forbidden
choices ofa; ;1. F' contains all cellsz such that the set of
blocked cellsB U {a} has been already searched.
BACKTRACK returns all of the VC's carriers, both original
and newly created from VSCs, that are disjoint wih
We now explain BCKTRACK step by step. To start, test
whether a VC can be created (link 4). If filtering removes all

the carrier of

S

This cell intersects3, D but missesA, C', whose intersection
is empty, sS0A U C' is the carrier of a new VC, say IlI:

90000 VCs, create a new VC (lingl 5). This VC will be disjoint with
(L (e any VC created so far, because h&econtains only VSCs
9000009 that are disjoint fromB, whereas all previous VCs contain at

least one cell fromB.

Now block a cell from Il. A gOOd Option is a cell that also Next, |00p over all possib|e choices @j+1 (Variab|ea)_ In
belongs to I: order to create a new VC, we must filter out all VCs frém
So for eachC € C we must at some point block a cell 6f.
But we cannot block any cell fromi'. In order to minimize the
branching factor, we want the smallest possible set difieze
C — F among all possible”; this is A (line [4). The next
This cell missesA, D, whose intersection is empty, sbu D  blocked cell must be .
is the carrier of a new VC: If A is empty, there is at least one VC that cannot be
filtered, so end the search (liié 8). #f is not empty, pick
an arbitrarya from A (line[d) asa;1. Now recursively call
BACKTRACK on the carrier set§’,C’ obtained fromS,C by
removing connections containing(lines[I1E1R).

In general, finding a single blocked cell is not enough to We forbid a as a candidate for each future selectiomgf
construct all new VCs. Instead, we need to find a set of blockedmely fori > j, both in deeper recursive calls and in local
cells B = {a,...,ay,} that satisfies the following: eadli in  future choices ofi;,, (line[10), because including it would
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produce no new blocked cells, and so no new VCs. Thus seagetd 294 with fitting factor over 1. Notice that this function
a setB of blocked cells only once. is polynomial in the number of VCs and VSCs, and — as
expected from our discussion above — reflects that the number
of initial VCs have a greater impact on the final number of

. o ) connections than the number of initial VSCs.
The total number of recursive calls is limited in several

ways. We never duplicate a sét of blocked cells, so one
upper bound is the number of such sets, nan2éJywheret D. Remarks and minor optimizations
is the size of a smallest set that hits all VCs. The number of

blocked cell sets that correspond to recursion calls is lemal - .
%OMBINER can construct non-minimal VCs. So as to avoid

than this, as the recursion is often broken by the conditton : : X )
line[d: if B is the blocked set corresponding to the current r Sing these in the construction of further strategies, wead
em before the final set of VCs is returned.

cursive call and the intersection of VSCs is not empty, then ) i i

abort the search for supersetsifWhile the input VSCs thus . 2) Subsequent use of semis-combirBuring the connec-
limit the search, the main bounding factor is the number dP7 construction process, EBIISCOMBINER can be called
VCs, both current and newly created. For example, recursidffll the same endpoint pair more than once. In such cases,
depth is bounded by the number of VCs, svBsComeingr  €ach subsequentEBiSCOMBINER call in argumentS par-

runs quickly when creating initial connections. This boimgd tltlon_s the VSCs as elthe_r processed (already present in the
effect is difficult to measure precisely. The number of regr  Prévious call) or not. This allows the search to be stopped

calls depends not on the number of VSCs, but rather on thE€Never BCKTRACK is called with S containing only
number of newly created VCs. processed VSCs, as this cannot produce any new VC.

We performed an experiment to measure typical perfor- 3) Greedy sum:Whenever a new connection is created by

mance, using the position in Figufe 4, which has many V(S)c&mming VSCs in lindl5 of Algorithni]2, rather than sum
all VSCs, we greedily add each successive carrier only if it

reduces the current intersection of all VSCs. See Algorfihm
This optimization decreases runtime.

C. Efficiency

1) VC minimality: During intermediate processinge®is-

Algorithm 3 Greedy sum

1: function GREEDYSUM(S)

2: X«01I=U

3 forall S €S do

4 if INS 1T then
5: X+ XUS
6
7

I+~INS
return X

Fig. 4. A position with many VCs and VSCs. VI. LIMITING CONNECTION GROWTH

For this position, for each endpoint pair with empty VSC Semis-combiner runs quickly on large VSC sets and finds all
intersection, we calledi11SCoMBINER and gathered data onpossible H-Search VCs. But this can be too many connections
the 2 780 resulting calls. Each data point includes the numbé® be useful to a game player.
of input VSCs, the number of produced final VCs, and the Consider the position from Figuke 4. Here computing black
number of recursive BCKTRACK calls made. For each dataVCs takes 8 minutes, too long for any playing or solving
point, the number of recursive calls was more tha0. application. This runtime is due simply to there befitg 901

We used Gnuplof[20] to analyze theé00 data points with VCs and4 550 587 VSCs.
the most recursive calls, finding a function that correlates Between cellsz (b7) andy (i8) black has65698 VSCs.
the number of recursive calls with the number of VSCApplying Algorithm[2 to these yield§ 925 VCs. The number
and the number of VCs. After drawing various 3D plotspf recursive B\CKTRACK calls is 860264. There arel4 238
we considered several functions with varying numbers of—y VSCs with keyw (d7); this is the most common key
parameters. For each such function we used Gnuplot's ffir z —y VSCs. These are created by applying the AND-rule
command to establish the best value for parameters. We fouadhe 60z-u and 266u-y VCs; most such VC pairs yield a
a good approximation for the number of recursive calls to ew VSC. Thus the number afy VSCs with keyu can be
max (20 - (#VCs)®/4,2- #VSCs). To show how well this fits, almost as large as the product of the number-af and u-y
for each data point we calculate a fitting factor: a propartioVCs, which explains the exponential growth of the number of
of actual number of recursive calls and its approximatidme T VSCs.
maximum value of the fitting factor i8.98. There are 8 data Because of this growth, it is necessary to limit the creation
points with fitting factor over 2, 53 with fitting factor ovér5, of new VCs.
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A. New VC acceptance heuristic superset ofd. For this we need to find a blocked celle A

Previous approaches to limit the number of new VCs us&4ch that the intersection of VSCs not containings empty.
soft and hard limits. Seglll] We propose another approach e do this by iterating ovet € A. After each iteration we
Assume thalC is the set of VC carriers between two fixectither remove: from A or, if we added a new V', update
cells, and that a new VC with carrie? is created. When is 4 10 AN C. In the latter case, since ¢ C, the size ofA is
it worth addingC' to C? Always, if C' is a strict subset of a feduced by at least one.
carrier inC. Never, if C is a superset of such a carrier. But Ve stop the loop whenever we are unable to create a new
what if C'is neither such a strict subset nor a superset? Théf fulfiling (B). This happens ifA = 0 or (S # 0. We
C is useful only if it leads to the creation of any new VSc§Peed up this process by filtering out8fall supersets of4,
by the AND-rule. A set of VSCs combine to form a new Vcsince from now on they are useless. See Algorithm 4.
only if their combined intersection is empty; hence it isfuke -
to collect VCs whose intersection (with others with the sanfdg0rithm 4 FASTSEMISCOMBINER(S, C)
endpoints) is as small as possible. So acceptance heuristic Require: VSCsS and existing VCL
is as follows: add a new VC only if Ensure: Return new VCs reducing intersection ©f
(1) it is a strict subset of an existing VC, or 1: function FASTSEMISCOMBINER(S, C)
(2) it reduces the combined intersection of all current VCs. Crew < 0

With this heuristic, the number of VCs stored between two>: A = ne
given cells does not exceed the number of cells on the board; ~ While A # 0 do
which is a constant. So, it limits to a polynomial in the numbe 5 5 —{5eS:ALS)
of cells the total number of connections created, thus awgid if S # 0 then return Crew

exponential growth. 7 a < choose element from
Not surprisingly, given unlimited computation time, this 8 S’ « FILTER(S, a)
heuristic weakens the resulting VC engine. However, fordfixe 9: if NS’ =0 then
time computations, this heuristic generally strengthéesMC  10: C + GREEDYSUM(S')
engine. SegVII 11: Crew < CrewU {C}
This heuristic is not universally better than the standari®: A—ANC
connection-finding algorithm. Figufé 5 shows a positionfro 13: else
the 2011 Computer Olympiad Hex competition, with Whitel4: A+ A—{a}

to move. Here our heuristic fails to find a white side-to-sides: return Cnew

VSC. Such VSCs are useful in pruning losing moves, and—=a

solver using our new heuristic is slower here than a solverpastsemisCoMBINER has at most as many iterations as
using the standard VC computation. the size of the VCs intersection, but usually much fewer.

C. Comparison

A VC engine using either A&STSEMISCOMBINER Of
SEMISCOMBINER together with the acceptance heuristic is
usually weaker than a VC engine using onlgN8sCoMm-
BINER. We call these VCEs respectivelast, limited, and
unlimited For the position in Figurd]4, Figurg] 6 shows
cells VC-connected to the bottom for these VCEs. Notice
that unlimited VCE finds more complicated VCs. A white
mustplay set for this position is shown in Figlide 7. Here fast
VCE finds no VSCs between the black sides and so finds no
“ mustplay set, while the mustplay of limited VCE is twice as
| O large as that of unlimited VCE.

Fig. 5. A VC engine using the acceptance heuristic fails td &rwhite side- Although unlimited VCE is the strongest of these three
to-side VSC here. White wins, eigl0 e9 e10 b10 b9 a9 b8 a8 b6 VCES, for fixed time computations the speed gains of limited
b7 c6 c7 e5 d5 e4 d6 d4 c5 c4 b4 bS5 h9 i8 f5 e6. VCE and fast VCE more than compensate for the loss in found
connections. As we show ifV1l] fast VCE is the strongest

of these VCEs.

avbh¥c eV $OgUhY|

B. Fast semis-combiner

In our acceptance heuristid](2) often implidd (1). This
suggests a simpler heuristic: use oiily (2). This allows tefas
implementation of semis-combiner. We performed experiments to show the strength of our

Let S andC be SEMISCOMBINER arguments, i.e. existing methods. We used these VC enginesse the standard engine
VSCs/VCs with fixed endpoints. Lel = (C be the inter- from {Il[] vcl, in which base is improved by using move-to-
section of these VCs. We want to create a ¥Qhat is not a front and by making other minor improvements2, a totally

VIl. EXPERIMENTAL RESULTS
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b c evi ¥y

Fig. 8. 1-move &8 Hex openings (dotted). Cell color shows winner if black
opens there.

Fig. 6. Cells black-VC-connected to the bottom, as computedriynited ] ) o ]
VCE (shaded), limited VCE (black dot), and fast VCE (white)dot sists of six 111 positions from the 2011 ICGA Olympiad

Hex competition [[24]. These were found by starting with
the final position and proceeding backwards to a moderately
difficult position. See TablE]ll.
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TABLE I
POSITIONS FROM THE2011 QLYMPIAD . THE GAME 6 POSITION HAS BEEN
MODIFIED. GAME 3 WAS NOT USED IN THIS BENCHMARK, BUT WAS USED

IN §VI-B]

gm. | move sequence black moves first

3 a3 f6 d7 d8 h5 g7 c8 c9i6 h8 j7 i9 g8 h7 f7 k8 g6 f8 e8 d10
al0 all cl0 d9 j9
5 a2 g5 d7 d8 e7 e8 f7 f8 g7 g8 c8 c9 h8 h7 al0 all b10 b1l
cl0 cl1i7i6
6 e2 g5 e6 f7 d8 d7 e7 d9 c9 b1l e8 €9 8 f9 g8 g9 ¢10 f4 d5
d6 e5 c11 d10 d11 el0 ell f10 f11 a1l b10 i9 h10 g10 g11

O,
@

e
)
{0

®
&=
S

b

c i10 h9 i8 h8
) ) o . 7 | a2 e7 716 h5h4 g5 g6 h6 g4 f5f4 (3 j2i3i2 h3 h2 g3 i4
Fig. 7. White mustplay, as found by unlimited VCE (shaded), kahitvCE 41556 j6 i8 i7 g2 f3 h8 h7 2 e3 g8
(dotted), and fast VCE (void: no mustplay). 9 | c1f6g6g5i4i3 ha h3 g4 g3 f4 13 d4 e4 c6 d5 ¢5 ¢7 d6 d7
e6
) _ ) 10 | cle7g6g7f7e9f8g5h5h4i6f5ebebc6ddb5c3j3id
rewritten engine, with our new data structures frgfdl We 11 | a2 f6 g6 g5 d7 d8 e5 f7 c8 b10 c9 c10 d9 d10 e9 el0

considered the three variants of vc2 fréMI-Cl ]

We implemented algorithms in the open-source Hex repos-1ablellll shows our results. We ran our experiments on an
itory Benzene [[19], which in turn is built on the open/ntél Xeon 2.4 GHz. The transposition table size weas,
source game-independent framework Fuego [21]. Tests wd¥fgich is more than sufficient. All averages are geometric
performed on three Benzene programs that rely on their VB&ans, since these are more suitable than arithmetic means

engines: Solver, MoHex and Wolve. when measuring a speedup ratio.
TABLE IIl
A' SOlver AVERAGE SOLVING TIMES ANDVC BUILDS FOR DIFFERENT VERSIONS OF
Solver finds the theoretical value of a position. It uses SOLVER.
Focu_sed DFPN[]9],[112], a version of DFPN se_arch [22] %8 Openings Olympiad Games
that is enhanced by thé + ¢ trick [23], a VC engine, an version fime VC builds | _time _ VC builds
inferior cell engine, and electric circuit resistance foove base 4819 355322] 10834 203820
+ semis-combiner 5442 294169| 10783 177722

ordering. VCs play a central role: computational efﬁuency + AND-rule priority 2901 89586| 12828 171459
and the strength of the computed VC sets are the main + store VC-neighbourd 4946 290862| 10411 166276

factors in determining runtime. Because Solver depends sp+ move-to-front (vel) | 3926 289366| 7733 171593

- i vc2-unlimited 2015 183144 5099 140475
F:rltlcally on VC computation, it is a good benchmark for our vea-limited 5398 204490 4808 244548
Improvements. ve2-fast 1695 295163| 3185 244791

We used positions of various difficulty, with solving times
of vc2-unlimited varying between 400 and 20000 seconds.The first part of the table shows the improvements obtained
We used only relatively challenging positions, since ongén by adding various features to the base version VC engine.
positions there is often a large variance in runtime foredéht Semis-combiner yields only a small reduction in runtime,
runs. and only for the Olympiad Games set, but for both sets it

The first set of positions consists of the ten hardesB 8- reduces the number of searched states (which, with sucgeedi
move openings. See Figdrk 8. The second set of positions coptimizations, resulted in significant runtime reduction)
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A VC engine can postpone running semis-combiner until TABLE IV
a sufficiently large set of VSCs has accumulated. We imple- RESULT OFMOHEX AND V‘é‘;;\;IENTGOSURNAMENT FOR DIFFERENT
mented such aAND-rule priority scheme. While this scheme

slightly decreased the number of VC builds, there was no _Rank | Program VC engine & variant _solver Elo score
runtime reduction, presumably because the base versi&s lac ; mg:gi zzg:mgge" 32: 19131
some optimizations that are implgmented _in ve2. 3 | MoHex  vc2-fast ves 88
The other two base optimizations achieved a significant 4 | Wolve base yes 85
speedup, especialljnove-to-front Storing VC-neighboursi- g wg:zg ‘é‘;ﬁe ves 5758
Iqws for itergtion oply over cells that are \./C—con'nec.tem/\at 7 | MoHex  vez-unlimited no 48
given endpoint. This is useful mainly within applicationtb& 8 | MoHex  vcl yes 47
AND-rule. As mentioned earlier, move-to-front require® th 1?) \I\’Avg:}"gx xz; st no 22
use of a vector instead of a I|nl_<ed |I.St; howgverz it elimasat 11 | MoHex  ve2-limited no 40
the sorting of V(S)Cs by carrier size, which is no longer 12 | MoHex  vcl no 37
necessary because of the natural order found by move-tio-fro 13 | MoHex  base yes 37
. . 14 | Wolve vc2-unlimited no 33
Its high per_forma_mce is as exp_ected. 15 | Wolve  vc2-unlimited yes 28
As explained in§lV] we designed new data structures to 16 | Wolve ve2-limited yes 27
exploit our numerous optimizations. The second part of the 17 | Wolve  vc2-fast yes 27
bl h he i . Vi . d th b 18 | Wolve vc2-fast no 11
table shows the improvement in solving time and the number 19 | Wolve  ve2-limited no 1
of visited states. Version vc2-fast visits a comparable Inem 20 | MoHex  base no 0

of states to vc2-limited, suggesting that the former might b

superior to the latter. While vc2-limited gives no improvere

over vc2-unlimited, vc2-fast is faster, especially on éarg 1) MoHex: MoHex [7] uses Monte Carlo tree searchl[26],
boards. Thus vc2-fast is arguably the best of these variafd€]. The VC engine is used as follows. As soon as node is
for use in Solver. However, the superiority of vcs-fast ovefisited 400 times, VCs are built for the node, and a mustplay
the other variants is not universal: there are positions g- efegion is computed. This allows the pruning of inferior meve

in Figure[5 — where it fails due to missing VCs. and detects win or loss long before the board is full.
The parallel Solver — if used — executes on a separate
B. Playing programs thread. If Solver detects a win or loss, the associated n®ve i

In order to measure the comparative strengths of thed&ed by the player; otherwise, the player uses MCTS to select
variants in head-to-head competition, we played a large tolfS move.
nament involving many versions of the two Benzene players, It is no surprise that — irrespective of whether Solver is
namely MoHex and Wolve. For each of these two players, wsed — base is the weakest VC engine. It is also no surprise
created various versions by selecting a VC engine, setgatinthat Solver increases playing strength: base is 37 Elo géron
VC computation variant, and deciding whether to use pdrall@vith Solver on than with Solver off), vcl is 10 Elo stronger,
Solver. The VC engine is one of base, vcl and vc2. For ve2d the three variants of vc2 are 40-48 Elo stronger. With
we used one of the variants: unlimited, limited, or fast. §huSolver, vc2 is much stronger than other VC engine versions.
for each VC engine, we considered 5 different versions 4fmong vc2 variants, ve2-unlimited is best, while vc2-fastia
the VC engine, which together with the parallel Solver choic/c2-limited are comparable.
yields 10 different players. So in total 20 different play¢t0  Our experiment shows that MoHex benefits greatly by
MoHex, 10 Wolve) competed in the tournament. increasing the strength and/or speed of its VC engine, and

The tournament was played with 10 seconds per mosgggests that vc2-unlimited is the preferred variant. Hane
on an 1k11 board. Because we are interested in playirignder real tournament settings — those used in competjtions
strength per unit time, and because the different VC vasiartypically 16 MCTS threads for MCTS and about 1 minute
take differing amounts of time and find different sets oper move — the number of VCs occasionally explodes to
connections, using fixed time limit is a better measure thélhe extent that MCTS search is crippled. Thus, in such
either fixing the number of playouts in MoHex or fixing theournaments, vc-fast is preferred: this gives the fastest V
search depth in Wolve. Each two players played 72 game@mputation, allowing the highest number of playouts per
with each other. For openings, we used 36 relatively batncgecond, yet maintains relatively accurate move selection.
single stone openings: a2 to k2, a10 to k10, b1 to j1, and b112) Wolve: Wolve uses electric circuit resistance evaluation
to j11. For each opening and each pair of players, two gangishanced by adding edges for VC-connected cells [10]. Move
were played: each player once as black, and once as whitedering and pruning is based on this evaluation. VCs aee als
So, each player played 1368 games, and the total numbemueséd for move pruning, by finding the mustplay region. The
tournament games was 13 680. guality of the computed VCs influences move ordering and

Table[TM shows the results. The Elo score is computed Ipyuning, while the depth of search depends on speed. Thus
BayesElo [[25] with errort11 and confidence 80%. A basethe choice of best VCE variant is not obvious.
Elo score of zero was assigned to Mohex with the base VCAs with MoHex, Solver can be run in parallel, but here
engine and no solver. The results are discussed separatelyits benefit is questionable. This is presumably because of
MoHex and Wolve. the alpha-beta search used by Wolve often yields similar
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results to the DFPN search used by Solver, yielding little Further minor optimizations might be possible. For example
extra information. By contrast, MCTS often yields differenchanging the order in which connections are processed might
results from DFPN search, so using Solver adds much exingprove runtime, or the strength of new connection sets.

information.

FastVC Search could be applied to other programs which,

Here, the results are counter-intuitive: the stronger stefa like MoHex and Wolve, rely on connection computations.
the VC engine, the weaker the variant of Wolve. In particulaMoHex spends most of it time in connection computation,
the variants vc2-limited and vc2-fast, which build spared aso our new algorithms reduce its running time significantly.
so relatively low quality sets of VCS, perform very poorlyBy contrast, our new algorithms did not strengthen Wolve,
Thus one might conclude that the accuracy of the VC engipeesumably because for Wolve the critical factor is not how

is important in Wolve.

long it takes to compute connections, but rather the richnes

However vcl and vc2-unlimited, which have the highesif the discovered set than occasionally increased seapth.de
possible accuracy in building VCs, are weaker than badexploring various aspect of connection strategies and hew t
Moreover, vcl is stronger than vec2-unlimited; the main difsontribute to the strengths of various players and solvers i
ference between these variants is that vc2-unlimited iefasanother area for study.

than vcl, which means that alpha-beta can search more deeply

This counter-intuitive behaviour has been observed in-play
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peculiarities of the evaluation function, which is basedamn
electric resistance model of the position. Nodes that are fa
apart in the tree, especially if they are at different depéne
often incorrectly ranked by this function, and so deep sesc [1]
may deviate significantly from correct play. We suspect tha[?]
this evaluation is biased towards positions with more spne|3]
and that the relative error among positions with many stones
is much greater than the relative error among positions with!
few stones. Each of these factors could lead to instabtfity i[5
deep searches. ]

VIII. CONCLUSIONS [7]

A. Our Results [8]

We have presented an improved algorithm for finding and
using virtual connections in a connection-game automatefd]
player. Our algorithm reorganizes H-search and stores con-
nections more efficiently. It uses move-to-front, whichegte |,
the verification of hew minimal connections.

Our most important contribution is arguably our new OR*!]
rule (semis-combiner), which finds a restricted set of new
minimal connections, but more quickly than ordinary H-
search. This allows us to apply our OR-rule for arbitrargéar [12]
set of VSCs; previous techniques had to limit the number gk,
VSCs used in an OR-rule to four.

Semis-combiner can produce an intractably large numbéf!
of connections, becoming too slow for practical usage. Thug
we designed a VC acceptance heuristic that allows the &5l
plication of a new OR-rule (fast semis-combiner). This final
optimization yields a DFPN-based solver that is about thrgg,
times faster than with the previous approach.

[18]
B. Future Work

Our algorithm is not universally better than previous metfhg]
ods for some positions, because it limits the set of VCS it
finds, it fails to solve the position in a reasonable time.aDth[20]
approaches to limiting the set of discovered VCs might l:tgq_]
successful.
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