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Abstract

Poker provides an excellent testbed for studying decision-making under conditions of
uncertainty. There are many benefits to be gained from designing and experimenting
with poker programs. It is a game of imperfect knowledge, where multiple competing
agents must understand estimation, prediction, risk management, deception, counter-
deception, and agent modeling. New evaluation techniques for estimating the strength
and potential of a poker hand are presented. This thesis describes the implementation
of a program that successfully handles all aspects of the game, and uses adaptive

opponent modeling to improve performance.
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Chapter 1

Introduction

Game playing is an ideal environment for examining complex topics in machine in-
telligence because games generally have well-defined rules and goals. Additionally,
performance, and therefore progress, is easily measured. However, the field of com-
puter game playing has traditionally concentrated on studying chess, and other two-
player deterministic zero-sum games with perfect information, such as checkers and
Othello. In these games, players always have complete knowledge of the entire game
state since it is visible to both participants. High performance has been achieved
with brute-force search of the game trees, although there are some exceptions, such
as the game of Go where the game tree is far too large. Although many advances in
computer science (especially in searching) have resulted, little has been learned about
decision-making under conditions of uncertainty. To tackle this problem, one must
understand estimation, prediction, risk management, the implications of multiple op-
ponents, deception, counter-deception, and the deduction of decision-making models
of other players.

Such knowledge can be gained by studying imperfect information games, such as
bridge and poker, where the other players’ cards are not known and search alone is
insufficient to play these games well. Poker in particular is a popular and fascinating
game. It is a multi-player zero-sum game with imperfect information. The rules
are simple but the game is strategically complex. It emphasizes long-term money
management (over a session of several contiguous interdependent games), as well as
the ability to recognize the potential of one specific game and to either maximize
gain or minimize loss. Most games are analogical to some aspect of real life, and
poker can be compared to “policy decisions in commercial enterprises and in political
campaigns” [8].

Poker has a number of attributes that make it an interesting domain for research.
These include multiple competing agents (more than two players), imperfect knowl-
edge (your opponents hold hidden cards), risk management (betting strategies and
their consequences), agent modeling (detecting and exploiting patterns or errors in
the play of other players), deception (bluffing and varying your style of play), and
dealing with unreliable information (your opponents also make deceptive plays). All
of these are challenging dimensions to a difficult problem.



Certain aspects of poker have been extensively studied by mathematicians and
economists. There are two main approaches to poker research. One approach is to
use simplified variants that are easier to analyze [10] [11] [12]. For example, one could
use only two players or constrain the betting rules. However, one must be careful
that the simplification does not remove the challenging components of the problem.
The other approach is to pick a real variant, but to combine mathematical analysis,
simulation and ad hoc expert experience. Expert players, often with mathematical
skills, are usually involved in this approach [13] [14] [15].

However, little work has been done by computing scientists. Nicolas Findler
worked on and off for 20 years on a poker-playing program for Five-Card Draw [6]
[7] [8], however he focused on simulating the thought processes of human players and
never achieved a program capable of defeating a strong player. Koller and Pfeffer
[10] have investigated poker from a theoretical point of view. They implemented the
first practical algorithm for finding optimal randomized strategies in two-player im-
perfect information competitive games. However, such a system will likely not win
much more from a set of bad players than a set of perfect players, failing to exploit
the property that human players make many mistakes (i.e. it presumes the opponent
always plays the best strategy).

One of the interesting aspects of poker research is that opponent modeling can be
examined. It has been attempted in two-player games, as a generalization of minimax,
but with limited success [5] [9]. Part of the reason for this is that in games such as
chess, opponent modeling is not critical for computers to achieve high performance.
In poker, it is essential for the best results. Working under the assumption that our
opponents will make mistakes and exhibit predictability, opponent modeling should
be accounted for and built into the program framework.

Although our long-term goal is to produce a high-performance poker program that
is capable of beating the best human players, for our first step we are interested in
constructing a framework with useful computer-oriented techniques. It should min-
imize human expert information and easily allow the introduction of an opponent
modeling system, and still make a strong computer poker program. If we are suc-
cessful, then the insights we gain should have wide applicability to other applications
that require similar activities.

We will present new enumeration techniques for determining the strength and
potential of a player’s hand, will demonstrate a working program that successfully
plays ‘real’ poker, and demonstrate that using opponent modeling can result in a sig-
nificant improvement in performance. Chapter 2 will introduce terminology (there is
a glossary in Appendix C) and will give the rules of poker and of Texas Hold’em (the
poker variant we have chosen to study). Chapter 3 describes how humans play poker.
Chapter 4 discusses various ways to approach the problem using a computer, and
details the architecture we have selected. Chapter 5 describes the enumeration tech-
niques we use for hand evaluation. Chapter 6 describes our betting strategy. Chapter
7 details the opponent modeling system. Chapter 8 discusses the experimental system
and some results. Chapter 9 discusses the conclusions and future work.

Parts of Chapters 5 and 6 have been published in Advances in Artificial Intelligence



[4], and parts of Chapter 7 have been published in AAAI-98 [3]. Our poker-playing
program is called Loki and has been demonstrated at AAAI-98. It is written in C
and C++ and runs with real-time constraints (in typical play, an action should not
take more than a few seconds). The primary mechanism for performance testing is
self-play, however we also play against human opponents through an Internet poker
server. The interface between the program and the server is written in PERL.



Chapter 2

Poker

Poker is a set of multi-player card games (standard deck of 52 cards) that is typically
played as a session consisting of a sequential series of multiple games (sometimes
called deals or hands). Each player begins the session with a certain amount of chips
(equated to money). Poker is a zero-sum game (one player’s gain is another’s loss)
where the long-term goal is to net a positive amount of chips. This is accomplished
by maximizing winnings in each individual game within the session.

There are numerous variants of poker. This chapter covers the basic structure
that defines the majority of these variants, and describes the specific variant of Texas
Hold’em.

A note on symbols:
e We use a standard deck of 52 cards (4 suits and 13 ranks per suit).

e For card ranks, we use the symbols 2 (Deuce), 3 (Trey), 4 (Four), 5 (Five), 6
(Six), 7 (Seven), 8 (Eight), 9 (Nine), T (Ten), J (Jack), Q (Queen), K (King),
and A (Ace).

e For card suits, we use the symbols ¢ (Diamonds), & (Clubs), © (Hearts), and
& (Spades).

e A single card is represented by a pair of symbols, e.g. 2 (Deuce of Diamonds)
and T (Ten of Clubs).

o A set of cards is represented by a list separated by dashes, e.g. 1d-5&-6& (Four,
Five and Six of Clubs).

2.1 Playing a Game

Each game is composed of several rounds, which in turn involve dealing a number of
cards followed by betting. This continues until there is either only one active player
left in the game or when all the betting rounds have been completed. In the latter
case, the game then enters the showdown to determine the winner(s).



Betting involves each player contributing an equal amount of money to the pot.
This amount grows as the game proceeds and a player may fold at any time, which
means they lose the money they have already contributed and are no longer eligible
to win the pot.

When all players fold but one, the remaining player wins the pot. Otherwise, if
the game proceeds to a showdown, the highest ranked set of cards held by a player
(the highest hand) wins the pot (ties are possible, in which case the pot is split). Note
that poker is full of ambiguous terminology; for example, the word hand refers both
to one game of poker and to a player’s cards.

2.1.1 Ante

Before the initial deal, participating players are required to blindly contribute a fixed
amount of money (ante) to the pot. In some variants an alternative system is used
where some of the players immediately following the rotating dealer (called the button)
are forced to put in fixed size bets (called the blinds). Without these forced bets, risk
can be minimized by only playing the best hand, and the game becomes uninteresting.

2.1.2 The Deal

Fach round begins by randomly dealing a number of cards (the non-deterministic
element of poker). In some variants these are community cards which are shared
by all players. Each player receives the same number of cards — each of which is
either face-down (known only to this player) or face-up (known to all players). There
are other possible dealing steps such as drawing (discarding and replacing face-down
cards) and rolling (revealing some face-down cards). The face-down cards are the
imperfect information of poker. Each player knows their own cards but not those of
their opponents.

A variant can be defined by a seript which specifies the number of rounds and
what dealing actions are to be taken at each round. This script has one entry for
each round in the variant (recall there is also a series of betting that occurs at the
end of each round). Here are the scripts for some well-known poker variants:

Five-Card Draw (2 betting rounds):

o deal 5 cards face-down to each player

o cach player discards 0-3 cards and receives the same number of new face-down
cards.

Seven-Card Stud (5 betting rounds):
e 2 cards face-down and 1 face-up to each player
e 1 face-up to each player

e 1 face-up to each player



e 1 face-up to each player

e 1 face-down to each player

2.1.3 Betting

The betting portion of poker is a multi-round sequence of player actions until some
termination condition is satisfied. Without it your probability of winning the game
depends solely on nature (the deal of the cards). Betting increases the pot and
indirectly gives information about players and their hands. When playing against
good opponents who pay attention to the actions of the other players, betting can
also be used to give misinformation (the element of deception in poker).

Betting Order

The players are in a fixed seating order around the table (even in a virtual environment
the set of players is referred to as the table). The dealer button rotates around in
a clockwise fashion, as do betting actions. Betting always begins with the first to
act, which in most games is the first active player following the button (in stud
games, which have face-up cards, it is usually the player with the highest ranked
cards showing). Betting proceeds around the table, involving all active players, but
does not end at the last active player.

Termination Condition

Betting continues sequentially around the table until all active players have con-
tributed an equal amount to the pot (or until there is only one active player remain-
ing). The game then proceeds to the next round (as defined by the script). In the
final round the remaining players enter the showdown.

Note that all players must be given at least one opportunity to act before betting
is terminated (this allows for the case where all players have equally contributed
$0). Being forced to put a blind bet in the pot does not count as having had an
opportunity to act. Also, there often is a limit on the number of raises (increments
to the contribution amount) which artificially forces an end to the betting.

Betting Actions

In most situations, each player has 3 different actions to choose from. Each action
directly affects the number of active players, the size of the pot, and the required
contribution to remain active in the game. Here are the 3 action categories and 5
different actions that fit into those categories:

e Fold: Drop from the game (become inactive). A player who folds is no longer
eligible to win the pot. The player is now out of the current game and loses the
money that has been contributed to the pot.



e Call: Match the current per-player contribution (e.g. if player A has con-
tributed $12 (the most) and player B $8, then B must place an additional $4,
the amount to call, in the pot). A check is a special case of calling when
the current amount to call is $0 (which is usually the case with the first active
player). It means you forego opening the betting for the round.

e Raise: Increase the current per-player contribution (e.g. if player A has con-
tributed $12 and player B $8, then B can put $8 into the pot (a raise of $4) to
make the required contribution $16). A bet is a special case of raising when
the current amount to call is $0. It means you open the betting for the round.

At any point in the game a player will have three actions available: fold/check/bet
or fold/call /raise. An exception occurs in games with blinds where a player was forced
to blind bet and everyone else calls or folds. Since the player was not originally given
a choice, they are given an option to raise when the action returns to them (the
amount to call is $0). The available actions are fold/check/raise; check because it
is $0 to call and raise because there has already been a bet (the blind). Another
exception can occur because there is normally a limit of 4 raises (including the initial
bet or blind). If it is a player’s turn and the betting has already been capped (no
more raises allowed) the available actions are fold/call.

Betting Amounts

There are many different ways to restrict the betting amounts and the various systems
can produce very different games (requiring different strategies).

e No-limit poker: this is the format used for the World Series of Poker champi-
onship main event. The amount a player is allowed to bet/raise is limited only
by the amount of money that they have.

e Pot-limit poker: this format normally has a minimum amount and the max-
imum raise is whatever is currently in the pot (e.g. if the pot is at $50 and the
amount to call is $20, a player can at most raise $70 by placing $90 in the pot).

e Spread limit: a format commonly used in friendly games. There is both a
fixed minimum and maximum in each round (e.g. 1-5 Stud is a game where the
raise or bet size can be between $1 and $5 in any round).

e Fixed limit: a common format used in casinos. There is a fixed bet size in
each round (same as spread limit with the minimum equal to the maximum).
Usually the bet size is larger in the later rounds. Games that feature the same
bet size in all rounds are called flat limit.

2.1.4 Showdown

When there is only one active player remaining in the game, that player wins the
pot without having to reveal their cards. Otherwise, when the final round terminates



normally, the game enters the showdown where all active players reveal their cards

and the player with the strongest 5-card hand wins the pot. In the case of a tie, the

pot is split evenly.
Note that individual cards are ranked from Deuce — the lowest — to Ace. However,

in most games, Ace can optionally be used as a low card (comes before Deuce instead

of after King). The suit is not used in ranking (but is sometimes used for other

purposes, such as awarding an odd chip when splitting the pot in ties). Here are all

the 5-card hands ranked from strongest to weakest:

Straight Flush: (e.g. 90-80-70-60-50) The strongest hand in regular poker
— 5 cards that form both a straight and a flush (see below). Straight flushes are
ranked by the top card in the straight (note that if Ace is used as low in an Ace
to Five straight flush then the Five is the top card). An Ace-high straight flush
(the highest possible hand) is called a Royal Flush.

Four of a Kind: (e.g. K&-KO-K{$-K&-3M8) 4 cards of identical rank and one
unmatched kicker. Compare four of a kinds by the rank of the 4 matched cards.
The kicker is used to break ties (note that in games with community cards, like
Texas Hold’em, it is possible for multiple players to hold the same four of a

kind).

Full House: (e.g. 4#8-40-4$-J0O-J&) 3 cards of one rank and 2 cards paired
but of another rank. Compare full houses first by the triple and then the pair
in the event of a tie.

Flush: (e.g. AO-KO-80-TH-64) 5 cards of identical suit. Rank multiple flushes
first by comparing the top card, and then each subsequent card (e.g. Ade-Kéo-

O-5-2& is better than AO-K{O-80-T0-64).

Straight: (e.g. J&-TO-90-80-TM) 5 cards in sequence. Straights are ranked
by the highest card.

Three of a Kind: (e.g. 5O-5{-5&-Th-7d) 3 cards of one rank with 2 kickers
of unmatched rank. First compare the rank of the triple, and then examine

each kicker (the higher one first).

Two Pair: (e.g. AB-Ad-SM#-8%-90) 2 cards of one rank, 2 card of another,
and one kicker of a third rank. Always compare by the highest pair first, then
the second pair, and finally use the kicker.

One Pair: (e.g. QO-Q&-KO-80-20) 2 cards of one rank with 3 kickers of
unmatched rank (compare by the rank of the pair and then examine each kicker
in order from the highest to the lowest).

High Card: (e.g. K&-JO-T{-9%-3¢) 5 unmatched cards. Compare by the
highest to lowest cards, like a flush.



Some variants of poker recognize other special hand types (e.g. 4-card flush) and
allow wild cards (cards that can represent any other card), but these are not common
in casino games.

2.2 Texas Hold’em

The specific variant under consideration in this thesis is Texas Hold’em, the most
popular variant played in casinos. It is used in the main event of the annual World
Series of Poker championship to determine the World Champion. It is considered to
be one of the most strategically complex poker variants and has “the smallest ratio of
luck to skill” [2]. The script for Texas Hold’em is as follows (each of the four rounds
is followed by betting):

e Pre-flop: each player is dealt two face-down cards (hole cards).
e Flop: 3 cards dealt face-up to the board (community cards).
o Turn: 1 card dealt face-up to the board.

e River: 1 card dealt face-up to the board.

After the betting on the river, the best 5-card hand formed from the two hole
cards and five board cards wins the pot.

Specifically, we examine the game of Limit Texas Hold’em with a structured bet-
ting system of 2-2-4-4 units, and blinds of 1 and 2 units. This means that the bet size
is fixed at 2 (the small bet) for the pre-flop and flop, and 4 (the big bet) for the turn
and river. Before the pre-flop, the first player after the button is the small blind and
is forced to put 1 in the pot, and the subsequent player is the big blind and forced
to bet 2 (meaning the amount to call is 2 for all subsequent callers, 1 for the small
blind, and if there has been no raise, the big blind has the option to fold, check or
raise to 4 units). Limit Hold’em is typically played with 8 to 10 players, although the
minimum is 2 and possible maximum is 23.

In later chapters, we use a special convention for representing Texas Hold’em

hands. The designation 8{-JO /4&-5d-6& represents hole cards of 8(-JO with a
board of 41&-5d-6éb.



Chapter 3

How Humans Play Poker

There have been many books written on how to play poker. However, these are
intended for the development of human players and must be reinterpreted to be
applicable to computer play. The author typically presents a small number of rules
for human players to follow. These rules are frequently based on experience and
sometimes also have a mathematical foundation. For example, in his book, Norman
Zadeh uses mathematical analysis to deduce a series of generalized rules for several
poker variants [15]. His rules all basically follow the form of giving the reader a
threshold hand type to take a certain action in a certain situation.

Two of the more useful books for the purposes of this thesis are [14] and [13].
The first book, Hold’em Poker for Advanced Players by David Sklansky and Mason
Malmuth, presents a high-level strategy guide for the game of Texas Hold’em (which
only recently has become the focus of poker literature), with a special treatise on
playing the pre-flop. It presents a strong rule-based approach with an emphasis that
knowledge of your opponent should always be taken into account. The second book,
The Theory of Poker by David Sklansky, is described by Darse Billings as “the first
book to correctly identify many of the underlying strategic principles of poker” [2]
and uses illustrated examples from several variants including Texas Hold’em. In this
chapter, some of the more important concepts and strategies are described.

3.1 Hand Strength and Potential

A human player should be able to estimate the probability that a certain set of cards
will win. This is implicit in the rule-based systems which give threshold hands for
betting decisions.

There are two different measures for the goodness of a hand: the potential and
the strength. Potential is the probability that the player’s hand will become the likely
winning hand (a 4 card flush counts for nothing but is very strong if a fifth suited card
is dealt). It can easily be roughly estimated by humans — good players are usually
able to estimate a hand’s potential accurately, in terms of outs: “the number of cards
left in the deck that should produce the best hand” [14]. In contrast, strength is the
probability of currently being in the lead (would win if no further cards were dealt).

10



This is often based on experience or knowledge of the statistical distribution of hand
types, although knowledge of one’s opponents is used by expert players to get a much
more accurate estimate.

Knowing where one stands with respect to these measures is used to determine
an appropriate strategy, such as raising to reduce the number of opponents, trying to
scare one’s opponents into folding by betting aggressively, and so on.

3.2 Opponent Modeling

The better players are at understanding how their opponents think, the more suc-
cessful they will be. Experts are very good at characterizing their opponents and
exploiting weaknesses in their play, and knowing when they do or do not have the
best hand. They often try to put an opponent on a certain range of hands (guess the
cards they hold) based on observed actions. It is important to note here that, if a
player wins a game uncontested (no showdown), they do not have to reveal their cards.
The showdown (exposure of an opponent’s hidden cards) gives away information that
can be used with the betting history to infer the decision-making process.

To take a less specific approach, one can estimate probabilities for a generic (or
“reasonable”) opponent. However, observing an opponent’s play may give you useful
information that allows you to bias the probabilities, allowing for more informed (and
more profitable) decisions. For example, an observant player is less likely to take a bet
seriously from someone who bets aggressively every game. Good opponent modeling
is vital to having a good estimate of hand strength and potential.

3.3 Position

Another variable expert players take into account for a betting decision is their po-
sition at the table with respect to the dealer (how many players have acted before
you and how many act after you). In [14] the authors emphasize that a later posi-
tion is better because you have more information available before you must make a
decision. Their pre-flop strategy is dependent on a player’s expected position in the
later betting rounds. For example, they discuss a tactical raise, called “buying the
button”, which is used in late position in the pre-flop to hopefully scare away the
players behind you to become the last player to act in future betting rounds.

3.4 0Odds

This is a fundamental concept introduced in [13] and includes pot odds, effective
odds, implied odds and reverse implied odds. Odds gives you a way to compare your
cost versus the potential winnings, and determine how good of a hand, in terms of
potential or strength, you require to call a bet (or what the expected return is for
each of your possible actions).
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3.4.1 Pot Odds

Also called immediate odds, pot odds are the ratio of money in the pot against the
cost to call. For example, if there are $12 in the pot and it costs $4 to call then you
are getting 3-to-1 odds (winnings-to- “cost to stay in”). This can be translated to a
percentage, representing the size of your contribution in the new pot, by using the
following formula:

cost

(3.1)

“winnings — to — cost” ~ , .
(pot_size + cost)
This percentage is the required probability of winning. If you are on the final round
of betting then these are the odds you should have of winning the hand.

Continuing the example, the required probability is 4/(12+4) = 0.25. Hence, you
need at least a 25% chance of winning to warrant a call. For example, if your hand
was 40-8¢ and the board was 7T0-A-68-KO you would have a four-card diamond
flush on the turn. You would estimate having 9 outs of the remaining 46 cards to
make a winning diamond flush. This translates to a hand potential of 9/46 = 0.196
so it would be incorrect to call. On the other hand, you also have an inside straight
draw (any 5 would give you a straight) and this is an additional 3 outs (the 5¢ has
already been counted). Now your potential is 12/46 = 0.261 so it is correct to call.

However, there are several caveats. Simply making the call does not necessarily
end the round in a multi-player scenario; if there is a player behind you who has yet
to see the bet, they may raise. In the above example, if you were expecting the player
behind you to raise another $4 and the original bettor to call, then your pot odds
are now 5-to-2 (pay $8 to win $20), elevating the threshold for staying in the hand
to 8/(20 4+ 8) = .286. Also, knowledge of your opponents is not only required for
an accurate estimate of hand strength or potential, but also to determine if you can
expect to have to pay more. When considering potential this also assumes that the
cards you are hoping for will make your hand the winner and not the second best.
Further complications arise when there is more than one card left to be dealt.

3.4.2 Implied Odds and Reverse Implied Odds

Implied odds (and reverse implied odds) are based on the possibility of winning (or
losing) more money later in the hand. They consider the situation after the next
cards have been dealt and explain situations where things are better (or worse) than
pot odds make them seem. Put another way, implied odds is the ratio between the
amount you expect to win when you make your hand (more than what is in the pot)
versus the amount it will cost to continue playing. In contrast, reverse implied odds
is the ratio between the amount in the pot (what you win if your opponent does not
make their hand) versus what it will cost you to play until the end of the hand. One
of the major factors behind considering implied odds is how hidden your hand is (how
uncertain your opponent is of your hand); another is the size of future bets. For the
latter reason, implied odds become more important in no-limit and pot-limit games
than in fixed-limit games.
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As an example of implied odds, consider that at the turn there is $12 in the pot,
it is $4 to call (pot odds 3-to-1), hitting your hand means you very likely will win,
and additionally your opponent is likely play to the showdown. If you miss you will
simply fold (costing $4). If you hit you can expect to make an extra bet of $4 from
your opponent, winning $16 total so your implied pot odds are 4-to-1.

For reverse implied odds, consider that you have a strong hand but little chance
of improving and your opponent has a chance of improving to a hand stronger than
yours, or possibly already has a hand stronger than yours (they have been betting
and you are not sure if they are bluffing) — essentially a situation where you are not
certain that you have the best hand. Say it is the turn and there is $12 in the pot
and it is $4 to call (pot odds 3-to-1). If your opponent has a weak hand or misses
their card they may stop betting in which case you would only win $12 (it costs $4
to find out you are winning). Otherwise, you have committed to playing to the end
of the hand in which case it would cost you $8 to find out you are losing (pot odds
3-to-2). There are many variations to this scenario. The essential idea is that reverse
implied odds should be considered when you are not certain you have the best hand;
it will cost more in future betting rounds to discover this.

3.4.3 Effective Odds

When you are considering the odds of making your hand with two cards remaining,
it is difficult to estimate the expected cost to play those two rounds. For example, if
there is $6 in the pot after the flop and your single opponent has just bet $2, then
your pot odds are 3-to-1. However, you have two cards to make your hand so you
must try to estimate the cost of the next round. Against a single opponent the worst
case is that your opponent will bet next round and you will simply call; you would
be paying $6 to win $10 (5-to-3) which increases the requirement for playing.

However, since you have two chances to make your hand your potential will im-
prove as well. If you held 4$-8{ and the board was 7{-A{-6, your estimated
chance of hitting the flush or the inside straight (12 outs) after two cards is now
12/47 4+ 35/47 % 12/46 = .45, making it correct to call (or possibly raise) a bet on the
flop.

3.5 Playing Style

There are several different ways to categorize the playing style of a particular player.
When considering the ratio of raises to calls a player may be classified as aggressive,
moderate or passive. Aggressive means the player frequently bets or raises rather
than checking or calling (more than the norm), while passive means the opposite.
Another simple set of categories is loose, moderate and tight. A tight player will play
fewer hands than the norm, and tend to fold in marginal situations, while a loose
player is the opposite. Players may be classified differently for pre-flop and post-flop

play.
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3.6 Deception and Unpredictability

A predictable player in poker is generally a bad player. Consider a player who never
bluffs (when that player bets, they always have a strong hand). Observant oppo-
nents are more likely to fold (correctly) when this player bets, reducing the winning
pot size. Of course, against weak, unobservant opponents, never bluffing may be a
correct strategy. However, in general, deception and unpredictability are important.
Although the cost and benefit of such actions must be considered, unpredictability
can be achieved by randomly mixing actions. For example, do not raise every time
you hold a high pair before the flop, otherwise an observant opponent can assume
you are not holding a high pair when you simply call in the pre-flop. Deception is
more complex and can be achieved through numerous different high-level strategies.
Following are some of these strategies.

e Changing Styles: is a simple form of deception to deliberately create false
impressions. For example, early in the session you might play a tight conserva-
tive style and show a lot of winning hands at the showdown. Later you switch
to a looser style, and observant players are likely to continue to treat you as a
tight player and take your bets very seriously.

e Slowplaying: “ ... is playing a hand weakly on one round of betting in order
to suck people in for later bets” [13]. Checking or calling in an earlier round
of betting shows weakness, and this hopefully leads to your opponents being
willing to put money in the pot later in the hand (particularly in those variants
of Hold’em where the bet size doubles in later rounds). However, since you will
often be up against many opponents, you need a very strong hand for this kind
of play.

e Check-raising: is another way to play a strong hand weakly. Sklansky calls it a
way to “trap your opponents and win more money from them” [13]. Essentially
you believe that had you opened betting in the round you would either drive
out players or only get one bet (no one would raise). But if you believe that
one of your opponents will open the betting you begin the round by checking.
Assuming the opening bet is then made, you follow by raising. Hopefully,
players who have already put in a bet are willing to put in a second. However,
even if players fold you still have their money from the opening bet.

e Bluffing: is an essential strategy in poker. It has been mathematically proven
that you need to over-play or under-play (bluff or slowplay) in some way for
optimal play in simplified poker [11]. Bluffing allows you to make a profit
from weak hands, but it also creates a false impression which will increase the
profitability of future hands (a lot of money can be won when betting a very
strong hand and your opponent suspects you may be bluffing). In practice,
you need to be able to predict the probability that your opponent will call in
order to identify profitable opportunities. A game-theoretic explanation of the
optimum bluffing frequency is presented in [13].
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e Semi-bluffing: is a bet with a hand which is not likely to be the best hand
at the moment but has a good chance of outdrawing calling hands (e.g. a four-
card-flush). On occasion this play will also win outright when your opponents
fold. The combined chances of winning immediately, or improving when called,
makes it a profitable play.

Note that sometimes deception can be used to play an action which does not
necessarily have the largest expected value, but rather creates a false impression
which may indirectly lead to returns in the future. While undoubtedly important, it
is difficult to measure the effectiveness of this type of deception.

3.7 Summary

The short term goal in poker (the goal in a specific deal) is either to maximize your
gain if you think you can win (either with a strong hand or by bluffing with a weak
hand) or to minimize your loss if you think you will lose. However, the outcomes of
individual games are not independent. You can afford to make some ‘bad moves’ (the
expected value for the chosen action in the current game is not the highest) provided
they contribute to greater gains in later games.

An expert player is one who can usually recognize when they have or do not have
the winning hand, and can maximize the money they win appropriately. They also
occasionally invest money in misinformation (such as bluffing) and have the ability to
identify good hands and understand their opponents (how they will react to certain
actions or what hand they likely hold based on their actions). Knowledge of tells
(physical mannerisms) and psychological plays are sometimes used in the human side
of opponent modeling. Overall, the expert player has a good understanding of playing
strategies, hand strength and potential, pot odds, and good opponent modeling skills.
These factors are used as the basis for every decision made.
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Chapter 4

How Computers Play Poker

Very little work has been done on poker by computing scientists, although there
are numerous commercial and hobbyist approaches. The various computer-based
approaches to poker can be classified into three high-level architecture descriptions
(or a mixture thereof): expert system, game-theoretic optimal play, and simulation /
enumeration-based systems. Each of these will be discussed in the following sections.

This chapter will also discuss several case studies of programs by computing sci-
entists and hobbyists. Included in the former group is the historical work of Nicolas
Findler along with the more recent ideas of Daphne Koller and Avi Pfeffer. Findler
worked on a poker-playing program for 5-card draw poker [6]. Koller and Pfeffer im-
plemented the first practical algorithm for finding optimal randomized strategies in
two-player imperfect information games [10]. Among the hobbyist approaches exam-
ined are several that play poker on an online poker server over IRC (Internet Relay
Chat). Three of these programs are r00lbot, replicat and xbot (although variations
of these sometimes run under different names). Additionally there are two public
domain programs: Smoke’em Poker for Microsoft Windows, as well as Seven-Card
Stud and Texas Hold’em implementations by Johann Ruegg for the UNIX curses
package. There are numerous approaches by commercial companies, although only
a few have a target audience of professional players. The best of these is Turbo
Texas Hold’em by Wilson Software (http://www.wilsonsoftware.com). It is an
extremely rule-based system.

The final section discusses the architecture selected for our poker player and the
reasons behind the selection.

4.1 Expert Systems

An expert system is essentially a set of specific rules to cover various game situations.
Given the correct knowledge, this is perhaps the simplest approach to a reasonably
strong program. However, since it is difficult to make an expert knowledge-based
system learn (opponent modeling), it can easily be defeated by a strong player. Figure
4.1 contains a rudimentary example piece of such a system: when it is two or more
bets to you on the flop and you do not have top pair (you have not paired the top
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PlayFlop(CARDS myhand, STATE state)

{

if (state.betsput_in==0)
&& state.bets to_call > 1
&& myhand < TOP_PAIR
&& myhand!=FOUR_FLUSH
%&& myhand!=0PEN_STRAIGHT)
return SelectAction(RAISE,10,CALL,10,FOLD 80)
else ...

Figure 4.1: Example of an Expert Knowledge-Based System

card on the board and do not have a hole pair bigger than that card), nor do you
have a four card flush or an open-ended straight, then raise 10% of the time, call 10%
of the time, and fold 80% of the time.

There are many problems with this type of approach. Clearly, covering enough of
the situations that will arise in practice would be very laborious. Also such a system is
difficult to make flexible. If the system were made specific enough to be quite strong,
conflicting rules could possibly be constructed and there would need to be a way to
handle exceptions. Missing rules covering certain situations or making the rules too
general would make the program weak and/or predictable. Additionally, you need an
expert who can define these rules. This knowledge-acquisition bottleneck may prove
to be a serious problem.

4.2 Game-Theoretic Optimal Strategies

Kuhn [11] along with Nash and Shapley [12] have demonstrated that “optimal strate-
gies” using randomization exist for simplified poker. An optimal strategy always
takes the best worst-case move, and this means two things: “the player cannot do
better than this strategy if playing against a good opponent, and furthermore the
player does not do worse even if his strategy is revealed to his opponent” [10]. For
example, consider the two-player game of Roshambo (Rock, Paper, Scissors). The
optimal strategy is to select a move uniformly at random (i.e. [, 1, 1]) irrespective
of the game history.

Finding an optimal approach is not so easy in a complex game like poker; there
is a major stumbling block. Due to the enormous branching factor (see Figure 4.2),
both the calculation and storage of the game-theoretic optimal strategy would be
extremely expensive. Additionally the branching factor numbers are only for the two
player environment — the multi-player environment is even more complex due to the
addition of more imperfect information and many more possible betting interactions.
As demonstrated by the attention devoted to multi-player situations in the poker
literature, such considerations are quite important.

Additionally, the game-theoretic optimal approach is not necessarily the best.
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Clearly, as the game-theoretic optimal strategy is fixed, it cannot take advantage of
observed weaknesses in the opponent. Doing so would risk falling into a trap and
losing. Consider Roshambo for an example. After witnessing your opponent playing
Rock 100 times in a row, deciding to play Paper risks your opponent anticipating
your action (the situation may be intended as a trap or your opponent may know
your strategy). The existence of the risk, no matter how small, would violate the
optimality of the strategy (the second guarantee, that the player cannot do worse).

Because of this, even against bad players an optimal strategy is likely to only
break even. In contrast, a maximal strategy using opponent modeling (which does
not assume perfect play from its opponents) would identify weaknesses and exploit
them for profit (significantly more than an optimal strategy). There is some risk,
because deviation from the optimal opens the door for your opponent to exploit it.
But, if your knowledge of the opponent is good, the potential gains outweigh the
risk. A game-theoretic optimal strategy would, however, make an excellent default
or baseline to complement such an “adaptive” strategy.

4.3 Simulation and Enumeration

Simulation involves playing the hand out several times, where opponent hands and
upcoming community cards are dealt randomly each time. The number of simulations
can be fixed, variable, or dependent on some real-time constraint. If the sampling
method is good, this will give a rough estimate of the strength and potential of your
hand.

In contrast, enumeration involves evaluating each possible situation to get exact
probabilities of your winning chances. This is not feasible for playing the hand out
(given the branching factor and wide variety of possible opponent hands, see Figure
4.2) but is easily calculated for measures such as immediate hand strength: on the flop
there are only (427) = 1,081 possible cases for opponent cards. Also note that given
enough storage space some of the more complex enumerations could be pre-calculated.

These approaches can easily be mixed with an expert system (e.g. bet if you have
a 0% chance of winning), or with game theory (e.g. bluff, or call a possible bluff,
some game-theoretic optimal function of the time). In particular, opponent model-
ing can easily be combined with simulation or enumeration to generate reasonably
accurate probabilities of outcomes. A useful opponent model would contain infor-
mation specifying the probability of an opponent holding each possible pair of cards.
In any particular simulation, this probability array could be used to appropriately
skew the selection of cards held by an opponent. In an enumeration context, these
probabilities would be used as weights for each subcase considered. Additionally, a
faster but coarser estimate could be generated by only enumerating over the most
likely subcases.

Finally, there is another advantage to being able to combine simulation or enumer-
ation with opponent modeling. If the model contains information such as the calling
frequency of a given opponent in a given situation, you would be able to take advan-
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Assuming only two players:
e 2 possibilities for who acts first

. (522) =1, 326 different hole cards

. (530) * 47 x 46 = 42, 375, 200 significantly different ways the board can be dealt ((530) different

flops, 47 different turn cards, 46 different river cards)

o 15 different ways the betting can proceed in the pre-flop (only 7 do not end in one side winning
uncontested)

o 19 different ways the betting can proceed in any round after the pre-flop (only 9 do not end
in one side winning uncontested)

Therefore:
o 2x (522) * T % (530) = 363.9 % 10° different states at the beginning of the flop
o 363.9%10° %9 %47 = 153.9 % 10° different states at the beginning of the turn
o 153.9% 10° x 9 % 46 = 63.7 * 10*2 different states at the beginning of the river

e Also note there are up to (g) possible opponent hands at each stage in the game (n = 50 for
the pre-flop, 47 for the flop, 46 for the turn, and 45 for the river). This hidden information
was not included in the above products (which are the number of possible variations of known
information).

This is still a large tree even though there is some redundancy in the way the cards are dealt (suits
are isomorphic):

e 169 significantly different classes of hole cards rather than 1,326 (see Appendix A). This
reduces the number of states at the beginning of the flop to 46.4 x 10°, and 8.1 x 10!2 at the
beginning of the river (approximately a 7.8-fold reduction).

e An additional complex reduction based on the isomorphism of suits can reduce the original
number of possible flop states and starting hands from 1326 * (530) = 26.0 % 10% (3.3 x 10°
with the elimination of redundant starting hands) to 1.3 % 10° (approximately an additional
2.5-fold reduction — still leaves a large number at the river). The details of the reduction
are not presented here. It is based on enumerating each possible combination of suits in the
starting hand and on the flop. For example, there are only (123) = 78 significantly different
starting hands where both cards are of the same suit (map this suit to, say, #), and there are
only 11 % (123) = 858 significantly different flops where one card is of the original suit (mapped
to #) and the other two cards are of a second suit (mapped to, say, ).

The addition of multi-player considerations exponentially complicates the tree:

e three players in any round after the pre-flop: 138 sequences of betting actions end with two
players remaining and 46 end with three players remaining (93 end in an uncontested win).
For two players there were only 9 different sequences that did not terminate the game instead

of 184.

e four players on any round after the pre-flop: 1504 sequences of betting actions end with two
players remaining, 874 end with three players remaining, and 161 end with all four players
remaining (792 end in an uncontested win).

Figure 4.2: Branching Factor for Structured Betting Texas Hold’em With a Maximum
of 4 Bets/Round
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tage of a more realistic consideration of some outcomes. For example, consider the
situation where you are at the river against one opponent, the pot contains $20, and
your options are to check or bet $4. Given the probability array of your opponent’s
model you calculate by enumeration that you have only a 10% chance of having the
stronger hand. The model tells you that, when faced by a check in this situation,
your opponent will check 100% of the time, and faced by a bet your opponent will
fold 30% and call 70%. You can therefore calculate the expected value (EV) of your
two options:

e check: win $20 10% of the time, lose $0 90% of the time.
EV =20%0.10 — 0+ 0.90 = 2.00.

e bet: since your opponent will likely fold the weakest 30% of hands, and you
could only beat 10% of all hands (or the worst third of the hands they fold)

then there is no chance that you win if they call.

— opponent folds 30%: win $20 100% of the time.
— opponent calls 70%: win $24 0% of the time, lose $4 100% of the time.

EV =0.30%(20%1.00)4+0.70* (24%0.00 —4 % 1.00) = 3.20. Therefore, it is more
profitable if you bet (due to the reasonable possibility of scaring your opponent
into folding).

This is a simple contrived example but it demonstrates how well an accurate
opponent model complements a simulation or enumeration system.

4.4 Findler’s Work

Nicolas Findler worked on and off for 20 years on a cognition-based poker-playing
program for Five-Card Draw [6] [7] [8]. He recognized the benefits of research into
poker as a model for decision-making with partial information. However, much of the
applicability of his work to ours is lost due to differing goals; rather than being con-
cerned about producing a high performance poker program, he focused on simulating
the thought processes of human players. Hence, to achieve this, instead of relying
heavily on mathematical analysis, his approach was largely based on modeling human
cognitive processes. He did not produce a strong poker player.

4.5 The Gala System

A more theoretical approach by computing scientists was taken by Koller and Pfeffer
[10]. They implemented the first practical algorithm for finding optimal randomized
strategies in two-player imperfect information competitive games. This is done in
their Gala system, a tool for specifying and solving problems of imperfect informa-
tion. Their system builds trees to find the game-theoretic optimal (but not maximal)
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strategy. However, even when considering only the two-player environment, only
vastly simplified versions of poker can presently be solved, due to the large size of
trees being built. The authors state that “... we are nowhere close to being able to
solve huge games such as full-scale poker, and it is unlikely that we will ever be able
to do so.”

4.6 Hobbyists

Several programs by hobbyists were examined to explore the architecture and ap-
proach used. The most common approach is expert-based, however simulation-based
approaches tend to be stronger (although more computationally expensive).

e xbot by Greg Reynolds uses an expert system which is manually patched when
weakness 1s observed.

http://webusers.anet-stl.com/~gregr/

e replicat by Stephen How also uses an expert system in combination with ob-
serving a large number of possible features about the hand and board (e.g.
three-straight).

e r00lbot by Greg Wohletz is perhaps the strongest of the three IRC programs.
For the pre-flop it uses Sklansky and Malmuth’s recommendations [14], and
for the post-flop it conducts a series of simulations (playing out the hand to
the showdown, typically 3,000 times) against N random hands (where N is
the number of opponents, and is artificially adjusted for bets and raises). The
actual action is dependent on what percentage of simulations resulted in a win.

e Smoke’em Poker is a Five-Card Draw program by Dave O’Brien. It uses an
expert system and has a set of rules for each opponent type (e.g. tight, loose).
http://www.cgl.uwaterloo.ca/~gmgrimsh /poker.html

o There are two poker games by Johann Ruegg, Sozobon Ltd. Both the Seven-
Card Stud and Texas Hold’em games use a simulation-based approach where
the program plays the hand to the showdown several times against random

opponents. The resulting winning percentage is artificially adjusted depending
on the game state and compared against several hard-coded action thresholds.

ftp:/ /ftp.csua.berkeley.edu/pub/rec.gambling/poker/spoker.tar.Z

4.7 Architecture

Consideration of these other programs and the various advantages of the different
approaches led us to select a primarily enumeration-based approach for the purposes
of this thesis. There were several reasons:
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e The expert system is too limited and context sensitive (the game is far too
complex to cover all possible contexts). It also is inflexible, and will inherit any
error in the designer’s approach to the problem.

e The game-theoretic optimal strategy is very complex to compute and, if such
a system could be built, presumes optimal play on the part of the opponents.
We are working under the assumption that our opponents will make errors and
therefore maximal play is preferable.

e An enumeration-based approach is easy to combine with an opponent modeling
system based on the probability distribution of possible opponent holdings.

e Most of the desired values are computationally feasible in real-time. Where this
is not so, there are many ways to calculate good approximations of the measures
(e.g. random simulation, pre-computation, heuristics).

e Values calculated by enumeration (as opposed to simulation) are more accurate
since random sampling introduces variance, and rule-based systems are subject
to systemic error.

Loki (Figure 4.3) is a complete poker-playing program (able to play a full game
of Texas Hold’em unaided). There are three main co-dependent components which
control the play of the program. These components are discussed in the following
chapters. They are hand evaluation (using the opponent models and game state, it
generates values which roughly correspond to the probability of holding the strongest
hand), betting strategy (it uses the values generated by hand evaluation, the op-
ponent models, and the game state to determine the best action), and opponent
modeling (it translates the betting history of the opponent into information about
betting behavior and possible hands held).

4.8 Summary

Three main approaches to program design were summarized in this chapter: the
expert system (hard-coded rules based on the knowledge of an expert), game-theoretic
optimal strategies, and simulation/enumeration-based. The first two approaches have
some obvious limitations. However, the different approaches can be combined to
various extents.

While there are many poker-playing programs, none are very strong, and few
make source code or a description of the inner workings available. Also, with the
exception of Findler and Koller/Pfeffer there are few resources in the computing
science literature. There is also little on building a high-performance poker program,
except for some ideas presented in [2].
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Chapter 5

Hand Evaluation

Accurate assessment of your winning chances is necessary when considering the cost
of playing versus the payoff with pot odds. Hand evaluation uses the opponent models
and game state to calculate estimates of the winning chances of your hand. However,
since there are more cards to come on the flop and turn, the present strength of a
hand is insufficient information. For this reason, post-flop hand evaluation is broken
into two parts: strength and potential. Strength is the probability of a hand currently
being the strongest and potential is the probability of the hand becoming the strongest
(or of losing that status to another hand) after future cards have been dealt. Due
to the computational complexity of potential for the pre-flop (the first two cards),
evaluation in this stage of the game is given special treatment.

5.1 Pre-Flop Evaluation

Hand strength for pre-flop play has been extensively studied in the poker literature.
For example, [14] attempts to explain strong play in human understandable terms, by
classifying all the initial two-card pre-flop combinations into nine betting categories.
For each hand category, a suggested betting strategy is given, based on the strength
of the hand, the number of players in the game, the position at the table (relative to
the dealer), and the type of opponents. For a poker program, these ideas could be

implemented as an expert system, but a more general approach would be preferable.
52
2

169 distinct hand types (13 paired hands, (123) = 78 suited hands and 13 % (;1) =
78 unsuited hands). For each one of the 169 possible hand types, a simulation of

For the initial two cards, there are ( ) = 1,326 possible combinations, but only

1,000,000 games was done against each of one, three and six random opponents (to
cover the 2, 3-4 and 5 or more player scenarios’). Each opponent was simple and
always called to the end of the hand. This produced a statistical measure of the
approximate income rate (/R) for each starting hand; income rate measures the

return on investment.
net_bankroll

IR (5.1)

- hands_played

'We consider these the most important groupings. See Appendix B.
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The computed values are presented in Appendix A. These numbers must always be
viewed in the current context. They were obtained using a simplifying assumption,
where the players always call to the end. However, this experiment gives a good first
approximation of how strong a hand is. For example, in the 7-player simulation the
best hand is a pair of aces and the worst hand is a 2 and 7 of different suits. While
the absolute IR value may not be useful, the relative order of the hands is. As we
discuss in Appendix A, there is a strong correlation between these simulation results
and the pre-flop card ordering given in [14].

5.2 Hand Strength

Hand strength assesses how strong your hand is in relation to what other players may
hold. Critical to the program’s performance, it is computed on the flop, turn and river
by a weighted enumeration which provides an accurate estimate of the probability of
currently holding the strongest hand. This calculation is feasible in real-time: on

the flop there are 47 remaining unknown cards so (427) = 1,081 possible hands an

opponent might hold. Similarly there are (426) = 1,035 on the turn and (425) = 990
on the river.

Figure 5.1 contains the algorithm for computing hand strength. The bulk of the
work is in the call to the hand identification function Rank which, when given a hand
containing at least 5 cards, determines the strongest 5-card hand and maps it to a
unique value such that stronger poker hands are given larger values and hands of
equal strength are given the same value. Rank must be called (g) + 1 times where n
is the number of unknown cards.

The parameter w is an array of weights, indexed by two card combinations, so the
function determines a weighted sum. It is the weight array for the opponent under
consideration (each possible two-card holding is assigned a weight). When the array
is normalized so the sum is 1, the weights are conditional probabilities meaning “for
each possible two-card holding what is the probability that it is the hand held by this
opponent” (given the observed betting). Without normalization, the values in the
weight table are conditional probabilities meaning “what is the probability that this
opponent would have played in the observed manner” (given they held this hand).
Without opponent modeling, it can simply be filled with a default set of values, either
a uniform or ‘typical’ distribution. Under uniform weighting each entry in the array
is equal (an appropriate representation if the opponent has a random hand). A more
typical distribution would be a set of values based on the IR tables. This is the only
model information used directly by the hand strength enumeration.

Suppose our starting hand is A$-Qde and the flop is 30-4&-JO (1,081 possible op-
ponent hands). To estimate hand strength using uniform weighting, the enumeration
technique gives a percentile ranking of our hand (our hand rank). We simply count
the number of possible hands that are better than ours (any pair, two pair, A-K, or
three of a kind: 444 hands), how many hands are equal to ours (9 possible remaining
A-Q combinations), and how many hands are worse than ours (628). Counting ties as
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HandStrength(CARDS ourcards, CARDS boardcards, FLOAT w[])
{

RANK ourrank, opprank

CARDS oppcards

FLOAT ahead, tied, behind, handstrength

ahead = tied = behind = 0

ourrank = Rank(ourcards, boardcards)

/* Consider all two card combinations of the remaining cards */
for each case(oppcards)

{
opprank = Rank(oppcards, boardcards)
if (ourrank>opprank) ahead += wloppcards]
else if (ourrank==opprank) tied += wloppcards]
else /* < %/ behind += wloppcards]
}

handstrength = (ahead+tied/2) / (ahead+tied+behind)
return (handstrength)

1

Figure 5.1: HandStrength Calculation

half, this corresponds to a hand rank (H R) of 0.585. In other words there is a 58.5%
chance that our hand is better than a random hand (against non-uniform weights we
call it hand strength, or HS).

This measure is with respect to one opponent, but when all opponents have the
same weight array it can be roughly extrapolated to multiple opponents by raising
it to the power of the number of active opponents (H R, is the hand rank against n
opponents, HR = HRy).

HR, = (HRy)". (5.2)

It is not an exact value because it does not take into account interdependencies
arising from the fact that two players cannot hold the same card. However, this is a
secondary consideration.

Continuing the example, against five opponents with random hands the adjusted
hand rank is HS5 = .585° = .069. Hence, the presence of additional opponents has
reduced the likelihood of our having the best hand to only 6.9%.

This example uses a uniform weighting: it assumes that all opponent hands are
equally likely. In reality this is not the case. Many weak hands like 40-J& (IR < 0)
would have been folded before the flop. However, with the example flop of 30-1&-JO,
these hidden cards make a strong hand that skews the hand evaluations. Specifically,
accuracy of the estimates depend strongly on models of our opponents (the array of
weights w). Therefore, we compute weighted sums to obtain hand strength (HS). As
with HR, HS, is the hand strength against n opponents and HS = HS;.

HS, = (HS;)". (5.3)
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5.2.1 Multi-Player Considerations

The above description of the weighted enumeration system for hand strength is in-
tended for one opponent. When the system was first put to use, the weight array
was common to all opponents (either uniform or some fixed ‘typical’ distribution) so
H S, was easily extrapolated by using Equation 5.3. However, our opponent modeling
system will be computing a different set of weights for each specific opponent.

The correct approach would be to treat each possible case independently. For
example, one possible case is that player 1 holds AD-Q<¢ and player 2 holds Q-
J&. To handle this distinction, the function would need an extra iteration layer for
each opponent (and would still be dependent on the order of the iteration). For each
possible case it would then use a weight w[z] = wq[x1] * welxa] * ... % w,[x,] (Where
z is the complex subcase, x; is the subcase for the cards held by player i and w;[z]
is the weight of that subcase for player i). The weight of the complex subcase given
in the example is W[AD-QO-QUV-J&] = w1[AD-QO] * we[QUV-J&]. The increase in
computational complexity is substantial (approximately a factor of 1,000 for each
additional player) and becomes infeasible with only 3 opponents.

There are two simpler methods to approach this problem and obtain good esti-
mates of HS,. The first calculates HS,, for all opponents p; (such that ¢ = 1..n)
given each respective weight array. It then uses the equation

HS,, =HS, «HS,, ..« HS, . (5.4)

The second method calculates HS; using a special weight array, called the field array,
computed by combining the weight arrays of all active players. H.S, is then calculated
with Equation 5.3. The use of the field array as an estimate is a compromise between
computational cost and accuracy. It represents the entire table by giving the average
weights of the opponents. The process of obtaining hand weights and generating this
array is described in Chapter 7.

Both of these methods are only estimates because they ignore the interdepen-
dencies arising from the fact that two players cannot hold the same card. Several
situations were examined from data gathered during play against human opponents.
For both methods, the absolute error was measured with respect to the correct full
enumeration but only against two or three active opponents (four opponents was too
expensive to compute). For the first method (Equation 5.4), this testing revealed
the error never exceeded 2.19%. The average error was 0.307% with two opponents
and 0.502% with three opponents. For the second method (using the field array and
Equation 5.3), the error never exceeded 5.79% for two opponents and 4.15% for three
opponents. In fact, for two opponents only 59 out of 888 cases had an error larger
than 2% (and 20 out of 390 three opponent cases). The average errors were 0.671%
and 0.751%. The estimated values were usually slight overestimates.

This isolated test scenario suggests that the first method is better but the differ-
ence is small. The error also appears to get slightly worse with additional opponents.
Loki uses the second method due to the faster computation and ease of introduction
into the present framework (particularly with respect to multi-player considerations
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for hand potential, as will be discussed later). We have not invested the time to
further explore the error arising from these interdependencies, however we believe it
is minor in comparison to the extra work that would be required for a very accu-
rate measure of H.S,. Also, this amount of error is considered to be negligible given
that the error introduced by other components of the system tends to be greater in
magnitude.

5.3 Hand Potential

In practice, hand strength alone is insufficient to assess the quality of a hand. Hand
potential assesses the probability of the hand improving (or being overtaken) as addi-
tional community cards appear. Consider the hand 8$-7{ with a flop of 9{-6&-2$.
The probability of having the strongest hand is very low, even against one random op-
ponent (11.5%). On the other hand, there is tremendous potential for improvement.
With two cards yet to come, any ¢, 10, or 5 will give us a flush or a straight. Hence
there is a high probability that this hand will improve substantially in strength, so
the hand has a lot of value. We need to be aware of how the potential affects hand
strength.

This example describes positive potential (PPOT): the probability of pulling
ahead when we are behind. We can also compute the negative potential (NPOT):
the probability of falling behind given we are ahead. Both of these can be computed
by enumeration in real-time. We have 1,081 possible subcases (opposing hands for
which we have weights) on the flop and 990 on the turn. For each subcase we can
either do a two card look-ahead (consider the 990 combinations of the next two cards
on the flop) or a one card look-ahead (45 cards on the flop and 44 on the turn). For
each subcase we count how many combinations of upcoming cards result in us being
ahead, behind or tied. The total number of cases to be considered is:

e PPOT; and NPOT; (two card look-ahead on the flop): 1,070,190

e PPOT, and NPOT; (one card look-ahead): 48,645 on the flop and 43,560 on

the turn

The potential for AO-Qde/30-4&-JO with uniform weighting is shown in Table
5.1. The table shows what the result would be after seven cards, for cases where we
are ahead, tied or behind after five cards. For example, if we did not have the best
hand after five cards, then there are 91,981 combinations of cards (pre-flop and two
cards to come) for the opponents that will give us the best hand. Of the remaining
hands, 1,036 will leave us tied with the best hand, and 346,543 will leave us behind.
In other words, if we are behind we have roughly a PPOT, = 21% chance of winning
against one opponent in a showdown. Additionally, if we are currently ahead and
that opponent plays to the showdown, we have roughly a N POT, = 27% chance of
losing.

If Ty owcor refers to the values in the table (for brevity we use B, T, A, and S for
Behind, Tied, Ahead, and Sum) then PPOT; and N POT; are calculated by:
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5 cards 7 cards
Ahead Tied | Behind Sum
Ahead | 449,005 | 3,211 | 169,504 621,720 = 628x990
Tied 0| 8,370 540 8,910 9x990
Behind | 91,981 | 1,036 | 346,543 439,560 = 444x990
Sum | 540,986 | 12,617 | 516,587 | 1,070,190 = 1,081x990

Table 5.1: Unweighted potential of AJ-Qéde/30-4-JO

Tp T Tr 4
T a+ -+

PPOT, = 5.5
) Tost T2 (5.5)
Topt Tar | Trp
NPOT, = ~2487F 2;*2 (5.6)
Ty + 122

Figure 5.2 describes the algorithm for two card look-ahead from the flop. The
parameter w is, as for Figure 5.1, for the weight array of the opponent (opponent
modeling is discussed later), and can simply be a uniform set of weights. The Hand-
Strength calculation is easily embedded within this function, and the one card look-
ahead function HandPotentiall is essentially the same as HandPotential2. In this
function, the inner loop is executed (427) * (425) = 1,070,190 times and so the Rank

function is called
47 47 45
1+ (2) + 2 % (2) * (2) = 2,141,371

times. However, there are many redundant calculations. There are only (427) = 1,081
possible unique calls in the inner loop to Rank for ourcards and only (447) = 178,365

for oppcards (this redundancy exists because there is no order constraint to the eval-
uation of poker hands). Therefore, with pre-calculation, HandPotential2 need only

AT\ (47\ (47
1 — 180,528

calls to Rank (although the number of times the inner loop is executed is not reduced
from 1,070,190). Similarly, HandPotentiall originally needs

47 47
1—|—( )+2*(2)*45:98,372

make

2

calls to Rank on the flop (92,116 on the turn) but
L+ 47 N 47 N 47
2 2 3

29

with pre-calculation only

= 18,378



HandPotential2(CARDS ourcards, CARDS boardcards, FLOAT w[])
{

/* Each index represents ahead, tied and behind. */

FLOAT HP[3]1[3] /# initialize to 0 */

FLOAT HPtotal[3] /# initialize to 0 */

FLOAT ppot2,npot2

RANK ourrank5, ourrank?, opprank

CARDS  additionalboard

INTEGER index

ourrank5 = Rank(ourcards, boardcards)
/* Consider all remaining two card combinations for the opponent */
for each case(oppcards)
{
/* after 5 cards */
opprank = Rank(oppcards, boardcards)

if (ourrank5>opprank) index = ahead
else if (ourrank5==opprank) index = tied
else /* < %/ index = behind

HPtotal[index] += wloppcards]

/* Consider all possible two card board combinations to come */
for each case(additionalboard)
{

board = boardcards + additionalboard

ourrank7 = Rank(ourcards,board)

opprank = Rank(oppcards,board)

if (ourrank7>opprank) HP[index] [ahead] += wl[oppcards]
else if (ourrank7==opprank) HP[index][tied] += wloppcards]
else /* < %/ HP[index] [behind] += wloppcards]

}
}

/* ppot2: we were behind but moved ahead (Equation 5.5) */

ppot2 = (HP[behind] [ahead] + HP[behind] [tied]/2 + HP[tied] [ahead]/2)
/ (HPtotallbehind] + HPtotalltied]/2)

/* npot2: we were ahead but fell behind (Equation 5.6) */

npot2 = (HP[ahead] [behind] + HP[ahead][tied]/2 + HP[tied] [behind]/2)
/ (HPtotal[ahead] + HPtotal[tied]/2)

return(ppot2,npot2)

Figure 5.2: HandPotential2 Calculation
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on the flop (17,251 on the turn).
In Table 5.1 we compute the potential based on two additional cards and it pro-

duces 1,036 0
91,981 + 126 4 0
PPOT, = = i 2879; 2 =(.208, (5.7)
439,560 + 2512
169,504 + 2211 4 540
NPOT, = T Y o (5.8)

621,720 + 551

The ca