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1 Introduction

Most object-oriented frameworks are motivated by industry, and are developed
for a particular application domain, like user interfaces, or database management.
The framework presented here is somewhat unusual in that the framework is used to
implement object-oriented languages. We will make a distinction between the
framework client (the software that invokes the framework) and the framework users
(the people who are implementing the object-oriented language in question). In some
ways, the DT Framework presented here is a meta-framework, as it provides a
framework within which a fundamental object-oriented concept can be implemented
by language developers.

Object-oriented languages have two special properties: 1) polymorphism , which
allows the same name to be used to refer to two or more different executable
methods, and 2) inheri tance , which hierarchically relates the types in the
programming environment to one another. These properties provide object-oriented
languages with the highly desirable concepts of abstraction, modularity and code
reuse. However, these same properties have an impact on execution performance.

To see why this is the case, consider a function call. The invocation of a
function involves specifying a function name and a list of arguments on which that
function operates. Each argument has a type  (set of legal values) which restricts it.
Function dispatch  is  the process of determining the address of the function code to
execute. In most non-object-oriented languages, only the name of the function is
needed, since a one-to-one correspondence between names and addresses exists. Some
non-object-oriented languages allow polymorphic functions in which the static  type
of function arguments are used in conjunction with the function name to identify
the function address. In either case, the function address for a particular function
call is determinable at compile-time, so the compiler can generate an appropriate
JSR statement, or even inline the function code within the caller.

Unfortunately, in object-oriented languages the compiler does not always have
sufficient information to determine the method (function address) associated with a
particular selector (function name). This is because inheritance introduces a
distinction between the static type of expressions and the dynamic type of values.
Inheritance generates a hierarchical ordering on the types in the environment, so if a
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certain type, T' , is below another type, T , in the inheritance hierarchy, T'  is said to
be  a T , and thus instances of type T'  can be used wherever instances of type T  can be
used. Thus, it is legal, under the rules of inheritance, to assign an object of type T'  to
a variable of type T . The reason this type substitutability poses problems is that all
object-oriented languages use the dynamic type of at least one method argument
(the receiver), in conjunction with the selector, to determine which method to
invoke. Since the dynamic type of arguments can be different than the static type, a
compiler can not always establish the correct method to execute. Instead, the
compiler must often generate code that will compute the appropriate address at r u n -
t ime . The process of computing the method address at run-time is known as m e t h o d
dispatch . The code generated by the compiler, along with the information this code
relies on, makes up a specific method dispatch technique.

There has been a variety of published method dispatch techniques for
languages that use only the receiver’s dynamic type. Such techniques are divided
into two primary categories: cache-based and table-based. Cache-based  techniques
use lookup and caching during run-time, and require a minimum of pre-calculated
information, while table-based  techniques calculate all addresses before dispatch
occurs so that dispatch consists of a single table access (although memory accesses
may be necessary to compute table indices). Traditionally, the table-based
techniques have only been applicable in non-reflexive  languages, where no new types
or methods can be added at run-time. In a later section we demonstrate how all
single-receiver table-based dispatch techniques can be generalized to reflexive
languages , where methods and types can be added at run-time.

There are two separate but related components in a method dispatch
technique: 1) the actions required at each call-site in order to establish an address,
and 2) the maintenance actions that allow the call-site specific actions to work. For
the most part, the cache-based techniques place emphasis on the call-site actions,
while the table-based techniques place emphasis on the maintenance actions.

The DT Framework is a general framework for both compile-time and run-time
inheritance management and table-based method dispatch. It applies to a broad
category of object-oriented languages: reflexive , non-statically typed, single-receiver
languages with type/implementation-paired multiple inheritance. Within this
chapter, we will refer to this collection of languages as Ψ  . A reflexive  language is one
with the ability to define new methods and classes at run-time. A non-stat ical ly
typed  language is one in which some (or all) variables and method return values are
unconstrained, in that they can be bound to instances of any class in the entire
environment. A single-receiver  language is one in which a single class, together with a
selector, uniquely establishes a method to invoke (as opposed to multi-method
languages, discussed in Section 6). Type/implementation-paired inheritance  refers to
the traditional form of inheritance used in most object-oriented languages, in which
both the definition and implementation of inherited selectors are propagated
together (as opposed to inheritance in which these two concepts are separated, as
discussed in Section 6). Finally, multiple inheritance refers to the ability of a class to
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inherit selectors from more than one direct superclass. Note that non-statically typed
languages are a superset of statically typed languages, and multiple inheritance is a
superset of single inheritance.

Any compiler or run-time system for a language in Ψ  can obtain substantial
code-reuse by deriving their dispatch code from the DT Framework. In this chapter,
we will refer to compilers and run-time systems as DT Framework clients. For our
purposes, a language that can be compiled is inherently non-reflexive, and compi lers
can be used on such languages (i.e. C++). By run-time system we mean language
support existing at run-time to allow new types or methods to be added.

The DT Framework relies on a fundamental data-structure that extends the
concept of a dispatch table. In addition to method addresses, it maintains
information that provides efficient incremental inheritance management,
inheritance conflict detection and dispatch table modification. The algorithms that
perform these actions are general enough to be used in conjunction with any table-
based dispatch technique. This provides a complete framework for inheritance
management and maintenance of dispatch information that is usable by both
compilers and run-time systems. The algorithms provided by the framework are
incremental at the level of individual environment modifications , consisting of any
of the following: 1) adding a selector to a class,  2) adding one or more class
inheritance links (even adding a class between  two or more existing classes), 3)
removing a selector from a class or 4) removing one or more class inheritance links.

The following capabilities are provided by the framework:

1. Inheritance Conflict Detection: In multiple inheritance, it is possible for
inheritance conflicts to occur when a selector is visible in a class from two
or more superclasses. The Framework detects and records such conflicts at
the time of method definition.

2. Dispatch Technique Independence: The framework provides end-users the
ability to choose which dispatch technique to use. Thus, an end-user could
compile a C++ program using virtual function tables, or selector coloring, or
any other table-based dispatch technique.

3. Support for Reflexive Languages: Dispatch tables have traditionally been
created by compilers and are usually not extendable at run-time Therefore,
reflexive languages can not use such table-based dispatch techniques. By
making dispatch table modification incremental, the DT Framework allows
reflexive languages to use any table-based dispatch technique, maintaining
the dispatch table at run-time as the environment is dynamically altered.
The DT Framework provides efficient algorithms for arbitrary environment
modification, including adding a class between classes already in an
inheritance hierarchy. Even more important, the algorithms handle both
additions to the environment a n d  deletions from the environment.
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4. Separate Compilation: Of the five table-based dispatch techniques discussed
in Section 2 three of them require knowledge of the complete environment.
In situations where library developers provide object files, but not source
code, these techniques are unusable. Incremental dispatch table
modification allows the DT Framework to provide separate compilation in
all five dispatch techniques.

5. Compile-time Method Determination: It is often possible (especially in
statically typed languages) for a compiler to uniquely determine a method
address for a specific message send. The more refined the static typing of a
particular variable, the more limited is the set of applicable selectors when
a message is sent to the object referenced by the variable. If only one
method applies, the compiler can generate a function call or inline the
method, avoiding run-time dispatch. The method-node data structure
maintains information to allow efficient determination of such uniqueness.

The rest of this chapter is organized as follows. Section 2 summarizes the
various method dispatch techniques. Section 3 presents the DT Framework. Section 4
discusses how the table-based method dispatch techniques can be implemented
using the DT Framework. Section 5 presents some performance results. Section 6
discusses related and future work, and Section 7 provides a summary.

2 Method Dispatch Techniques

In object-oriented languages, it is often necessary to compute the method
address to be executed for a class/selector pair, <C , σ >, at run-time. Since message
sends are so prevalent in object-oriented languages, the dispatch mechanism has a
profound effect on implementation efficiency. In the discussion that follows, C  is the
receiver class and σ  is the selector at a particular call-site. The notation <C , σ > is
shorthand for the class/selector pair. It is assumed that each class in the
environment maintains a dictionary that maps native selectors to their method
addresses, as well as a set of immediate superclasses. We give only a very brief
summary of the dispatch techniques in this chapter. For detailed descriptions, see
[Dr93a], and for a comparison of relative dispatch performance, see [DHV95].

2.1 Cache-Based Techniques

There are three basic cache-based , dispatch techniques. All of them rely on the
dynamic technique called Method Lookup (ML) [GR83], the default dispatch
technique in Smalltalk-80, as their cache-miss technique. In Method Lookup, method
dictionaries are searched for selector σ  starting at class C , going up the inheritance
chain until a method for σ  is found or no more parents exist. This technique is space
efficient but time inefficient. The three cache-based techniques are called: Globa l
Lookup Cache (LC) [GR83,Kra83], Inline Cache (IC) [DS84] and Polymorphic Inline
Caches  (PIC) [HCU91]. Since the DT Framework is based on table-based techniques
these approaches are not discussed in this chapter.
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2.2 Table-Based Techniques

The table-based techniques provide a mapping from every legal class/selector
pair to an executable address that is precomputed before dispatch occurs. These
techniques have traditionally been used at compile-time, but the DT Framework
shows how they can be used at run-time. In each technique, classes and selectors are
assigned numbers which serve as indices into the dispatch table. Whether these
indices are unique or not depends on the dispatch technique:

1. STI: Selector Table Indexing [COX87] uses a two-dimensional table in which
both class and selector indices are unique. This technique is not practical
from a space perspective and is never used in implementations.

2. SC: Selector Coloring [DMSV89,AR92] compresses the two-dimensional STI
table by allowing selector indices to be non-unique. Two selectors can share
the same index as long as no class recognizes both selectors. The amount of
compression is limited by the largest complete behavior (the largest set of
selectors recognized by a single class).

3. RD: Row Displacement [DH95] compresses the two-dimensional STI table
into a one-dimensional master array. Selectors are assigned unique indices
so that when all selector rows are shifted to the right by the index amount,
the two-dimensional table has only one method in each column.

4. VTBL: Virtual Function Tables [ES90] have a different dispatch table for
each class, so selector indices are class-specific. However, indices are
constrained to be equal across inheritance subgraphs. Such uniqueness is
not possible in multiple inheritance, in which case multiple tables are
stored in each multi-derived class.

5. CT: Compact Selector-Indexed Dispatch Tables [VH96] separate selectors
into one of two groups. Standard selectors have one main definition and are
only overridden in subclasses. Any selector that is not standard is a conf l ic t
selector . Two different tables are maintained, one for standard selectors, the
other for conflict selectors. The standard table can be compressed by
selector aliasing and class sharing, and the conflict table by class sharing
alone. Class partitioning is used to allow class sharing to work effectively.

3 The DT Framework

The DT Framework provides a collection of abstract classes that define the data
and functionality necessary to modify dispatch information incrementally during
environment modification. From the perspective of the DT Framework, env i ronment
modif icat ion  occurs when selectors or class hierarchy links are added or removed.
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The primary benefit of the DT Framework is its ability to incrementally modify
dispatch table information. Table-based dispatch techniques have traditionally been
static, and efficient implementations usually rely on a complete knowledge of the
environment before the dispatch table is created. However, dispatch techniques that
rely on complete knowledge of the environment have two disadvantages: 1) they
cannot be used by reflexive languages that can modify the environment at run-time,
and 2) they preclude the ability of the language to perform separate compilation of
source code. One of the fundamental contributions of the DT Framework is a
collection of algorithms that provide incremental dispatch table updates in all table-
based dispatch techniques. An implementation of the DT Framework exists, and
detailed run-time measurements of the algorithms are presented in Section 5.

The DT Framework consists of a variety of special purposes classes. In this
discussion, we present the conceptual names of the classes, rather than the exact
class names used in the C++ implementation. Figures 1 to 4 show the class
hierarchies. In addition, there are three singleton classes called: Environment ,
Selector  and Class . We describe the data and functionality that each class hierarchy
needs from the perspective of inheritance management and dispatch table
modification. Clients of the framework can specify additional data and functionality
by subclassing some or all of the classes provided by the framework.

Tab le

2 DTab le

Sep arate d Tab leParti t ion edTa ble

1DTable

Exten d ab le2 DTab le

Ou terTab leClassTab le

FixedRo w2 DTabl e

Figure 1 The Table hierarchy.

Method Nod e
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Figure 2 The MethodNode hierarchy.
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Figure 3 The SelectorIndexStrategy (SIS) hierarchy.
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Figure 4 The ClassIndexStrategy (CIS) hierarchy.

The Table hierarchy describes the classes that represent the dispatch table, and
provides the functionality to access, modify and add entries. The MethodNode
hierarchy represents the different kinds of addresses that can be associated with a
class/selector pair (i.e. messageNotUnderStood, inheritanceConflict, or user-specified
method). The SIS and CIS hierarchies implement methods for determining selector
and class indices. Although these concepts are components of Tables, they have been
made classes to allow the same table to use different indexing strategies.

3.1 The DT Classes

The Environment, Class and Selector classes have no subclasses within the DT
Framework, but the MethodNode, Table, SIS and CIS classes are subclassed. However,
clients of the Framework are free to subclass any DT class they choose, including
Environment, Class and Selector.

Environment, Class and Selector

The DT Environment class acts as an interface between the DT Framework
client and the framework. However, since the client can subclass the DT Framework,
the interface is a white box, not a black one. This interface serves as an API for the
language implementor that provides inheritance and method dispatch operations.

Each client creates a unique instance of the DT Environment and as class and
method declarations are parsed (or evaluated at run-time), the client informs the
Environment instance of these environment modifications by invoking its interface
operations. These interface operations are: Add Selector, Remove Selector, Add Class
Links , and Remove Class Links. The environment also provides functionality to
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register selectors and classes with the environment, save extended dispatch tables,
convert extended dispatch tables to dispatch tables, merge extended dispatch tables
together and perform actual dispatch for a particular class/selector pair.

Within the DT Framework, instances of class Selector need to maintain a name.
They do not maintain indices, since such indices are table-specific. Instances of class
Class maintain a name, a set of native selectors, a set of immediate superclasses
(parent classes), a set of immediate subclasses (child classes), and a pointer to the
dispatch table (usually, a pointer to a certain starting point within the table, specific
to the class in question). Finally, they need to implement an efficient mechanism for
determining whether another class is a subclass (for example, by using bit vectors or
hierarchical encoding schemes [KVH97].

Method-nodes

The Table class and its subclasses represent extended dispatch tables, which
store method-node  pointers instead of addresses. Conceptually, a method-node  is the
set of all classes that share a method for a selector. However, this set of classes is not
explicitly maintained because it can be computed using a few basic pieces of
information. Within each method-node, only one class, C , has a native definition for
the selector, σ . This class is called the defining class. For a method-node M
representing class/selector pair <C , σ >, the defining class is C  and the dependent
classes of M  consist of all classes which inherit selector σ  from class C , including class
C  itself. Furthermore, each selector σ  defined in the environment generates a
method-node inheritance graph, which is an induced subgraph of the class
inheritance hierarchy, formed by removing all classes which do not natively define
σ . Method-node hierarchy graphs allow the DT Framework to perform compile-time
method determination. These graphs can be maintained by having each method-
node store a set of child method-nodes. For a method-node M  with defining class C
and selector σ  the child method-nodes of M  are the method-nodes for selector σ and
classes C i immediately below C  in the method-node inheritance graph for σ  . Figure 5
shows a small inheritance hierarchy and the method-node hierarchies obtained from
it for selectors α  and β 

A

B

C

D

E

α β

αα

β

α

A:α

B:α

D:α

E:α

A:β

C:β

Figure 5 An inheritance hierarchy and its associated method-node hierarchies.

The MethodNode hierarchy is in some ways private to the DT Framework, and
language implementors that use the DT Framework will usually not need to know
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anything about these classes. However, method-nodes are of critical importance in
providing the DT Framework with its incremental efficiency and compile-time
method determination. By storing method-nodes in the tables, rather than simple
addresses, the following capabilities become possible:

1. Localized modification of the dispatch table during environment
modification so that only those entries that need to be will be recomputed.

2. Efficient inheritance propagation and inheritance conflict detection.

3. Detection of simple recompilations (replacing a method by a different
method) and avoidance of unnecessary computation in such situations.

4. Compile-time method determination.

In fact, each entry of an extended dispatch table represents a unique
class/selector pair, and contains a MethodNode  instance, even if no user-specified
method exists for the class/selector pair in question. Such empty entries usually
contain a unique instance of EmptyMethodNode , but one indexing strategy uses a
FreeMethodNode  instance, which represents a contiguous block of unused table
entries. Instances of both of these classes have a special methodNotUnders tood
address associated with them. Non-empty table entries are StandardMethodNodes ,
and contain a defining class, selector , address  and a set of child method-nodes. The
NormalMethodNode  subclass represents a user-specified method address, and the
Confl ic tMethodNode  subclass represents an inheritance conflict, in which two or
more distinct methods are visible from a class, due to multiple inheritance.

Tables

Each Table  class provides a structure for storing method-nodes, and maps the
indices associated with a class/selector pair to a particular entry in the table
structure. Each of the concrete table classes in the DT Framework provides a different
underlying table structure. The only functionality that subclasses must provide is
that which is dependent on the structure. This includes table access, table
modification, and dynamic extension of the selector and class dimensions.

The 2DTable  class is an abstract superclass for tables with orthogonal class and
selector dimensions. For example, these tables are used for selector coloring. The Rows
represent the selector dimension, and columns represent the class dimension. The
Extendable2DTable  class can dynamically grow in both selector and class dimensions
as additional elements are added to the dimensions. The FixedRow2DTab le
dynamically grows in the class dimension, but the size of the selector dimension is
established at time of table creation, and cannot grow larger.

The concrete 1DTable  class represents tables in which selectors and classes
share the same dimension. For example, these tables are used for row displacement.
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Selector and class indices are added together to access an entry in this table. This
table grows as necessary when new classes and selectors are added.

The OuterTable  class is an abstract superclass for tables which contain
subtables. For example, these tables are used in compact selector-indexed dispatch
tables. Most of the functionality of these classes involves requesting the same
functionality from a particular subtable. For example, requesting the entry for a
class/selector pair involves determining (based on selector index) which subtable is
needed, and requesting table access from that subtable. Individual selectors exist in
at most one subtable, but the same class can exist in multiple subtables. For this
reason, class indices for these tables are dependent on selector indices (because the
subtable is determined by selector index). For efficiency, selector indices are encoded
so as to maintain both the subtable to which they belong, as well as the actual index
within that subtable. The Part i t ionedTable  class has a dynamic number of
FixedRow2DTable  instances as subtables. A new FixedRow2DTable  instance is added
when a selector cannot fit in any existing subtable. The SeparatedTable  class has two
subtables, one for standard selectors and one for conflict selectors. A standard
selector is one with only one root method-node (a new selector is also standard), and
a conflict selector is one with more than one root method-node. A root method-node
for <C , σ > is one in which class C  has no superclasses that define σ . Each of these
subtables can be an instance of either Extendable2DTable  or Partit ionedTable . Since
Parti t ionedTables  are also outer tables, such implementations express tables as
subtables containing subsubtables.

Selector Index Strategy (SIS)

Each table has associated with it a selector index strategy, which is represented
as an instance of some subclass of SIS . The OuterTable  and 1DTable  classes have one
particular selector index strategy that they must use, but the 2DTab le  classes can
choose from any of the 2D-SIS  subclasses.

Each subclass of SIS  implements algorithm DetermineSelectorIndex , which
provides a mechanism for determining the index to associate with a selector. Each S I S
class maintains the current index for each selector, and is responsible for detecting
selector index conflicts. When such conflicts are detected, a new index must be
determined that does not conflict with existing indices. algorithm
DetermineSelectorIndex  is responsible for detecting conflicts, determining a new
index, storing the index, ensuring that space exists in the table for the new index,
moving method-nodes from the old table locations to new table locations, and
returning the selector index to the caller.

The abstract 2D-SIS  class represents selector index strategies for use with 2D-
Tables . These strategies are interchangeable, so any 2D-Table  subclass can use any
concrete subclass of 2D-SIS  in order to provide selector index determination. The
PlainSIS  class is a naive strategy that assigns a unique index to each selector. The
ColoredSIS  and AliasedSIS  classes allow two selectors to share the same index as long
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as no class in the environment recognizes both selectors. They differ in how they
determine which selectors can share indices. AliasedSIS  is only applicable to
languages with single inheritance and places certain restrictions on selectors for
which indices can be computed.

The ShiftedSIS  class provides selector index determination for tables in which
selectors and classes share the same dimension. This strategy implements a variety of
auxiliary functions which maintain doubly-linked freelists of unused entries in the
one-dimensional table. These freelists are used to efficiently determine a new selector
index. The selector index is interpreted as a shift offset within the table, to which
class indices are added in order to obtain a table entry for a class/selector pair.

The ClassSpecificSIS  assigns selector indices that depend on the class. Unlike
the other strategies, selector indices do not need to be the same across all classes,
although two classes that are related in the inheritance hierarchy are  required to
share the index for selectors understood by both classes.

The Parti t ionedSIS  class implements selector index determination for
Partit ionedTable  instances. When selector index conflicts are detected, a new index is
obtained by asking a subtable to determine an index. Since FixedRow2D  subtables of
Part i t ionedTable  instances are not guaranteed to be able to assign an index, all
subtables are asked for an index until a subtable is found that can assign an index. If
no subtable can assign an index, a new subtable is dynamically created.

The SeparatedSIS  class implements selector index determination for
SeparatedTable  instances. A new index needs to be assigned when a selector index
conflict is detected or when a selector changes status from standard to conflicting, or
vice-versa. Such index determination involves asking either the standard or conflict
subtable to find a selector index.

Class Index Strategy (CIS)

Each table has associated with it a class index strategy, which is represented as
an instance of some subclass of CIS . The OuterTable  and 1DTable  classes have one
particular class index strategy that they must use, but the 2DTable  classes can choose
from either of the 2D-CIS  subclasses.

Each subclass of CIS  implements algorithm DetermineClassIndex , which
provides a mechanism for determining the index to associate with a class. Each C I S
class maintains the current index for each class, and is responsible for detecting class
index conflicts. When such conflicts are detected, a new index must be determined
that does not conflict with existing indices. algorithm DetermineClassIndex  is
responsible for detecting conflicts, determining a new index, storing the index,
ensuring that space exists in the table for the new index, moving method-nodes from
old table locations to new table locations, and returning the class index to the caller.
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The NonSharedCIS  class implements the standard class index strategy, in which
each class is assigned a unique index as it is added to the table. The SharedCIS  class
allows two or more classes to share the same index if all classes sharing the index
have exactly the same method-node for every selector in the table.

The PartitionedCIS  and SeparatedCIS  classes implement class index
determination for Parti t ionedTable  and SeparatedTable  respectively. In both cases,
this involves establishing a subtable based on the selector index and asking that
subtable to find a class index.

3.2 The DT Algorithms

Although the class hierarchies are what provide the DT Framework with its
flexibility and the ability to switch between different dispatch techniques at will, it is
the high-level algorithms implemented by the framework which are of greatest
importance. Each of these algorithms is a template method describing the overall
mechanism for using inheritance management to incrementally maintain a dispatch
table, detect and record inheritance conflicts, and maintain class hierarchy
information useful for compile-time optimizations. They call low-level, technique-
specific functions in order to perform fundamental operations like table access, table
modification and table dimension extension. In this section, we provide a high-level
description of the algorithms. A detailed discussion of the algorithms and how they
interact can be found in [HS96].

The following notation is used. C  is a class, σ  is a selector, M  is a method-node,
and φ is an empty method-node. G  represents a set of classes, index (C ) is the
numeric index for class C , index ( σ ) is the numeric index for selector σ , and
T[index( σ ), index(C)] contains a method-node which in turn establishes the
address to execute for class C  and selector σ .

The Interface Algorithms

In general, framework users do not need to know anything about the
implementation details of the framework. Instead, they create an instance of the DT
Environment class and send messages to this instance each time an environment
modification occurs. There are four fundamental interface  algorithms for
maintaining inheritance changes in the Environment class: algorithms AddSelector ,
RemoveSelector , AddClassLinks , and RemoveClassLinks . In all four cases, calling the
algorithm results in a modification of all (and only) those table entries that need to
be updated. Inheritance conflict recording, index conflict resolution and method-
node hierarchy modification are performed as the table is updated. Most of this
functionality is not provided directly by the interface algorithms; instead these
algorithms establish how two fundamental inheritance management algorithms
(ManageInheri tance  and ManageInheri tanceRemoval ) should be invoked.
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In addition to the four interface routines for modifying the inheritance
hierarchy, there are also registration routines for creating or finding instances of
classes and selectors. Each time the language parser encounters a syntactic
specification for a class or selector, it sends a RegisterClass  or RegisterSelector message
to the DT environment, passing the name of the class or selector. The environment
maintains a mapping from name to instance, returning the desired instance if
already created, and creating a new instance if no such instance exists. Note that the
existence of a selector or class does not in itself affect the inheritance hierarchy; in
order for the dispatch tables to be affected, a selector must be associated with a class
(AddSelector ) or a class must be added to the inheritance hierarchy (AddClassLinks ) .

Figure 6 shows algorithm AddSelector that is invoked each time a selector is
defined in a particular class and algorithm.

Algorithm AddSelector(inout s: Selector, inout C : Class,
          in A : Address, inout T: Table)
1  if index(σ) = unassigned or (T[index(σ), index(C)] ≠ φ and
T[index(σ), index(C)].σ ≠ σ) then
2    DetermineSelectorIndex(σ, C, T)
3  endif
4  MC := T[index(σ), index(C)]
5  if MC.C = C and MC. σ = σ then
6    MC.A := A
7    remove any conflict marking on MC
8  else
9    insert σ into selectors(C)
10   MN := NewMethodNode(C, σ, A)
11   AddMethodNodeChild(MC, MN)
12   ManageInheritance(C, C, MN, nil, T)
13  endif
end Algorithm

Figure 6 Algorithm AddSelector.

Lines 1-3 of algorithm AddSelector  determine whether a new selector index is
needed, and if so, calls algorithm DetermineSelectorIndex to establish a new index
and move the method-node if appropriate.

Lines 4-7 determine whether a method recompilation or inheritance conflict
removal  has occurred. In either case, a method-node already exists that has been
propagated to the appropriate dependent classes, so no re-propagation is necessary.
Since the table entries for all dependent classes of <C , σ > store a pointer to the same
method-node, assigning the new address to the current method-node modifies the
information in multiple extended dispatch table entries simultaneously.

If the test in line 5 fails, algorithm AddSelector  falls into its most common
scenario, lines 8-12. A new method-node is created, a method-node hierarchy link is
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added, and algorithm ManageInher i tance  is called to propagate the new method-
node to the child classes.

Algorithm AddClassLinks  updates the extended dispatch table when new
inheritance links are added to the inheritance graph. Rather than having algorithm
AddClassLinks  add one inheritance link at a time, we have generalized it so that an
arbitrary number of both parent and child class links can be added. This is done
because the number of calls to algorithm ManageInher i tance  can often be reduced
when multiple parents are given. For example, when a conflict occurs between one or
more of the new parent classes, such conflicts can be detected in algorithm
AddClassLinks , allowing for a single conflict method-node to be propagated. If only a
single parent were provided at a time, the first parent specified would propagate the
method-node normally, but when the second (presumably conflicting) parent was
added, a conflict method-node would have to be created and propagated instead.
Algorithm AddClassLinks  accepts a class C , a set of parent classes, G P, and a set of
children classes G C . We have omitted the code for the algorithm for brevity [HS97b].

Algorithms for Inheritance Management

Algorithm ManageInheri tance , and its interaction with algorithms AddSelec tor
and AddClassLinks , form the most important part of the DT Framework. Algorithm
ManageInher i tance  is responsible for propagating a method-node provided to it by
algori thm  AddSelector or AddClassLinks, to all dependent classes of the method-
node. During this propagation, the algorithm is also responsible for maintaining
inheritance conflict information and managing selector index conflicts. Algorithm
ManageInheri tanceRemoval  plays a similar role with respect to algorithms
RemoveSelector  and RemoveClassLinks .

Algorithms ManageInheritance  and ManageInheri tanceRemoval  are recursive.
They are applied to a class, then invoked on each child class of that class. Recursion
terminates when a class with a native definition is encountered, or no child classes
exist. During each invocation, tests are performed to determine which of four possible
scenarios is to be executed: method-node child update, method-node re-insertion,
conflict creation (conflict removal, in ManageInheri tanceRemoval ) or method-node
insert ion . Each scenario either identifies a method-node to propagate to children of
the current class, or establishes that recursion should terminate. Due to inheritance
conflicts, a recursive call may not necessarily propagate the incoming method-node,
but may instead propagate a new conflict method-node that it creates.

These algorithms have gone through many refinements, and the current
implementations provide extremely efficient inheritance management, inheritance
conflict detection, index conflict resolution and method-node hierarchy
maintenance. An indepth discussion of how these algorithms are implemented, the
optimal tests used to establish scenarios, and how the method-node data structure
provides these tests, is available in [HS96].
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The algorithms are implemented in the abstract Table  class, and do not need
to be reimplemented in subclasses. However, these algorithms do invoke a variety of
operations which do need to be overridden in subclasses. Thus, algorithms
ManageInheritance and ManageInheritanceRemoval act as template methods
[GHJV95], providing the overall structure of the algorithms, but deferring some steps
to subclasses. Subclasses are responsible for implementing functionality for
determining selector and class indices, accessing and modifying the table structure,
and modifying method-node hierarchies.

Algorithm Inheritance Manager shown in Figure 7 has five arguments:

1. C T , the current target class

2. C B  the base class from which inheritance propagation should start (needed
by algorithm DetermineSelectorIndex)

3. M N , the new method-node to be propagated to all dependent classes of <C B ,
σ >.

4. M P , the method-node in the table for the parent class of C T  from which this
invocation occurred.

5. T , the extended dispatch table to be modified.

Algorithm ManageInheritance(in CT: Class, in CB: Class,
          in MN: MethodNode, in MP: MethodNode, inout T : Table)
"Assign important variables"
1  σ := MN. σ
2  CN := MN.C
3  MN := T[index(σ), index(CN)]
4  CI := MC.C
"Check for selector index conflict"
5  if MC ≠ Φ and MC. σ ≠ MN. σ then
6    DetermineSelectorIndex(MN. σ, CB ,T)
7    MC := T[index(σ), index(CT)]
8    CI := MC.C
9  endif
"Determine and perform appropriate action"
10 if (CT = CI) then “method-node child update”
11   AddMethodNodeChild(MN, MC)
12   RemoveMethodNodeChild(MP, MC)
13    return
14 elsif (CT = CI) “method-node re-insertion”
15   return
16 elsif (π = true) then “conflict creation”
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17   M := RecordInheritanceConflict σ, CT, {MN, MC})
18 else “method-node insertion”
19   M := MN
20 endif
"Insert method-node and propagate to children"
21 T[index(σ), index(CT)] := M
22 foreach CI ∈  children(CT) do
23   ManageInheritance(CI, CB, M, MC, T)
24 endfor
end ManageInheritance

Figure 7 Algorithm ManageInheritance.

Algorithm ManageInheri tance  can be divided into four distinct parts. Lines 1-4
determine the values of the test variables. Note that M C = φ when M N.σ  is not
currently visible in C T . We define φ.C = nil, so in such cases, C I will be nil .

Lines 5-9 test for a selector index conflict, and, if one is detected, invoke
algorithm DetermineSelectorIndex  and reassign test variables that change due to
selector index modification. Algorithm DetermineSelectorIndex  assigns selector
indices, establishes new indices when selector index conflicts occur, and moves all
selectors in an extended dispatch table when selector indices change. Note that
selector index conflicts are not possible in STI and VTBL dispatch techniques, so the
DT Tables classes used to implement these dispatch techniques provide an
implementation of algorithm ManageInheritance without lines 5-9 for use in these
cases. Furthermore, due to the manner in which algorithm DetermineSelec torIndex
assigns selector indices, it is not possible for more than one selector index conflict to
occur during a single invocation of algorithm AddSelector  or AddClassLinks , so if
lines 6-8 are ever executed, subsequent recursive invocations can avoid the check for
selector index conflicts by calling a version of algorithm ManageInheri tance  that does
not include these lines. These are two examples of how the framework uses
polymorphism to optimize the implementation of dispatch support.

Lines 10-22 apply the action determining tests to establish one of the four
actions. Only one of the four actions is performed for each invocation of algorithm
ManageInher i tance , but in each action, one of two things must occur: 1) the action
performs an immediate return, thus stopping recursion and not executing any
additional code in the algorithm or 2) the action assigns a value to the special
variable, D . If the algorithm reaches the fourth part, variable M  represents the
method-node that should be placed in the extended dispatch table for C T , and
propagated to child classes of C T . It is usually the method-node M N , but during
conflict-creation this is not the case. In line 11, algorithm AddMethodNodeChi ld
adds its second argument as a child method-node of its first argument. In line 12,
algorithm RemoveMethodNodeChi ld  removes its second argument as a child of its
first argument. In both cases, if either argument is an empty method-node, no link is
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added. The test π = true in line 16 establishes whether an inheritance conflict exists,
and has an efficient implementation that is discussed in [HS96].

When the DT Algorithms are used on a language with single inheritance,
conflict detection is unnecessary and multiple paths to classes do not exist, so
actions conflict-creation  and method-node re-inserting are not possible. In such
languages, algorithm ManageInheritance  simplifies to a single test: if C T = C I, perform
method-node child updating, and if not, perform method-node inserting.

Finally, Lines 21-24 are only executed if the action determined in the third
part does not request an explicit return. It consists of inserting method-node M  into
the extended dispatch table for < CT , σ > and recursively invoking the algorithm on
all child classes of C T , passing in the method-node as the method-node to be
propagated. It is important that extended dispatch table entries in parents be
modified before those in children, in order to commute π efficiently.

Algorithms for Selector and Class Index Determination

Each selector and class instance is assigned an index by the DT Framework. The
indices associated with a class/selector pair are used to establish an entry within the
table for that class/selector pair. An index strategy is a technique for incrementally
assigning indices so that the new index does not cause index conflicts. An i ndex
conflict  occurs when two class/selector pairs with different method-nodes access the
same entry in the table. Since it is undesirable for an entry to contain more than one
method-node [VH94,VH96], we want to resolve the conflict by assigning new indices
to one of the class/selector pairs. Note that since indices are table specific, and each
table has a single selector index strategy and class index strategy, it is the index
strategy instances that maintain the currently assigned indices for each selector and
class, rather than having each selector and class instance maintain multiple indices
(one for each table they participate in).

Given a class/selector pair, algorithm DetermineSelectorIndex,  shown in Figure
8, returns the index associated with the selector. However, before returning the index,
the algorithm ensures that no selector index conflict exists for that selector. If such a
conflict does exist, a new selector index is computed that does not conflict with any
other existing selector index, the new index is recorded, the selector dimension of the
associated table is extended (if necessary), and all method-nodes representing the
selector are moved from the old index to the new index. Algorithm
DetermineClassIndex  performs a similar task for class indices. Algorithm
DetermineSelectorIndex is provided by classes in the SIS inheritance hierarchy, and
algorithm DetermineClassIndex  by classes in the CIS inheritance hierarchy.

Figure 8 Algorithm DetermineSelectorIndex.

In line 3, algorithm IndexFreeFor  is a dispatch-technique dependent algorithm
that obtains an index that is not currently being used for any class that is currently
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using σ , as well as those classes that are dependent classes of σ . The algorithm is
responsible for allocating any new space in the table necessary for the new index.

In line 5, if the old index is unassigned there are no method-nodes to move,
since no method-nodes for σ  currently exist in the table. Otherwise, the method-
nodes for σ  have changed location, and must be moved. The old locations are
initialized with empty method-nodes.

3.3 Howthe DT Framework is Used

Recall that users of the DT Framework are implementors of object-oriented
language compilers and/or interpreters. Such individuals can provide their language
with table-based method dispatch and inheritance management as follows. During
the implementation of an object-oriented language, the native language must
provide some data-structures to represent the classes and selectors defined within the
language being implemented. In order to use the DT Framework, these data-
structures should be subclasses of Selector  and Class , as provided by the framework.
The DT Framework implementation of these classes provides only the state and
behavior that is required for inheritance management and method dispatch. Clients
are free to extend the state and functionality depending on their own requirements.

Having created appropriate subclasses of Selector  and Class , the DT Framework
client then creates a single instance, E , of the DTEnvironment . This instance acts as a
white-box interface between the client and the DT Framework, since the environment
provides the functionality for registering new selectors and classes with the
environment, associating methods with classes, and associating inheritance links
between classes. Each time the compiler or interpreter encounters a class or selector
definition, the appropriate interface routines of the DT environment instance are
called to record the information.

3.4 How Clients extend the DT Framework

Extending the DT Framework means developing a new table-based method
technique. Depending on the technique developed, one or more of the following may
need to be created: a new table class, a new selector indexing class, a new class
indexing class, a new method-node class. In some techniques, there is a one-to-one
mapping from table to selector and class indexing strategies, while in other
techniques, a single table can use one of a variety of indexing strategies, and multiple
tables can use the same indexing strategies.

To create a new table class the implementor creates a new subclass of T a b l e
and implements the virtual access and change methods. These methods get and set
entries within the table when given various combinations of selector, class, selector
index and class index.
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To create a new selector indexing strategy the implementor subclassses the
SelectorIndexStrategy  class and implements algorithm Determine Selector Index. This
method establishes whether a new index is required, and if so, finds one that does
not conflict with existing indices. The algorithm is also responsible for recording the
newly determined index and allocating additional (dynamic) space in the table if
the new index exceeds the current maximum size of the table. Creating a new class
indexing strategy is very similar, except that algorithm DetermineClassIndex  is
implemented instead.

4 Incremental Table-based Method Dispatch

As discussed in Section 2.2, there are five existing single-receiver table-based
dispatch techniques. However, published implementations of all techniques except
for STI and SC have assumed non-reflexive  environments. However, the DT
Algorithms are technique-independent algorithms for incremental  modification of
dispatch tables. Thus, not only does the framework allow us to implement all of the
dispatch techniques by combining various table, SIS and CIS subclasses, it also
provides the first incremental versions of these algorithms.

The exact dispatch mechanism is controlled by parameters passed to the DT
Environment constructor. The parameters indicate which table(s) to use, and specify
the selector and class index strategies to be associated with each of these tables.

1. Selector Table Indexing (STI): uses Extendable2DTable , PlainSIS, and
NonSharedCIS.

2. Selector Coloring (SC): uses Extendable2DTable, ColoredSIS, and
NonSharedCIS.

3. Row Displacement (RD): uses 1DTable , ShiftedSIS and NonSharedCIS .

4. Virtual Function Tables (VTBL): uses ClassTable, ClassSpecificSIS and
NonSharedCIS.

5. Compact Tables (CT): uses a SeparatedTable  with two Partit ionedTable
subtables, each with FixedRow2DTable  subsubtables. The selector index
strategy for all subsubtables of the standard subtable is AliasedSIS , and the
strategy for all subsubtables of the conflict subtable is PlainSIS . All
subsubtables use SharedCIS .

6. Incremental Compact Tables (ICT): identical to Compact Tables, except that
the standard subtable uses ColoredSIS  instead of AliasedSIS .
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7. Selector Colored Compact Tables (SCCT): identical to Compact Tables,
except that both standard and conflict subtables used ColoredSIS  (instead of
AliasedSIS and PlainSIS respectively).

The last two techniques are examples of what the DT Framework can do to
combine existing techniques into new hybrid techniques. For example, ICT dispatch
uses selector coloring instead of selector aliasing to determine selector indices in the
standard table, and is thus applicable to languages with multiple inheritance. Even
better, SCCT uses selector coloring in both standard and conflict tables (remember
that the CT dispatch effectively uses STI-style selector indexing in the conflict table).

In addition to providing each of the above dispatch techniques, the framework
can be used to analyze the various compression strategies introduced by CT dispatch
in isolation from the others. For example, a dispatch table consisting of a
PartitionedTable, whose FixedRow2DTable  subtables each use PlainSIS and SharedCIS
indexing strategies, allows us to determine how much table compression is obtained
by class sharing alone. Many variations based on SeparatedTable  and
Parti t ionedTable , their subtables, and the associated index strategies, are possible.

5 Performance Results

In the previous sections, we have described a framework for the incremental
maintenance of an extended dispatch table, using any table-based dispatch
technique. In this section, we summarize the results of using the DT Framework to
implement STI, SC, RD, ICT and SCCT dispatch and generate extended dispatch tables
for a variety of object-oriented class libraries [HS97a].

To test the algorithms, we modelled a compiler or run-time interpreter by a
simple parsing program that reads input from a file. Each line of the file is either a
selector definition, consisting of a selector name and class name, or a class definition,
consisting of a class name and a list of zero or more parent class names. The order in
which the class and selector definitions appear in this file represent the order in
which a compiler or run-time system would encounter the same declarations.

In [DH95] the effectiveness of the non-incremental RD technique were
demonstrated on twelve real-world class libraries. We have executed the DT
algorithms on this same set of libraries in order to determine what effects dispatch
technique, input order and library size have on per-invocation algorithm execution
times and on the time and memory needed to create a complete extended dispatch
table for the library in question.

The cross-product of technique, library and input ordering generates far too
much data to present here. Of the 15 input orderings we analyzed, we present three:
a non-random ordering that is usually best for all techniques and libraries, a non-
random ordering that is the worst of all non-random orderings, and our best
approximation of a natural ordering. Parcplace1 was chosen because it is a large,
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robust, commonly used single-inheritance library. Geode was chosen because it is
even larger than Parcplace1 and it makes extensive use of multiple inheritance with
an average of 2.1 parents per class. In addition both of these libraries were used in
[DH95, DHV95]. Finally, BioTools was chosen because it is a real application with a
real sequence of reflexive environment modifications. It represents one of many
possible natural  orderings, where a natural ordering is one that is typical of what a
real programmer would use. We obtained the natural order from the Smalltalk
change log that records every class and selector defined, in the correct order. Since
the Parcplace and Geode libraries are pre-defined class libraries, we used a completely
random ordering of the classes and selectors instead of a natural ordering.

Table 1 presents some useful statistics for the class libraries, where C  is the
total number of classes, S  is the total number of selectors, M  is the total number of
legitimate class-selector combinations, m  is the total number of defined methods, P
is the average number of parents per class, and B  is the size of the largest complete
behavior, [DH95].

Library C S M m P B
BioTools 4 9 3 4052 11802 5931 1 . 0 1 3 2
Parcplace1 7 7 4 5086 178230 8540 1 . 0 4 0 1
Geode 1318 6549 302709 14194 2 . 1 7 9 5

Table 1 Statistics for various object-oriented environments

Table 2 and Table 3 present the total time and memory requirements for each
of the class libraries from Table 1, for each of the table-based dispatch techniques on
the best, worst and natural input orderings. The framework is implemented in C++,
was compiled with g++ -O2, and executed on a Sparc-Station 20.

Library Order S T I SC RD I C T SCCT
bes t 5 . 7 3 . 5 5 . 7 6 . 7 10.7

BioTools worst 11 .4 7 . 0 10 .9 11 .4 11 .6
n a t u r a l 18 .3 13 .8 20 .2 21 .9 22 .5
bes t 8 . 6 7 . 2 9 . 3 16 .9 18 .3

Parc1 worst 23 .4 30 .5 126.0 37 .2 34 .9
n a t u r a l 24 .2 28 .0 1064.0 73 .2 77 .3
bes t 25 .3 27 .1 133.1 61 .4 68 .4

Geode worst 59 .9 84.3 937.0 125.7 133.4
n a t u r a l 67 .4 75 .7 6032.0 157.7 174.1

Table 2 Timing Results for the DT Framework in seconds

Library Order S T I SC RD I C T SCCT
bes t 10 .6 1 . 2 1 . 0 1 . 3 1 . 0

BioTools worst 11 .3 1 . 2 1 . 2 1 . 3 1 . 0
n a t u r a l 10 .7 1 . 1 1 . 1 1 . 8 1 . 0
bes t 20 .1 2 . 7 2 . 6 1 . 9 1 . 6

Parc1 worst 20 .6 3 . 0 4 . 2 2 . 2 1 . 8
n a t u r a l 20 .1 3 . 1 5 . 6 2 . 6 2 . 1
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bes t 44 .5 8 . 7 7 . 0 4 . 8 4 . 3
Geode worst 44 .8 8 . 9 11 .8 5 . 6 5 . 0

n a t u r a l 44 .3 9 . 0 13 .9 8 . 3 6 . 8

Table 3 Space Requirements for the DT Framework in MBytes

Overall execution time, memory usage and fill-rates for the published non-
incremental versions are provided for comparison. We define fill-rate  as the
percentage of total table entries having user-defined method addresses, including
addresses that indicate inheritance conflicts. Note that for CT, this definition of fill-
rate is misleading, since class-sharing allows many classes to share the same column
in the table. A more accurate measure of fill-rate is possible, but it is not relevant to
this chapter. Therefore, to avoid confusion, we do not describe CT fill-rates here.

In [AR92], the incremental algorithm for SC took 12 minutes on a Sun 3/80
when applied to the Smalltalk-80 Version 2.5 hierarchy. That hierarchy is slightly
smaller than the Smalltalk Parcplace1 library presented in Tables 2 and 3. The DT
Framework, applied to all classes in this library, on a Sun 3/80, took 113 seconds to
complete. No overall memory results were reported in [AR92] (DT uses 2.5 Mb), but
their algorithm had a fill-rate within 3% of optimal (the maximum total number of
selectors understood by one class is a minimum on the number of rows to which SC
can compress the STI table). Using the best input ordering, the DT algorithms have a
fill-rate within 1% of optimal.

In [DH95], non-incremental RD is presented, and the effects of different
implementation strategies on execution time and memory usage are analyzed. Our
current DT implementation of RD is roughly equivalent to the implementation
strategies DIO and SI as described in that paper. Implementing strategies DRO and
MI, which give better fill-rates and performance for static RD, requires complete
knowledge of the environment. Their results were run on a SPARC-station-20/60, and
were 4.3 seconds for Parcplace1, and 9.6 seconds for Geode. Total memory was not
presented, but detailed fill-rates were. They achieved a 99.6% fill-rate for Parcplace1
and 57.9% for Geode (using SI). Using the input ordering that matches their ordering
as closely as possible, our algorithms gave fill-rates of 99.6% and 58.3%. However, fill-
rates for the natural ordering were 32.0% and 20.6% respectively.

In [VH96], non-incremental CT is presented, with timing results given for a
SPARCstation-5. A timing of about 2 seconds for Parcplace1 can be interpolated from
their data, and a memory consumption of 1.5 Mb. Results for Geode were not
possible because Geode uses multiple inheritance. In the DT Framework, we use
selector coloring instead of selector aliasing, which removes the restriction to
languages with single inheritance. On a SPARCstation-5, the DT algorithms run in
21.1 seconds using 1.9 Mb when applied to Parcplace1, and run in 70.5 seconds using
4.8 Mb when applied to Geode

We have also estimated the memory overhead incurred by the incremental
nature of the DT Framework. The data maintained by the Environment , Class  and
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Selector  classes is needed in both static and incremental versions, and only a small
amount of the memory taken by table overhead, so the primary contributor to
incremental overhead is the collection of MethodNode  instances. The total memory
overhead varies with the memory efficiency of the dispatch technique, from a low of
15% for STI, to a high of 50% for RD and SCCT.

5.1 Invocation Costs of the DT Algorithms

Since we are stressing the incremental nature of the DT Framework, the per-
invocation cost of our fundamental algorithms: AddSelector , AddClassLink  and
Inheri tanceManager  are of interest. Rather than reporting the timings for every
recursive call of Inheri tanceManager , we report the sum over all recursive calls from a
single invocation from AddSelector  or AddClassLinks . The per-invocation results for
the Parcplace1  library are representative, so we summarize them here. Furthermore,
SC, ICT and SCCT techniques have similar distributions, so we will present only the
results for SC and RD dispatch. In Parcplace1, algorithm AddSelector  is always called
8540 times, and algorithm AddClassLinks  is called 774 times, but the number of
times ManageInher i tance  is invoked from these routines depends on the input
ordering. Per-invocation timings were obtained using the getrusage()  system call and
taking the sum of system and user time. Note that since Sun 4 machines have a clock
interval of 1/100 seconds, the granularity of the results is 10ms.

For SC dispatch, each algorithm executes in less than 10 ms for more than 95%
of its invocations, for all orderings. The differences only occur for the other 5% of the
invocations. For algorithm AddSelector , the maximum (average) per-invocation times
were 30 ms (0.7 ms) for optimal order, and 120 ms (0.6 ms) for natural order. For
algorithm AddClassLinks , they were 10 ms (0.1 ms) and 4100 ms (27.3 ms), and for
algorithm ManageInheri tance , 30 ms (0.2 ms) and 120 ms (0.25 ms).

The results are similar for RD dispatch. However, the timing variations between
different natural orderings can be as much as 100% (the maximum time is twice the
minimum time). For algorithm AddSelector , maximum (average) per-invocation
times were 80 ms (0.9 ms) for optimal order, and 1970 ms (6.7 ms) for natural order.
For algorithm AddClassLinks , they were 10 ms (0.1 ms) and 52740 ms (12763 ms),
and for algorithm ManageInher i tance , 70 ms (0.2 ms) and 3010 ms (24.5 ms).

5.2 Effects on Dispatch Performance

In [DHV95], the dispatch costs of most of the published dispatch techniques
are presented. The costs are expressed as formulae involving processor-specific
constants like load latency (L ) and branch miss penalty (B ), which vary with the
type of processor being modeled. In this section, we observe how the incremental
nature of our algorithms affects this dispatch speed.

At a particular call-site, the method selector and the class of the receiver object
together uniquely determine which method to invoke. Conceptually, in object-
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oriented languages, each object knows its (dynamic) class, so we can obtain a class
index for a given object. This index, along with the index of the selector (which is
usually known at compile-time), uniquely establishes an entry within a global
dispatch table. In this scheme, we do a fair amount of work to obtain an address: get
the class of the receiver object, access the class index, get the global table, get the
class-specific part of the table (based on class index), and get the appropriate entry
within this subtable (based on selector index).

This dispatch sequence can be improved by making a simple observation: if
each class explicitly stored its portion of the global dispatch table, we could avoid
the need to obtain a class index. In fact, we would no longer need to maintain a class
index at all (the table replaces the index). In languages where the size of the dispatch
table is known at compile-time it is even more efficient to assume that each class is  a
table, rather than assuming that each class contains a table. This avoids an
indirection, since we no longer need to ask for the class of an object, then obtain the
table from the class: we now ask for the class and immediately have access to its
table (which starts at some constant offset from the beginning of the class itself).
Thus, all of the table-based dispatch techniques must do at least the following (they
may also need to do more): 1) get table from receiver object, 2) get method address
from table (based on selector index), 3) call method.

We want to determine how much dispatch performance degrades when using
the DT Framework, with its incremental nature, dynamic growing of tables as
necessary, and the use of extended dispatch tables instead of simple dispatch tables.
Note that during dispatch, indirections may incur a penalty beyond just the
operation itself due to load latency (in pipelined processors, the result of a load
started in cycle i is not available until cycle i+L ). In the analysis of [DHV95], it is
assumed that the load latency, L , is 2. This implies that each extra indirection
incurred by the DTF algorithms will slow down dispatch by at least one cycle (for the
load itself) and by at most L  cycles (if there are not other operations that can be
performed while waiting for the load).

Figure 9 shows a conceptual version of the internal state of the fundamental
DT classes. In Figure 9, rather than showing the layout of all of the Table  subclasses,
we have chosen Extendable2DTable  as a representative instance. The only difference
between this table and the other tables is the nature of the Data  field. This field, like
many other fields in Figure 9, is of type Array , a simple C++ class that represents a
dynamically growable array. The Data  field of the Array  class is a pointer to a
contiguous block of bytes (usually containing indices or pointers to other DT class
instances). Such Arrays  have more space allocated than is actually used (hence the
Alloc  and Size  fields), but this overhead is a necessary part of dynamic growth.

Figure 9 C++ Class Layouts for DT Classes.

In Figure 9, each Class  object also has a Data  field (another growable array),
which in turn points to a block of dynamically allocated memory. Each entry in this
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block is a pointer to a M e t h o d N o d e  instance, which contains a pointer to the method
to execute. Note that in Figure 9, Class  instances are not considered to be  dispatch
tables, but instead contain a growable array representing the class-specific portion of
the global dispatch table.

Given this layout, two extra indirections are incurred during dispatch, one to
get the table from the class, and one to get the method-node from the table. Thus,
dispatch speeds in all table-based techniques will be increased by at most 2 ×  L
cycles. Depending on the branch miss penalty (B ) of the processor in question (the
dominating variable in dispatch costs in [DHV95]), this results in a dispatch slow-
down of between 50% (B=1 ) and 30%(B=6 ) when L=2 .

Given these performance penalties, the DT Framework appears not to be
desirable for use in production systems. However, it is relatively easy to remove both
of the indirections mentioned, one by using a modest amount of additional memory,
and the other by relying on implementations of object-oriented languages that do
not use object-tables. By removing these indirections, the DT Framework has exactly
the same dispatch performance as non-incremental implementations.

We can remove the extra indirection needed to extract the address from the
method-node by using some extra space. As is shown in Figure 10, each table entry is
no longer just a pointer to a MethodNode  instance; it is instead a two-field record
containing both the method address and the M e t h o d N o d e  instance (the address field
within the method-node itself becomes redundant and can be removed). This
slightly decreases the efficiency of incremental modification (it is no longer possible
to change a single MethodNode  address and have it be reflected in multiple table
entries), but optimizing dispatch is more important than optimizing table
maintenance. Furthermore, the amount of inefficiency is minimal, given how quickly
algorithm AddSelector  executes. Finally, the extra space added by effectively doubling
the number of table entries is not necessarily that expensive, especially in techniques
like RD and CT. For example, in RD, the space for the table is about 25% of the total
memory used, so doubling this table space increases the overall space used by 25%.

The other extra indirection exists because in Figure 9, classes contain  tables
instead of being  tables. In the non-incremental world, the size of each class-specific
dispatch table is known at compile-time, so at run-time it is possible to allocate
exactly enough space in each class instance to store its table directly. At first glance,
this does not seem possible in the DT Framework because the incremental addition of
selectors requires that tables (and thus classes) grow dynamically. The reason this is
difficult is because dynamic growth requires new memory to be allocated and data to
be copied. Either we provide an extra indirection, or provide some mechanism for
updating every variable pointing to the original class object, so that it points to the
new class object. Fortunately, this last issue is something that object-oriented
language implementations that do not use object tables already support, so we can
take advantage of the underlying capabilities of the language implementation to
help provide efficient dispatch for the language. For example, in Smalltalk, indexed
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instance variables exist (Array  is an example), which can be grown as needed. We
therefore treat classes as being  tables, rather than containing  tables, and avoid the
second indirection. Figure 10 shows the object, class and table layouts that allow the
DT Framework to operate without incurring penalties during dispatch.

Figure 10 Improved Table Layout to Optimize Dispatch.

6 Related and Future Work

This section discusses work that is related to the research discussed in this
chapter and describes the future directions for the DT Framework.

6.1 Related Work

[DHV95] presents an analysis of the various dispatch techniques and indicates
that in most cases, IC and PIC are more efficient than STI, SC and RD, especially on
highly pipelined processors, because IC and PIC do not cause pipeline stalls that the
table indirections of STI, SC and RD cause. However, even if the primary dispatch
technique is IC or PIC, it may still be useful to maintain a dispatch table for cases
were a miss occurs, as a much faster alternative to using ML (method lookup) or LC
(global cache) and ML together. Especially in reflexive languages with substantial
multiple inheritance, ML is extremely inefficient, since each inheritance path must be
searched (to detect inheritance conflicts).

[DGC95] discusses static class hierarchy analysis and its utility in optimizing
object-oriented programs. They introduce an applies-to  set representing the set of
classes that share the same method for a particular selector. These sets are
represented by our concept of dependent classes. Since each method-node implicitly
maintains its set of dependent classes, the DT algorithms have access to such sets,
and to the compile-time optimizations provided by them.

[AR92] presents an incremental approach to selector coloring. However, the
algorithm proposed often performs redundant work by checking the validity of
selector colors each time a new selector is added. The DT algorithms demonstrates
how to perform selector color determination only when absolutely necessary (i.e.
only when a selector color conflict occurs), and has applied this technique to a
variety of table-based approaches. [DH95] presents selector-based row displacement
(RD) and discusses how to obtain optimal compression results. [VH96] presents the
compact selector indexed table (CT), expanding on previous work in [VH94].

Predicate classes, as implemented in Cecil [Ch93], allow a class to change its set
of superclasses, at run-time. The DT Framework provides an efficient mechanism for
implementing predicate classes using table-based dispatch.

Another framework that is used to implement a programming language is
[AGL96] which produces optimizing re-targetable compilers for ANSII C.



27

6.2 Future Work

The DT Framework provides a general description of all work that needs to be
performed to handle inheritance management and method dispatch in reflexive,
non-statically typed, single-receiver languages with multiple inheritance. A variety of
extensions are possible.

First, the framework as presented handles methods, but not internal state. A
mechanism to incrementally modify object layout is a logical, and necessary,
extension. Second, multi-method languages such as Tigukat [Tig95], Cecil [Ch92] and
CLOS [BDG+88] have the ability to dispatch a method based not only on the
dynamic type of a receiver, but also on the dynamic types of all arguments to the
selector. Multi-methods extend the expressive power of a language, but efficient
method dispatch and inheritance management is an even more difficult issue in
such languages. Extending the DT Framework to handle multi-method dispatch is
part of our continued research in this area. Third, the framework currently assumes
that inheriting the interface of parents classes implies that the implementation
associated with the interface is inherited also. A more general mechanism for
inheritance management that separates these concepts is desirable. We are using the
DT Framework to implement all three of these concepts in Tigukat [Tig95], an object-
oriented database language with massive schema-evolution (reflexivity), multi-
method dispatch, multiple implementation types, and many other extensions to the
object-oriented paradigm.

Fourth, although the DT Framework provides a general mechanism for
handling table-based method dispatch, it is really only one component of a much
larger framework that handles all method dispatch techniques. The DT Framework
can be extended so that framework clients call interface algorithms each time a call-
site is encountered, similar to the manner in which the environment is currently
called, when class and selector definitions are encountered. This would extend the
DT Framework to encompass caching techniques as well as table-based techniques.

Fifth, the DT Framework allows various compression techniques, like selector
aliasing, selector coloring, and class sharing, to be analyzed both in isolation, and in
interaction with one another. More research about how these techniques interact,
and about how SCCT dispatch can be optimized, is necessary.

7 Conclusion

We have presented a framework that is usable by both compilers and run-time
systems to provide table-based method dispatch, inheritance conflict detection, and
compile-time method determination. The framework relies on a set of technique
independent algorithms for environment modification, which call technique-
dependent algorithms to perform fundamental operations like table access and index
determination. The framework unifies all table-based method dispatch techniques
into a cohesive whole, allowing a language implementor to change between
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techniques by changing the manner in which the DT Environment is instantiated.
Incremental versions of all table-based techniques except VTBL have been
implemented, all of which have low milli-second per-invocation execution times.

The framework provides a variety of new capabilities. The various table-based
dispatch techniques have different dispatch execution times and memory
requirements. Since the framework allows any table-based dispatch technique to be
used, a particular application can be optimized for either space or dispatch
performance. Furthermore, the DT Framework allows table-based dispatch techniques
to be used in reflexive languages. In the past, reflexive languages necessitated the use
of a non-table-based technique. One reason that C++ uses virtual function tables is
that they allow for separate compilation, unlike other table-based dispatch
techniques. The DT Framework now allows all table-based dispatch techniques to
work with separate compilation. Finally, the framework introduces a new level of
software verification in reflexive languages by allowing inheritance conflicts to be
detected immediately when they occur, rather than during dispatch.

The framework has been used to merge SC and CT method dispatch into a
hybrid dispatch technique with the advantages of both. The CT dispatch technique
is limited by its restriction to single-inheritance. By replacing selector aliasing by
selector coloring, we obtain a dispatch technique that works with multiple
inheritance and that benefits from the class sharing made possible by CT class
partitioning. Furthermore, SCCT dispatch provides better compression because the
conflict table can be colored, unlike in CT dispatch, where it remains uncompressed.

The DT Framework currently consists of 36 classes, 208 selectors, 494 methods,
and 1081 meaningful class/selector pairs. When the DT Framework is applied to a
completely random ordering of itself, a SCCT-based dispatch table is generated in
0.436 seconds. Since compiling the framework requires 390 seconds, even the slowest
dispatch technique and input ordering produce a dispatch table in a negligible
amount of time, relative to overall compilation time. The framework is available at
f tp : / / f tp .cs .ua lber ta . ca /pub /Dt f .
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Glossary

cache-based dispatch technique  - A technique that first looks in a cache to
see if a method for a given class/selector pair has already been computed. If not,
some cache-miss algorithm is used for dispatch and the resulting information is
cached for later use. Caches may be global (LC) or call-site specific (IC and PIC).

complete behavior  - The set of all methods understood by a particular class.

defining class - The class in a method-node that contains the native method
definition for a selector.
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dependent classes  - The set of classes that inherit a particular native definition
from a defining class, together with the defining class itself.

dispatch  is  the run-time process of determining the address of the function code
to execute for a given function name and receiver type.

dynamic type - The actual type (class) of an object at run-time. This may differ
from the static type of a variable that is bound to the object.

IC (inline caching) - A cache-based dispatch technique in which a single
method address is stored at a call site and guarded by a check for the correct
dynamic type of the receiver. If the check fails, a cache-miss technique is used to
obtain the correct method address and it is inserted at the call site.

inheritance conflict - If a class inherits two different methods for the same
selector from two different parent classes an inheritance conflict occurs. This is only
possible if a language supports multiple inheritance.

inheritance management  - The propogation of method definitions to sub-
classes that do not contain native definitions for those methods and the detection of
inheritance conflicts that arise.

method dispatch  - The run-time determination of a correct method address for
a given selector and receiver object, based on the dynamic type (not static type) of
that receiver.

m e t h o d - n o d e  - A data structure that represents a set of classes that all use the
same native method definition. The method-node does not store this set of classes,
but can compute the set from its defining class, selector and the extended dispatch
table that contains the method-node. The method-nodes for each selector form an
induced sub-graph of the inheritance graph in which the nodes are the de f in ing
classes  for that selector.

non-reflexive language - A language which is not ref lexive .

non-statically typed language - A language that does not require  variables
and method returns to be statically typed.

PIC - Polymorphic Inline Caching - A cache-based dispatch technique in
which each call site invokes a special stub routine that contains the method
addresses of all previously invoked methods. If the correct method is not already
cached then a cache-miss technique is used to obtain the correct method address
and the stub dynamically grows.

reflexive language - A language in which methods or new classes can be defined
at run-time. For example, Smalltalk is fully reflexive,  Java is partially reflexive and
C++ is not reflexive.

se lector  - The signature of a method.

static type - The type of a variable or return type as specified by a declaration
in the language.
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table-based dispatch technique  - A technique that pre-computes the
appropriate method address for each class/selector pair and stores them in a table so
that at dispatch-time only a single table-lookup is necessary to obtain the correct
address .


