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Stronger Virtual Connections in Hex
Jakub Pawlewicz and Ryan Hayward and Philip Henderson and Broderick Arneson

Abstract—For connection games such as Hex or Y or Havan-
nah, finding guaranteed cell-to-cell connection strategies can bea
computational bottleneck. In automated players and solvers, sets
of such virtual connections are often found with Anshelevich’s
H-search algorithm: initialize trivial connections, and then re-
peatedly apply an AND-rule (for combining connections in series)
and an OR-rule (for combining connections in parallel).

We present FastVC Search, a new algorithm for finding such
connections. FastVC Search is more effective than H-search
when finding a representative set of connections quickly is more
important than finding a larger set of connections slowly.

We tested FastVC Search in an alpha-beta player Wolve, a
Monte Carlo tree search player MoHex, and a proof number
search implementation called Solver. It does not strengthen
Wolve, but it significantly strengthens MoHex and Solver.

Index Terms—Hex, connection games, virtual connection, H-
Search

I. I NTRODUCTION

H EX is a two-player perfect information connection game
invented independently by Piet Hein in 1942 [1] and

John Nash in 1948 [2]–[4]. Hex has been an active domain of
artificial intelligence research since Claude Shannon’s seminal
work in the 1950s [5]. It is likely to remain an active domain,
as the game is easy to implement yet challenging to master,
and solving arbitrary Hex positions is PSPACE-complete [6].

Automated Hex players rely on the computation of connec-
tion strategies [7]. This computation is costly and so reduces
the number of positions that can be explored in a tree search,
whether alpha-beta, monte-carlo, or proof number search, but
usually pays off by finding wins early. For 11×11 games,
Anshelevich reports that H-search connection computations
routinely find a win 20 or more ply before the end of the
game and yield significant move pruning [8]. These gains in
lookahead and pruning are often worth the computational cost.

But the number of connection strategies of a Hex posi-
tion can grow exponentially with the number of cells. Even
on moderately-sized boards such as 9×9, finding all of a
position’s connection strategies is computationally infeasible.
Finding a critical subset of these connections, and doing so
more efficiently than has been done before, would significantly
increase the strength of current connection-based playersand
solvers [9].

In this paper, we give a new method for computing con-
nections. Rather than finding many connections, we find a
representative subset of critical connections. And ratherthan
the usual search, we use a more efficient search. We test our
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method in state-of-the-art Hex players. The strength gainsare
significant.

In §II we review the rules of Hex and the algebra of
computing connection strategies. In§III we review previous
implementations, and improvements, for this algebra. In§IV
we present our modification of H-search. In§V we describe
semis-combiner, a new way of performing the OR-rule that
bypasses a computational bottleneck. This new algorithm leads
to an explosive growth in the number of connections that can
be found in a short time. In§VI we tackle the problem of
dealing with such large sets of connections. In§VII we give
experimental results and in§VIII we conclude.

II. CONNECTION STRATEGY ALGEBRA

A. Rules of Hex

Hex is played on ann×n board with hexagonal cells.
Two players, Black and White, alternate turns coloring any
uncolored cell with their color. The winner is the player who
forms a path of their color joining their opposing two sides.
See Figure 1.

Fig. 1. White has a path of cells joining the two White sides, so White wins.

Hex cannot end in a draw, and forn×n boards there exists a
winning strategy for the first player. This first-player advantage
is noticeable in practice, especially on relatively small boards.
To mitigate it, theswap ruleis often adopted: the first player
colors a cell black; then the second player chooses whether
to be Black; then White colors a cell, and play continues
in alternating fashion. When played with the swap rule, the
second player has a winning strategy, but to play perfectly
must know the win/loss value of every opening move. To date,
automated solvers have found all such values for all board
sizes up to 9×9. Computer tournaments often use 11×11
boards; 13×13 and 19×19 boards are also popular. On all
these boards the average branching factor in a typical game is
more than 100.

B. Connection strategies and their application

In a Hex position, achain is a maximal connected group of
same-colored cells. AP -chain is a chain withP ’s color. The
position in Figure 1 has 3 black chains and 1 white chain. For
a Hex position and a playerP , a connection strategyspecifies
the twoendpointsbeing connected and thecarrier, namely the
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set of empty cellsP requires to carry out the alternating-turn
strategy. An endpoint is either an empty cell or aP -chain
or a P -colored side. Following Anshelevich [10], avirtual
connection (VC)is a second-player connection strategy, and
a virtual semi-connection (VSC)is a first-player connection
strategy. The first move of a VSC — which yields a VC with
smaller carrier between the same endpoints — is itskey.

A VC (VSC) betweenx andy is anx-y VC (VSC). An x, y
V(S)C carrier isminimal if it is not a strict superset of some
other V(S)C carrier.

Obviously, recognizing VCs and VSCs is useful. If a player
has aside-to-sideVC — one whose endpoints are the player’s
two sides — then the player has a winning strategy. We call
such a VC awinning VC: the player can win even if it is
the opponent’s turn to play. Similarly, if the player-to-move
has aside-to-side VSC, then the player-to-move has a winning
strategy. We call such a VSC awinning VSC.

Fig. 2. From left: The first two figures each show the carrier and key of a
winning White VSC. So, if Black moves next, Black must play in a cell that
intersects both carriers, as shown in the third figure.

If the player-to-moveP finds a winning opponent-VSC,
P must move within its carrier to avoid reaching a losing
position (assuming that the opponent will also find this VSC).
Similarly, if P finds several winning opponent-VSCs,P must
move in the intersection of the associated carriers to avoid
reaching a losing position. Hayward et al. call this intersection
the mustplay, and use it to prune the list of possible moves
(and so reduce the branching factor) when playing and solving
Hex positions [11]. See Figure 2.

As in other cell-coloring games such as Go or Havannah,
Hex positions can sometimes be decomposed into independent
subgames. A four-sided subgame is essentially a smaller
subgame on a possibly irregularly-shaped board. For such a
subgame, finding a VC for the winnerP (who can connect
their two opposingP -sides) allows one tofill the subgame’s
empty cells (i.e.P -color them) without changing the position’s
value, thus pruning all moves in the subgame from future
consideration [12], [13]. See Figure 3.

Fig. 3. Left: a four-sided subgame of a larger position. The boundary of
the subgame is defined by the two White chains, the two Black chains, and
the three dotted cell pairs (each such pair forms a bridge connection between
opposite-colored chains). Black has a VC whose endpoints are the two Black
bounding chains and whose carrier lies within the subgame interior, so — as
shown at right — one can Black-fill the subgame interior without changing
the position’s value.

C. Connection strategy algebra

Anshelevich gave a hierarchical algebra that computes some
— but not all — VCs and VSCs [10]. Aconnection strategy
is a tripleS = (x,C, y) wherex, y are the endpoints,C is the
carrier, andx, y /∈ C, i.e. neither endpoint is in the carrier. If
S is a VSC for playerP with key k, then(x,C \ {k}, y) is a
VC in the position obtained byP -coloring cellk.

A base VCis a connection strategy(x, ∅, y), namely with
x, y adjacent. For example, for playerP , adjacent empty cells
form a base VC, as does an empty cell adjacent to aP -chain
or P -side.

Starting with base connection strategies, one can iteratively
construct more construction strategies using the AND- and
OR-rules. The former combines connections in serial; the latter
combines them in parallel.

1) AND-rule. If S1 = (x,C1, u) and S2 = (u,C2, y) are
P -VCs, andC1 ∩ C2 = ∅, x /∈ C2, y /∈ C1, then

a) if u is P -colored,(x,C1 ∪ C2, y) is P -VC,
b) if u is uncolored,(x,C1 ∪ {u} ∪ C2, y) is aP -VSC.

2) OR-rule. If Sz = (x,Cz, y) areP -VSCs, and
⋂
Cz = ∅,

then (x,
⋃

Cz, y) is aP -VC.
Each iteration of this construction algorithm applies the

AND-/OR-rules to all possible known connection strategies,
using the current strategies to produce a new generation
of strategies. Iteration continues until no new strategiesare
produced. This hierarchical (by generation) AND-/OR- closure
algorithm is called H-search [8].

For a position and player, the set of V(S)Cs found by an
iteration-limited H-search depends on the order in which the
AND- and OR-rules are applied to particular endpoint pairs.
But if H-search is computed to completion — i.e. until no
new V(S)C can be created — then the set of minimal V(S)C
carriers that are found is fixed. For this position and player,
we call these theminimal VC and VSC carrier sets.

III. PREVIOUS APPROACHES

There are many ways to implement H-search. Here are some
algorithmic tips from various approaches.

• Discard any V(S)Cβ that is a superset1 of another V(S)C
α with the same endpoints. Both deduction rules require
the carriers being combined to have empty intersection,
so the set of strategies generated from a setS containing
α is equal to the set generated fromS ∪ {β} [14], [15].

• Before applying the OR-rule to all currentx-y VSCs,
confirm that the intersection of all such carriers is empty.
If it is not empty then the intersection of every non-empty
subset of carriers is not empty, so no newx-y VCs can
be created [15].

• If applying the OR-rule recursively, then backtrack when-
ever the most recentx-y VSC does not reduce the
intersection of all such VSCs. This VSC cannot help
construct new VCs, and will only increase the carrier
size of any new VC [16].

• Limit OR-rule application by considering VSC subsets of
size at most 3 or 4. Checking all2k subsets of a set of

1We often identify a V(S)C by its carrier.
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k VSCs usually takes too long, and yields diminishing
strength returns fork ≥ 5 [15].

• When applying the AND-rule, allow board sides to be
midpoints. This might seem counter-intuitive, since sides
are final destinations, but it allows the discovery of con-
nection strategies not otherwise deducible by H-search
[14], [15].

• Due to diminishing performance returns, limit either the
number of V(S)Cs stored for each endpoint pairx, y
(hard limit), or the number of such V(S)Cs considered in
constructing larger V(S)Cs (soft limit). If such limits are
used, sort V(S)Cs by carrier size, so that smaller (more
useful) connection strategies will be used in construction
[14], [15].

Several variations and/or enhancements of H-search have
been proposed, including generalized H-search, the crossing
rule, captured set intersection, and common miai carrier inter-
section [12], [17]–[19].

IV. COMPUTING VCS

A. Our new method

To find set of VCs that strengthened our player and solver,
we changed many aspects of the general and/or-rule closure
algorithm. One change is to store connections more efficiently:
see§IV-B. This allows many search optimizations: see§IV-C.
Another change is to apply the OR-rules so that all VCs
between two fixed endpoints are created by an operation called
semis-combiner. Rather than considering separately all VSC
subsets that might give rise to new VCs, semis-combiner acts
on all input VSCs at once: see§V.

B. Storage

Before outlining our new algorithm, we describe our data
structures. To store VCs and VSCs, we use mapsMc andMs

indexed by endpoint pairs.Mc(x, y) (respectivelyMs(x, y))
storesx-y VCs (VSCs). For each pairx, y, we store only the
minimal carriersC for which (x,C, y) is a VC (VSC). This
set of carriers is stored in a vector. Previous implementations
used a linked list, which allowed lists to be easily maintained
in sorted order by carrier size. We prefer to use a vector, which
allows for faster updates even if elements are occasionally
inserted at arbitrary locations. Rather than maintain these lists
in guaranteed sorted order, we use a move-to-front technique
which is just as effective but does not guarantee the lists are
sorted: see§IV-C7. Each carrier has a flag indicating whether
it has been processed. In our pseudocode, fort = c, s (for
VCs,VSCs) we denote byMp

t (x, y) (resp.Mu
t (x, y)) a subset

of Mt(x, y) with only processed (unprocessed) VCs/VSCs. A
VC is processedonce it has been used in the AND-rule with
all other processed VCs to create new VCs and VSCs. A VSC
is processedonce it has been used by semis-combiner to create
new VCs. See§IV-C.

Our approach is minimalist with respect to VC storage. We
do not store a VSC’s key: if needed, it is recomputed on
demand by AND-rule calls. We prefer this approach, as for
our purposes it is faster to operate on vectors rather than lists.

For efficiency reasons we need some extra structures. For
each endpointx we maintain the set of all endpointsy with
which x is connected via a VC. We denote thisneighborhood
by N(x). For each endpoint pair(x, y) we maintain the
intersection of processed VCs and all VSCs, denoted by
Ipc (x, y) and Is(x, y) respectively. As we will see, we will
updateIpc (x, y) when a VC becomes processed andIs(x, y)
when a new VSC is created.

We direct our algorithm using queuesQc andQs. Qc main-
tains triples(x,C, y) of all unprocessed VCs that are AND-
rule candidates.Qs keeps candidates for semis-combiner, but
stores only those endpoint pairs(x, y) for which there is some
unprocessed VSC inMs(x, y) and Is(x, y) = ∅. Thus there
is a chance that semis-combiner applied to allx-y VSCs
produces new VCs.Qs stores only endpoint pairs because
semis-combiner will process all such current VSCs at once.
See§V.

TABLE I
SUMMARY OF DATA STRUCTURES

symbol meaning

Mt(x, y) set of carriersC such that(x,C, y) is a VC (t = c) or
VSC (t = s); superscriptp (u) denotes subset of
processed (unprocessed) VCs/VSCs

M
p

t (x, y)

Mu
t (x, y)

N(x) VC–neighborhood ofx: {y : Mc(x, y) 6= ∅}

I
p
c (x, y) intersection of processedx-y VCs:

⋂
M

p
c (x, y)

Is(x, y) intersection ofx-y VSCs:
⋂

Ms(x, y)

Qc queue of unprocessed VCs

Qs
queue of endpoint pairs(x, y) with an unprocessedx-y
VSC, and withIs(x, y) = ∅

C. Search

We now describe the pseudocode of Algorithm 1, our new
algorithm.

1) Function VCSEARCH: Create all base VCs, i.e. those
between adjacent cells. Mark these as unprocessed and push
ontoQc.

Loop until both queues are empty (line 3). The loop invari-
ant is that processed VCs/VSCs have been used in all possible
AND-rule/OR-rules with all other processed VCs/VSCs, and
unprocessed VCs/VSCs have never been used in either rule.

At each iteration, try the AND-rule, and — via semis-
combiner — try the OR-rule only if the AND-rule fails. We
postpone applying the OR-rule as long as possible, because
semis-combiner uses all VSCs between a given endpoint pair
and finds all VCs at once. See§V.

If some VC remains unprocessed (so NONEMPTY(Qc) is
true), pop a VC(x,C, y) from Qc (line 5) and in the rest of
this iteration try the AND-rule only on this VC together with
all processed VCs. Try both ends as the AND-rule midpoint
(line 6). After the two DOAND calls finish, mark the VC as
processed (line 7) and updateIpc (x, y) (line 8).

After all VCs are processed — the AND-rule has been
tried on all pairs of current VCs — try the OR-rule. Pop the
endpoint pair(x, y) from Qs (line 10) and call DOOR, which
applies semis-combiner (line 11) to the sets of all VSCs. Mark
these VSCs as processed (line 12).
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Algorithm 1 FastVC Search
1: function VCSEARCH

2: initialize structures with base VCs
3: while NONEMPTY(Qc) or NONEMPTY(Qs) do
4: if NONEMPTY(Qc) then
5: (x,C, y)← POP(Qc)
6: DOAND(x,C, y), DOAND(y, C, x)
7: mark VC (x,C, y) processed
8: Ipc (x, y)← Ipc (x, y) ∩ C
9: else

10: (x, y)← POP(Qs)
11: DOOR(x, y)
12: mark all x-y VSCs as processed

13: function DOAND(x,C1, u)
14: for all y ∈ N(u)− (C1 ∪ {x}) do
15: if (C1 ∪ {x}) ∩ Ipc (u, y) = ∅ then
16: for all C2 ∈Mp

c (u, y) do
17: ANDRULE(x,C1, u, C2, y)
18: function ANDRULE(x,C1, u, C2, y)
19: if (C1 ∪ {x}) ∩ C2 6= ∅ then return

20: if u is coloredthen
21: TRYADDVC(x,C1 ∪ C2, y)
22: else
23: TRYADDVSC(Ms(x, y), C1 ∪ {u} ∪ C2)

24: function DOOR(x, y)
25: for all C ∈ SEMISCOMBINER(Ms(x, y),Mc(x, y)) do
26: TRYADDVC(x,C, y)
27: function TRYADDVC(x,C, y)
28: if TRYADD(Mc(x, y), C) then PUSH(Qc, (x,C, y))

29: function TRYADDVSC(x,C, y)
30: if TRYADD(Ms(x, y), C) then
31: Is(x, y)← Is(x, y) ∩ C
32: if Is(x, y) = ∅ and (x, y) /∈ Qs then
33: PUSH(Qs, (x, y))

34: function TRYADD(C, Cnew)
35: for subsequentC ∈ C do
36: if C ⊆ Cnew then
37: moveC to front of C
38: return false
39: C ← {C ∈ C : Cnew * C} ∪ {Cnew}
40: return true

2) Function DOAND(x,C1, u): For the AND-rule, given
a VC (x,C1, u), find a companion VC with endpointsu, y.
Iterate over all feasibley (line 14). Iterate over the VC-
neighborhoodN(u), rather than all cells on the board; this
saves time.

Fix y and iterate over allu, y VCs, applying the AND-
rule by calling ANDRULE. First check whether the intersection
Ipc (u, y) of these VCs is small enough (line 15) to allow a
suitable VC. This check often avoids a futile loop.

3) Function ANDRULE(x,C1, u, C2, y): Check the re-
maining AND-rule condition and try to add new a VC or VSC.
Depending on whetheru is colored, call TRYADDVC (yes) or
TRYADDVSC (no).

4) Function DOOR(x, y): SEMISCOMBINER returns all
newly created VCs. These might not be minimal, so consider
them one by one with TRYADDVC.

5) FunctionTRYADDVC(x,C, y): If C is a new minimal
x-y VC carrier, as checked by TRYADD, push it ontoQc. Mark
newly created VC as unprocessed.

6) Function TRYADDVSC(x,C, y): Check whetherC is
minimal by calling TRYADD. If yes, update the intersection
of all x-y VSCs; if this set is empty then pushx− y ontoQs.
Mark newly created VCS as unprocessed.

7) Function TRYADD(C, Cnew): This is the function in
which the most time is spent. Check whether a newly created
carrierCnew is minimal, i.e. is not the superset of an existing
carrier. This must be done efficiently, so we use a move-to-
front technique.

Iterate over all carriers in the vectorC. The first carrier
C found that is a subset ofCnew (line 36) is a rejecting
carrier. It rejects the new connection, and might reject future
connections, so move it to the front ofC (line 37). This takes
amortized constant time, since we iterated over all carriers
precedingC. Using move-to-front, the best rejecting carriers
quickly collect at the front ofC, significantly reducing the
rejection time of non-minimal carriers. This method is crucial,
since new carriers are usually non-minimal, with new minimal
VCs/VSCs discovered rarely.

A new connection that is not rejected is added as a new
carrier. Also, all carriers which become non-minimal are re-
moved (line 39). Again, this is amortized-time efficient, aswe
already iterated over all carriers. However, we need to update
VC information carefully: if filtering removes a processed VC,
recalculateIpc (x, y); if it removes an unprocessed VC, remove
the VC fromQc.

V. SEMIS-COMBINER

A. The previous approach

Considerx-y connections. LetC (resp.S) be the set of all
x-y VC (VSC) carriers. A straightforward application of the
OR-rule is to iterate over all subsetsS ′ of S. If the intersection
of the subsets ofS ′ is empty then combining these strategies
yields a new VCC ′ whose carrier is the union of these subsets.
One must check whetherC ′ covers(is a superset of) the carrier
of any current VC; if not, thenC ′ is minimal and so can be
added toC.

There are2#S such subsets, so iterating over all of them is
in general infeasible. A usual previous approach is to iterate
only over subsetsS ′ ⊆ S of bounded size, say 3 or 4. But
this reduces the set of new connections that can be found,
which in turn reduces the strength of the program that uses
the VC engine, while still leaving iteration over VSCs as a
computational bottleneck.

B. Our new approach

We now describe our semis-combiner algorithm. The main
idea of our approach is to focus on what we call blocked cells,
as we shall explain.

To start, supposeC is empty (so there is nox-y VC). Then
we create a new VCC ′ whose carrier is the union of all
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strategies ofS only if the intersection of all corresponding
carriers is empty.

Next, supposeC is non-empty. AssumeC contains exactly
one carrier, sayC. The carrier of a new VCC ′ cannot cover
C, so there must be some cella that is inC but not inC ′, and
C ′ can be created only from VSCs not containinga. We calla
a blocked cellfor constructingC ′. Let S ′ = {S ∈ S | a /∈ S}
be the set of all such VSCs not containing some blocked cell.
Create a new VC only if the combined intersection ofS ′ is
empty. So ifC contains one carrierC, it suffices to iterate over
all a in C.

Consider an example. Above, between the black side and
the dotted stone, we create VCs from four VSCsA,B,C,D
(left to right, top to bottom):

The intersection ofA,B,C,D is empty, as is the intersection
of A,B, soA ∪B is the carrier of a VC, say I:

Now block a cell (dotted) from I:

This cell intersectsB,D but missesA,C, whose intersection
is empty, soA ∪ C is the carrier of a new VC, say II:

Now block a cell from II. A good option is a cell that also
belongs to I:

This cell missesA,D, whose intersection is empty, soA∪D
is the carrier of a new VC:

In general, finding a single blocked cell is not enough to
construct all new VCs. Instead, we need to find a set of blocked
cellsB = {a1, . . . , an} that satisfies the following: eachC in

C contains at least one blocked cell (soC ∩ B 6= ∅) and the
intersection of all VSCs which do not contain any blocked cell
is empty (so

⋂
S ′ = ∅, whereS ′ = {S ∈ S |S ∩ B = ∅}).

Given a setB of blocked cells, the union of the strategies of
S ′ is the carrier of a new VC.

Following this approach, we implement Algorithm 2 in
a backtracking manner. The main function is BACKTRACK,

Algorithm 2 SEMISCOMBINER(S, C)

Require: VSCsS and existing VCsC carrier sets
Ensure: Return a set of carriers of newly created VCs

1: function SEMISCOMBINER(S, C)
2: return BACKTRACK(∅,S, C)− C

3: function BACKTRACK(F,S, C)
4: if

⋂
S 6= ∅ then return C

5: if C = ∅ then C ← {
⋃
S}

6: loop
7: A← a smallest set from{C − F : C ∈ C}
8: if A = ∅ then return C
9: a← choose element fromA

10: F ← F ∪ {a}
11: S ′ ← FILTER(S, a), C′ ← FILTER(C, a)
12: C ← C ∪ BACKTRACK(F,S ′, C′)

13: function FILTER(A, a) return {A ∈ A : a 6∈ A}

called initially at depth 0 in SEMISCOMBINER. When called
at depthj, the set of blocked cellsB = {a1, . . . , aj} has size
j. From here, all possible supersets ofB are searched.B is
not stored explicitly. Instead, filtered VSC and VC carrier sets
are passed as argumentsS andC, where afiltered carrier set
is one in which each carrier contains no blocked cell (so is
disjoint with B). Additionally, we pass a setF of forbidden
choices ofaj+1. F contains all cellsa such that the set of
blocked cellsB ∪ {a} has been already searched.

BACKTRACK returns all of the VC’s carriers, both original
and newly created from VSCs, that are disjoint withB.

We now explain BACKTRACK step by step. To start, test
whether a VC can be created (line 4). If filtering removes all
VCs, create a new VC (line 5). This VC will be disjoint with
any VC created so far, because hereS contains only VSCs
that are disjoint fromB, whereas all previous VCs contain at
least one cell fromB.

Next, loop over all possible choices ofaj+1 (variablea). In
order to create a new VC, we must filter out all VCs fromC.
So for eachC ∈ C we must at some point block a cell ofC.
But we cannot block any cell fromF . In order to minimize the
branching factor, we want the smallest possible set difference
C − F among all possibleC; this is A (line 7). The next
blocked cell must be inA.

If A is empty, there is at least one VC that cannot be
filtered, so end the search (line 8). IfA is not empty, pick
an arbitrarya from A (line 9) asaj+1. Now recursively call
BACKTRACK on the carrier setsS ′, C′ obtained fromS, C by
removing connections containinga (lines 11–12).

We forbid a as a candidate for each future selection ofai,
namely fori > j, both in deeper recursive calls and in local
future choices ofaj+1 (line 10), because including it would
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produce no new blocked cells, and so no new VCs. Thus search
a setB of blocked cells only once.

C. Efficiency

The total number of recursive calls is limited in several
ways. We never duplicate a setB of blocked cells, so one
upper bound is the number of such sets, namely2t, wheret
is the size of a smallest set that hits all VCs. The number of
blocked cell sets that correspond to recursion calls is smaller
than this, as the recursion is often broken by the condition at
line 4: if B is the blocked set corresponding to the current re-
cursive call and the intersection of VSCs is not empty, then we
abort the search for supersets ofB. While the input VSCs thus
limit the search, the main bounding factor is the number of
VCs, both current and newly created. For example, recursion
depth is bounded by the number of VCs, so SEMISCOMBINER

runs quickly when creating initial connections. This bounding
effect is difficult to measure precisely. The number of recursive
calls depends not on the number of VSCs, but rather on the
number of newly created VCs.

We performed an experiment to measure typical perfor-
mance, using the position in Figure 4, which has many V(S)Cs.
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Fig. 4. A position with many VCs and VSCs.

For this position, for each endpoint pair with empty VSC
intersection, we called SEMISCOMBINER and gathered data on
the 2 780 resulting calls. Each data point includes the number
of input VSCs, the number of produced final VCs, and the
number of recursive BACKTRACK calls made. For each data
point, the number of recursive calls was more than1 000.

We used Gnuplot [20] to analyze the1 500 data points with
the most recursive calls, finding a function that correlates
the number of recursive calls with the number of VSCs
and the number of VCs. After drawing various 3D plots,
we considered several functions with varying numbers of
parameters. For each such function we used Gnuplot’s fit
command to establish the best value for parameters. We found
a good approximation for the number of recursive calls to be
max(20 · (#VCs)5/4, 2 ·#VSCs). To show how well this fits,
for each data point we calculate a fitting factor: a proportion
of actual number of recursive calls and its approximation. The
maximum value of the fitting factor is2.98. There are 8 data
points with fitting factor over 2, 53 with fitting factor over1.5,

and 294 with fitting factor over 1. Notice that this function
is polynomial in the number of VCs and VSCs, and — as
expected from our discussion above — reflects that the number
of initial VCs have a greater impact on the final number of
connections than the number of initial VSCs.

D. Remarks and minor optimizations

1) VC minimality: During intermediate processing, SEMIS-
COMBINER can construct non-minimal VCs. So as to avoid
using these in the construction of further strategies, we discard
them before the final set of VCs is returned.

2) Subsequent use of semis-combiner:During the connec-
tion construction process, SEMISCOMBINER can be called
with the same endpoint pair more than once. In such cases,
each subsequent SEMISCOMBINER call in argumentS par-
titions the VSCs as either processed (already present in the
previous call) or not. This allows the search to be stopped
whenever BACKTRACK is called with S containing only
processed VSCs, as this cannot produce any new VC.

3) Greedy sum:Whenever a new connection is created by
summing VSCs in line 5 of Algorithm 2, rather than sum
all VSCs, we greedily add each successive carrier only if it
reduces the current intersection of all VSCs. See Algorithm3.
This optimization decreases runtime.

Algorithm 3 Greedy sum
1: function GREEDYSUM(S)
2: X ← ∅, I = U
3: for all S ∈ S do
4: if I ∩ S 6= I then
5: X ← X ∪ S
6: I ← I ∩ S
7: return X

VI. L IMITING CONNECTION GROWTH

Semis-combiner runs quickly on large VSC sets and finds all
possible H-Search VCs. But this can be too many connections
to be useful to a game player.

Consider the position from Figure 4. Here computing black
VCs takes 8 minutes, too long for any playing or solving
application. This runtime is due simply to there being696 901
VCs and4 550 587 VSCs.

Between cellsx (b7) andy (i8) black has65 698 VSCs.
Applying Algorithm 2 to these yields6 925 VCs. The number
of recursive BACKTRACK calls is 860 264. There are14 238
x − y VSCs with keyu (d7); this is the most common key
for x− y VSCs. These are created by applying the AND-rule
to the 60x-u and 266u-y VCs; most such VC pairs yield a
new VSC. Thus the number ofx-y VSCs with keyu can be
almost as large as the product of the number ofx-u andu-y
VCs, which explains the exponential growth of the number of
VSCs.

Because of this growth, it is necessary to limit the creation
of new VCs.
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A. New VC acceptance heuristic

Previous approaches to limit the number of new VCs used
soft and hard limits. See§III. We propose another approach.
Assume thatC is the set of VC carriers between two fixed
cells, and that a new VC with carrierC is created. When is
it worth addingC to C? Always, if C is a strict subset of a
carrier in C. Never, if C is a superset of such a carrier. But
what if C is neither such a strict subset nor a superset? Then
C is useful only if it leads to the creation of any new VSCs
by the AND-rule. A set of VSCs combine to form a new VC
only if their combined intersection is empty; hence it is useful
to collect VCs whose intersection (with others with the same
endpoints) is as small as possible. So ouracceptance heuristic
is as follows: add a new VC only if
(1) it is a strict subset of an existing VC, or
(2) it reduces the combined intersection of all current VCs.

With this heuristic, the number of VCs stored between two
given cells does not exceed the number of cells on the board,
which is a constant. So, it limits to a polynomial in the number
of cells the total number of connections created, thus avoiding
exponential growth.

Not surprisingly, given unlimited computation time, this
heuristic weakens the resulting VC engine. However, for fixed
time computations, this heuristic generally strengthens the VC
engine. See§VII.

This heuristic is not universally better than the standard
connection-finding algorithm. Figure 5 shows a position from
the 2011 Computer Olympiad Hex competition, with White
to move. Here our heuristic fails to find a white side-to-side
VSC. Such VSCs are useful in pruning losing moves, and a
solver using our new heuristic is slower here than a solver
using the standard VC computation.
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Fig. 5. A VC engine using the acceptance heuristic fails to find a white side-
to-side VSC here. White wins, e.g.i10 e9 e10 b10 b9 a9 b8 a8 b6
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B. Fast semis-combiner

In our acceptance heuristic, (2) often implies (1). This
suggests a simpler heuristic: use only (2). This allows a faster
implementation of semis-combiner.

Let S andC be SEMISCOMBINER arguments, i.e. existing
VSCs/VCs with fixed endpoints. LetA =

⋂
C be the inter-

section of these VCs. We want to create a VCC that is not a

superset ofA. For this we need to find a blocked cella ∈ A
such that the intersection of VSCs not containinga is empty.
We do this by iterating overa ∈ A. After each iteration we
either removea from A or, if we added a new VCC, update
A to A ∩ C. In the latter case, sincea 6∈ C, the size ofA is
reduced by at least one.

We stop the loop whenever we are unable to create a new
VC fulfilling (2). This happens ifA = ∅ or

⋂
S 6= ∅. We

speed up this process by filtering out ofS all supersets ofA,
since from now on they are useless. See Algorithm 4.

Algorithm 4 FASTSEMISCOMBINER(S, C)

Require: VSCsS and existing VCsC
Ensure: Return new VCs reducing intersection ofC

1: function FASTSEMISCOMBINER(S, C)
2: Cnew← ∅
3: A←

⋂
C

4: while A 6= ∅ do
5: S ← {S ∈ S : A 6⊆ S}
6: if

⋂
S 6= ∅ then return Cnew

7: a← choose element fromA
8: S ′ ← FILTER(S, a)
9: if

⋂
S ′ = ∅ then

10: C ← GREEDYSUM(S ′)
11: Cnew← Cnew∪ {C}
12: A← A ∩ C
13: else
14: A← A− {a}

15: return Cnew

FASTSEMISCOMBINER has at most as many iterations as
the size of the VCs intersection, but usually much fewer.

C. Comparison

A VC engine using either FASTSEMISCOMBINER or
SEMISCOMBINER together with the acceptance heuristic is
usually weaker than a VC engine using only SEMISCOM-
BINER. We call these VCEs respectivelyfast, limited, and
unlimited. For the position in Figure 4, Figure 6 shows
cells VC-connected to the bottom for these VCEs. Notice
that unlimited VCE finds more complicated VCs. A white
mustplay set for this position is shown in Figure 7. Here fast
VCE finds no VSCs between the black sides and so finds no
mustplay set, while the mustplay of limited VCE is twice as
large as that of unlimited VCE.

Although unlimited VCE is the strongest of these three
VCEs, for fixed time computations the speed gains of limited
VCE and fast VCE more than compensate for the loss in found
connections. As we show in§VII, fast VCE is the strongest
of these VCEs.

VII. E XPERIMENTAL RESULTS

We performed experiments to show the strength of our
methods. We used these VC engines:base, the standard engine
from §III; vc1, in which base is improved by using move-to-
front and by making other minor improvements;vc2, a totally
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Fig. 6. Cells black-VC-connected to the bottom, as computed byunlimited
VCE (shaded), limited VCE (black dot), and fast VCE (white dot).
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Fig. 7. White mustplay, as found by unlimited VCE (shaded), limited VCE
(dotted), and fast VCE (void: no mustplay).

rewritten engine, with our new data structures from§IV. We
considered the three variants of vc2 from§VI-C.

We implemented algorithms in the open-source Hex repos-
itory Benzene [19], which in turn is built on the open-
source game-independent framework Fuego [21]. Tests were
performed on three Benzene programs that rely on their VC
engines: Solver, MoHex and Wolve.

A. Solver

Solver finds the theoretical value of a position. It uses
Focused DFPN [9], [12], a version of DFPN search [22]
that is enhanced by the1 + ε trick [23], a VC engine, an
inferior cell engine, and electric circuit resistance for move
ordering. VCs play a central role: computational efficiency
and the strength of the computed VC sets are the main
factors in determining runtime. Because Solver depends so
critically on VC computation, it is a good benchmark for our
improvements.

We used positions of various difficulty, with solving times
of vc2-unlimited varying between 400 and 20 000 seconds.
We used only relatively challenging positions, since on simple
positions there is often a large variance in runtime for different
runs.

The first set of positions consists of the ten hardest 8×8 1-
move openings. See Figure 8. The second set of positions con-
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Fig. 8. 1-move 8×8 Hex openings (dotted). Cell color shows winner if black
opens there.

sists of six 11×11 positions from the 2011 ICGA Olympiad
Hex competition [24]. These were found by starting with
the final position and proceeding backwards to a moderately
difficult position. See Table II.

TABLE II
POSITIONS FROM THE2011 OLYMPIAD . THE GAME 6 POSITION HAS BEEN

MODIFIED. GAME 3 WAS NOT USED IN THIS BENCHMARK, BUT WAS USED

IN §VI-B.

gm. move sequence black moves first
3 a3 f6 d7 d8 h5 g7 c8 c9 i6 h8 j7 i9 g8 h7 f7 k8 g6 f8 e8 d10

a10 a11 c10 d9 j9
5 a2 g5 d7 d8 e7 e8 f7 f8 g7 g8 c8 c9 h8 h7 a10 a11 b10 b11

c10 c11 i7 i6
6 e2 g5 e6 f7 d8 d7 e7 d9 c9 b11 e8 e9 f8 f9 g8 g9 c10 f4 d5

d6 e5 c11 d10 d11 e10 e11 f10 f11 a11 b10 i9 h10 g10 g11
i10 h9 i8 h8

7 a2 e7 f7 f6 h5 h4 g5 g6 h6 g4 f5 f4 j3 j2 i3 i2 h3 h2 g3 i4
j4 i5 j5 i6 j6 i8 i7 g2 f3 h8 h7 f2 e3 g8

9 c1 f6 g6 g5 i4 i3 h4 h3 g4 g3 f4 f3 d4 e4 c6 d5 c5 c7 d6 d7
e6

10 c1 e7 g6 g7 f7 e9 f8 g5 h5 h4 f6 f5 e6 e5 c6 d4 b5 c3 j3 i4
11 a2 f6 g6 g5 d7 d8 e5 f7 c8 b10 c9 c10 d9 d10 e9 e10

Table III shows our results. We ran our experiments on an
Intel Xeon 2.4 GHz. The transposition table size was225,
which is more than sufficient. All averages are geometric
means, since these are more suitable than arithmetic means
when measuring a speedup ratio.

TABLE III
AVERAGE SOLVING TIMES AND VC BUILDS FOR DIFFERENT VERSIONS OF

SOLVER.

8×8 openings Olympiad Games
version time VC builds time VC builds
base 4819 355322 10834 203820
+ semis-combiner 5442 294169 10783 177722
+ AND-rule priority 5901 289586 12828 171459
+ store VC-neighbours 4946 290862 10411 166276
+ move-to-front (vc1) 3926 289366 7733 171593
vc2-unlimited 2015 183144 5099 140475
vc2-limited 2398 294490 4808 244548
vc2-fast 1695 295163 3185 244791

The first part of the table shows the improvements obtained
by adding various features to the base version VC engine.
Semis-combiner yields only a small reduction in runtime,
and only for the Olympiad Games set, but for both sets it
reduces the number of searched states (which, with succeeding
optimizations, resulted in significant runtime reduction).
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A VC engine can postpone running semis-combiner until
a sufficiently large set of VSCs has accumulated. We imple-
mented such anAND-rule priority scheme. While this scheme
slightly decreased the number of VC builds, there was no
runtime reduction, presumably because the base version lacks
some optimizations that are implemented in vc2.

The other two base optimizations achieved a significant
speedup, especiallymove-to-front. Storing VC-neighboursal-
lows for iteration only over cells that are VC-connected with a
given endpoint. This is useful mainly within application ofthe
AND-rule. As mentioned earlier, move-to-front requires the
use of a vector instead of a linked list; however, it eliminates
the sorting of V(S)Cs by carrier size, which is no longer
necessary because of the natural order found by move-to-front.
Its high performance is as expected.

As explained in§IV, we designed new data structures to
exploit our numerous optimizations. The second part of the
table shows the improvement in solving time and the number
of visited states. Version vc2-fast visits a comparable number
of states to vc2-limited, suggesting that the former might be
superior to the latter. While vc2-limited gives no improvement
over vc2-unlimited, vc2-fast is faster, especially on larger
boards. Thus vc2-fast is arguably the best of these variants
for use in Solver. However, the superiority of vcs-fast over
the other variants is not universal: there are positions — e.g.
in Figure 5 — where it fails due to missing VCs.

B. Playing programs

In order to measure the comparative strengths of these
variants in head-to-head competition, we played a large tour-
nament involving many versions of the two Benzene players,
namely MoHex and Wolve. For each of these two players, we
created various versions by selecting a VC engine, selecting a
VC computation variant, and deciding whether to use parallel
Solver. The VC engine is one of base, vc1 and vc2. For vc2,
we used one of the variants: unlimited, limited, or fast. Thus,
for each VC engine, we considered 5 different versions of
the VC engine, which together with the parallel Solver choice
yields 10 different players. So in total 20 different players (10
MoHex, 10 Wolve) competed in the tournament.

The tournament was played with 10 seconds per move
on an 11×11 board. Because we are interested in playing
strength per unit time, and because the different VC variants
take differing amounts of time and find different sets of
connections, using fixed time limit is a better measure than
either fixing the number of playouts in MoHex or fixing the
search depth in Wolve. Each two players played 72 games
with each other. For openings, we used 36 relatively balanced
single stone openings: a2 to k2, a10 to k10, b1 to j1, and b11
to j11. For each opening and each pair of players, two games
were played: each player once as black, and once as white.
So, each player played 1368 games, and the total number of
tournament games was 13 680.

Table IV shows the results. The Elo score is computed by
BayesElo [25] with error±11 and confidence 80%. A base
Elo score of zero was assigned to Mohex with the base VC
engine and no solver. The results are discussed separately for
MoHex and Wolve.

TABLE IV
RESULT OFMOHEX AND WOLVE TOURNAMENT FOR DIFFERENT

SETTINGS.

Rank Program VC engine & variant solver Elo score
1 MoHex vc2-unlimited yes 111
2 MoHex vc2-limited yes 93
3 MoHex vc2-fast yes 88
4 Wolve base yes 85
5 Wolve vc1 yes 70
6 Wolve base no 69
7 MoHex vc2-unlimited no 48
8 MoHex vc1 yes 47
9 Wolve vc1 no 46

10 MoHex vc2-fast no 44
11 MoHex vc2-limited no 40
12 MoHex vc1 no 37
13 MoHex base yes 37
14 Wolve vc2-unlimited no 33
15 Wolve vc2-unlimited yes 28
16 Wolve vc2-limited yes 27
17 Wolve vc2-fast yes 27
18 Wolve vc2-fast no 11
19 Wolve vc2-limited no 1
20 MoHex base no 0

1) MoHex: MoHex [7] uses Monte Carlo tree search [26],
[27]. The VC engine is used as follows. As soon as node is
visited 400 times, VCs are built for the node, and a mustplay
region is computed. This allows the pruning of inferior moves,
and detects win or loss long before the board is full.

The parallel Solver — if used — executes on a separate
thread. If Solver detects a win or loss, the associated move is
used by the player; otherwise, the player uses MCTS to select
its move.

It is no surprise that — irrespective of whether Solver is
used — base is the weakest VC engine. It is also no surprise
that Solver increases playing strength: base is 37 Elo stronger
(with Solver on than with Solver off), vc1 is 10 Elo stronger,
and the three variants of vc2 are 40–48 Elo stronger. With
Solver, vc2 is much stronger than other VC engine versions.
Among vc2 variants, vc2-unlimited is best, while vc2-fast and
vc2-limited are comparable.

Our experiment shows that MoHex benefits greatly by
increasing the strength and/or speed of its VC engine, and
suggests that vc2-unlimited is the preferred variant. However,
under real tournament settings — those used in competitions,
typically 16 MCTS threads for MCTS and about 1 minute
per move — the number of VCs occasionally explodes to
the extent that MCTS search is crippled. Thus, in such
tournaments, vc-fast is preferred: this gives the fastest VC
computation, allowing the highest number of playouts per
second, yet maintains relatively accurate move selection.

2) Wolve: Wolve uses electric circuit resistance evaluation
enhanced by adding edges for VC-connected cells [10]. Move
ordering and pruning is based on this evaluation. VCs are also
used for move pruning, by finding the mustplay region. The
quality of the computed VCs influences move ordering and
pruning, while the depth of search depends on speed. Thus
the choice of best VCE variant is not obvious.

As with MoHex, Solver can be run in parallel, but here
its benefit is questionable. This is presumably because of
the alpha-beta search used by Wolve often yields similar
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results to the DFPN search used by Solver, yielding little
extra information. By contrast, MCTS often yields different
results from DFPN search, so using Solver adds much extra
information.

Here, the results are counter-intuitive: the stronger or faster
the VC engine, the weaker the variant of Wolve. In particular,
the variants vc2-limited and vc2-fast, which build sparse and
so relatively low quality sets of VCS, perform very poorly.
Thus one might conclude that the accuracy of the VC engine
is important in Wolve.

However vc1 and vc2-unlimited, which have the highest
possible accuracy in building VCs, are weaker than base.
Moreover, vc1 is stronger than vc2-unlimited; the main dif-
ference between these variants is that vc2-unlimited is faster
than vc1, which means that alpha-beta can search more deeply.

This counter-intuitive behaviour has been observed in play-
ers similar to Wolve such as Six [15], in which a deeper search
can yield a weaker program. One possible explanation is the
peculiarities of the evaluation function, which is based onan
electric resistance model of the position. Nodes that are far
apart in the tree, especially if they are at different depths, are
often incorrectly ranked by this function, and so deep searches
may deviate significantly from correct play. We suspect that
this evaluation is biased towards positions with more stones,
and that the relative error among positions with many stones
is much greater than the relative error among positions with
few stones. Each of these factors could lead to instability in
deep searches.

VIII. C ONCLUSIONS

A. Our Results

We have presented an improved algorithm for finding and
using virtual connections in a connection-game automated
player. Our algorithm reorganizes H-search and stores con-
nections more efficiently. It uses move-to-front, which speeds
the verification of new minimal connections.

Our most important contribution is arguably our new OR-
rule (semis-combiner), which finds a restricted set of new
minimal connections, but more quickly than ordinary H-
search. This allows us to apply our OR-rule for arbitrary large
set of VSCs; previous techniques had to limit the number of
VSCs used in an OR-rule to four.

Semis-combiner can produce an intractably large number
of connections, becoming too slow for practical usage. Thus
we designed a VC acceptance heuristic that allows the ap-
plication of a new OR-rule (fast semis-combiner). This final
optimization yields a DFPN-based solver that is about three
times faster than with the previous approach.

B. Future Work

Our algorithm is not universally better than previous meth-
ods for some positions, because it limits the set of VCS it
finds, it fails to solve the position in a reasonable time. Other
approaches to limiting the set of discovered VCs might be
successful.

Further minor optimizations might be possible. For example,
changing the order in which connections are processed might
improve runtime, or the strength of new connection sets.

FastVC Search could be applied to other programs which,
like MoHex and Wolve, rely on connection computations.
MoHex spends most of it time in connection computation,
so our new algorithms reduce its running time significantly.
By contrast, our new algorithms did not strengthen Wolve,
presumably because for Wolve the critical factor is not how
long it takes to compute connections, but rather the richness
of the discovered set than occasionally increased search depth.
Exploring various aspect of connection strategies and how they
contribute to the strengths of various players and solvers is
another area for study.

ACKNOWLEDGEMENTS

We thank Martin Mueller for the use of his machines for
some of our experiments.

REFERENCES

[1] P. Hein, “Vil de laere Polygon?”Politiken, December 1942.
[2] J. Nash, “Some games and machines for playing them,” RAND, Tech.

Rep. D-1164, February 1952.
[3] H. W. Kuhn and S. Nasar, Eds.,The Essential John Nash. Princeton

University Press, 2002.
[4] S. Nasar,A Beautiful Mind: A Biography of John Forbes Nash, Jr.

Simon and Schuster, 1998.
[5] C. E. Shannon, “Computers and automata,”Proceedings of the Institute

of Radio Engineers, vol. 41, pp. 1234–1241, 1953.
[6] S. Reisch, “Hex ist PSPACE-vollständig,” Acta Informatica, vol. 15, pp.
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