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Abstract We propose an indexing technique for the
fast retrieval of objects in 2D images based on similar-
ity between their boundary shapes. Our technique is ro-
bust in the presence of noise and supports several im-
portant notions of similarity including optimal matches
irrespective of variations in orientation and/or position.
Our method can also handle size-invariant matches us-
ing a normalization technique, although optimality is not
guaranteed here. We implemented our method and per-
formed experiments on real (hand-written digits) data.
Our experimental results showed the superiority of our
method compared to search based on sequential scan-
ning, which is the only obvious competitor. The perfor-
mance gain of our method increases with any increase in
the number or the size of shapes.

1 Introduction

There is an increasing interest in storing and retriev-
ing non-textual objects in databases. For example, this
kind of data can be stored in the form of extenders in
DB2, DataBlades in Informix and cartridges in Oracle.
Non-textual objects are frequently in the form of im-
ages or shapes. In cases where the key information for
description or classification of an object can be found
in its boundary, it is natural to store only the bound-
ary and do retrieval based on that. Among the areas of
applications for boundary shape matching are industrial
inspection, object recognition in satellite images, charac-
ter recognition, classification of chromosomes and target
recognition.
For example, consider the following query:

Query 1 Find all shapes similar to a given shape.

A basic question here is how we judge whether two
shapes (for example the two shown in Figure 1) are sim-
ilar. There is a large body of work in the area of pattern

recognition and computer vision on extracting bound-
ary features of a shape and doing shape matching based
on those features. The boundary of an object can be
described in terms of simple descriptors such as length,
diameter and curvature ([MM86]), chain codes ([BG80,
Bri81]), Fourier descriptors ([PF77,ZR72]) or moments
([BSA91]). Among these features, we use Fourier de-
scriptors as our shape features. Theoretical and exper-
imental evidence in favor of Fourier descriptors can be
found in the literature [PF77,KSP95].

Fig. 1 Two shape boundaries both representing character
9.

Similar shapes often have differences in size and ori-
entation. For example, consider the two shapes shown in
Figure 1. The Fuclidean distance between their Fourier
descriptors is 22.88. If we rotate the shape on the right
by 30° in the clockwise (cw) direction, the Euclidean dis-
tance between their Fourier descriptors drops to zero. A
simple approach to remove differences due to shifting,
scaling and rotation is to normalize Fourier descriptors
before storing them in a database. However, there are
still two problems with normalization. First, normaliza-
tion is not guaranteed to minimize the distance between
two arbitrary shapes. Second, normalization is not al-
ways desirable; for example, the shapes ‘9’ and ‘6’ should



not be treated as similar if we are doing character recog-
nition. A solution is to rewrite the query as follows:

Query 2 Find all shapes that become similar to a given
shape after being rotated by 6 € [—30°,30°].

If our shape collection includes, for example, shapes of
airplanes, we may write our query instead as follows:

Query 3 Find all shapes similar to a given shape irre-
spective of rotation.

In this paper, we study the issue of efficiently pro-
cessing these queries. We show how to organize Fourier
descriptors in a multidimensional index, and how to effi-
ciently use the index in processing a broad range of sim-
ilarity queries. Our goal is to develop an access method
that can handle shapes of various sizes and orientations,
is much faster than sequential scanning, and does not
miss any qualifying data objects in the answers (false
positives are acceptable if they can be eliminated in a
post-processing step without much performance degra-
dation).

The organization of the rest of the paper is as fol-
lows. Section 2 provides some background material on
related work, shape representation using Fourier descrip-
tors and shape matching. In Section 3, we propose our
technique for indexing shapes and processing similarity
queries. Section 4 presents experimental results. We con-
clude in Section 5.

2 Background
2.1 Related Work

The following relevant methods for multidimensional in-
dexing and search have been proposed:

Jagadish [Jag91] proposes a technique for storing and
retrieving shape descriptions in a multidimensional in-
dex. He maps shapes into their constituent rectangles,
keeps a few larger rectangles in a multidimensional in-
dex, and uses the area difference between the constituent
rectangles of shapes as a measure of similarity. Due to
a normalization process, the shape description is invari-
ant under translation and scaling. A problem with this
approach is that a shape can be normally covered by
multiple sets of rectangles. This can lead to ambiguity
or storing multiple representations of the same shape.
Furthermore, it is not possible to do matching in the
presence of rotation; for example, two identical shapes
may not match if one is rotated by 45°.

Mehrotra and Gary [MG93] decompose a shape into
several components and use fixed-sized segments of each
component as the shape features. Based on a normal-
ization process, the shape description is made invariant
under translation, scaling and rotation. A problem with
this approach is that since a shape is broken down into
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pieces, the overall shape of the boundary is lost. In addi-
tion, each shape is described in terms of multiple feature
vectors, and this introduces extra overhead during inser-
tions and retrievals.

Berchtold et al. [BKK97] study the issue of storing
polygons so that they can be retrieved based on par-
tial similarity matches. They extract almost all possible
boundary segments of polygons, transform each segment
into a sequence of slope changes, and map the resulting
sequences into their first few Fourier coefficients. Thus,
each polygon is represented using a set of feature points,
and the minimum bounding rectangle of these points for
each polygon is stored in a multidimensional index. Due
to a normalization, the shape representation is invariant
to translation, scaling and rotation, but it is not invari-
ant to starting point. This problem is handled by storing
multiple descriptions of a polygon, each associated to a
starting point. Again, representing a polygon in terms of
multiple points introduces extra overhead during inser-
tions and retrievals.

The QBIC (Query By Image Content) system [FBF+94]
contains a component, for approximate shape matching.
The system keeps a 20-dimensional feature vector to de-
scribe the shape of every object identified in an image.
Features, for example, include the area and the circular-
ity, i.e. whether the object is circular or not. To allow
fast retrieval, it is suggested to transform feature vectors
using the Karhunen Loeve (KL) transform and keep a
few important features (those associated with the few
largest eigenvalues) in a multidimensional index. How-
ever, the choice of proper features and their weighting
for each application is not an easy task. Some features
are abstract quantities which may not easily fit in a dis-
tance function computation. In addition, the use of the
KL transform makes the multidimensional index rather
static.

The aforementioned methods are less general than
ours because the notion of similarity is fixed before query
evaluation; this notion cannot be changed unless a new
index structure is created. Our method, instead, pro-
vides a set of transformations to express the notion of
similarity in a query; yet, the resulting queries are eval-
uated using the same index, without prior knowledge of
the specific transformations used. Therefore we have not
compared the performance of our method with theirs,
but with sequential scanning instead.

Related work on time series data includes the work
of Agrawal et al. [AFS93] on using the discrete Fourier
transform for retrieving similar time series and exten-
sions and improvements over this approach [GK95,RM97,
RMOQ0]. Similar to our framework, Goldin and Kanellakis
[GK95] show that the similarity retrieval will be roughly
invariant to simple translations and scales if sequences
are normalized before being stored in the index. The au-
thors store in the index both the translation and the
scale factors, in addition to normalized sequences, and
also allow those factors to be queried using range predi-
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Fig. 2 A boundary and its representation as a complex se-
quence.

cates (see Goldin’s Ph.D. thesis [Gol97] for implementa-
tion details).

A general framework for composing similarity queries
is proposed by Jagadish, Mendelzon and Milo [JMM95].
Our work here can be seen as a special case of this frame-
work over shapes. Our shape matching can also be in-
corporated within a multimedia query language such as
MOQL [LOSO97] where multiple features of images are
simultaneously queried.

2.2 Shape Representation Using Fourier Descriptors

Given the figure of an object in the complex plane, its
boundary can be traced producing a one-dimensional
complex function b; of time. For example a point moving
along the boundary shown in Figure 2 generates complex
function by = = + jy, for t = 0,...,N — 1 which is pe-
riodic with period N. That is, the x axis of the figure is
treated as the real axis and the y axis as the imaginary
axis of a sequence of complex numbers. Further infor-
mation on tracing the boundary of a shape and possible
alternatives in representing it can be found in any im-
age processing textbook such as Gonzalez and Woods
[GW92].

It should be noted that the description is solely based
on the shape of the boundary; objects can still have
holes in them, but this is not reflected in the description.
Given a boundary function b, its Fourier transform can
be written as

= 21rt
B; = f Z b~ (1)
where f € {|(N-1)/2],...,0,...,[(N—=1)/2]} and j =
v/—1 is the imaginary unit. The coefficients By, B+1, ...,
called Fourier descriptors, describe the shape of the ob-
ject in the frequency domain. The transformation is loss-
less since the energy in the frequency domain is the same
as the energy in the spatial domain (due to Parseval’s
theorem) and also the inverse Fourier transform gives
the original boundary function.

2.3 Shape Matching Using Fourier Descriptors

Consider two boundary functions b; = z; + jy; and
b, = z} + jy; (for t = 0,...,N — 1). A typical mea-
sure of similarity between the two boundaries is the Fu-
clidean distance, which corresponds to mean-square error
and which is also directly related to the cross-correlation
[Raf98].

N-1

2(b,b) = 3 [b — b2 (2)

t=0

However, the distance computation becomes ambiguous
if the two boundaries have different numbers of samples.
A solution to avoid this problem is to find the Fourier
descriptors B and B’ respectively for b and b’ and use a
fixed number of lower frequency descriptors (say, 2M +1)
to compute the Euclidean distance, i.e.

M

> |Bs = Bj. 3)

f=—M

D?(B,B’) =

3 Our Proposal

The general overview of the proposed method is as fol-
lows:

1. Obtain the Fourier descriptors of every shape bound-
ary in the database.

2. Compute a fingerprint for every shape, as discussed
in Section 3.1, and build a multidimensional index
using the fingerprints. Each fingerprint is stored as a
point in the multidimensional index.

3. For basic similarity queries (prozimity, nearest neigh-
bours and all-pairs), use the index to retrieve can-
didate shapes. The qualifying shapes are identified
after retrieving their full database records and ex-
amining them.

4. For queries that use transformations in their expres-
sions of similarities, if necessary, apply the transfor-
mations to the index, as discussed in Section 3.4, and
retrieve candidate shapes. The full database record
of every candidate shape is examined to find out if it
qualifies.

We use Fourier descriptors as our shape features.
Given a set of shape boundaries, for each boundary b we
find its Fourier transform and retain only a fixed num-
ber of lower frequency descriptors. This number, which
we denote by 2M + 1, can be chosen, for example to
be the average length of a boundary in the spatial do-
main. If the number of Fourier descriptors happens to
be less than 2M + 1, we store zero for higher frequency
descriptors.



3.1 Computing a Fingerprint

To aid in the retrievals that we intend to perform, we
apply a few transformations to the descriptors, rather
than storing them directly. First, we set By to 0. By
is the only descriptor that carries information about the
shape location. This setting minimizes the distance func-
tion (Eq. 3) with respect to translation. Next, the scale
normalization is achieved by dividing every coefficient
By by the amplitude of B;, often called the fundamen-
tal frequency. | B;| turns out to be the largest amplitude
when the boundary is traced in the counter-clockwise
(ccw) direction and the boundary does not cross itself
[WW80]. After the normalization, By is 0, so we do not
need to store it. Instead, we store the original value of
By before the normalization. It should be noted that the
real and the imaginary parts of the initial value of By
represent the shift factors respectively along the X and
the Y coordinates; the amplitude of the initial value of
B represents the scale factor. To totally get rid of By,
which already has an amplitude of 1 for all shapes, we do
an additional normalization. We shift the starting point
such that the phase of By becomes zero.

Definition 1 Given the Fourier descriptors B_yy,. ..,
By of a shape, denote the real part of By by sh,, the
imaginary part of By by shy, the amplitude of By by
sc and the phase of By by p. The shape description is
defined as the sequence

(shw,shy,sc, 5_1,52, 5_2,53, 5_3, .- .,SM, S_M) (4)

where S; = ((B; — (shy + shyj))/sc) x e i (a complex
number) for i = —1,+£2,+3,....

The Euclidean distance between two shape descriptions,
irrespective of variations in location and size, can be
computed as follows:

D*(8,S8') = %

f=—M.j#0,1

S5 — 312 (5)

Such a description is still sensitive to changes in ori-
entation and starting point of the tracing. We can as-
sume that every data or query shape has a fixed starting
point, if we encode its boundary using the same tracing
algorithm and perform the same normalization. For ex-
ample, a tracing algorithm may always start from the
top right corner of a shape and trace it in the ccw di-
rection. In this way, the starting point for two identical
shapes will always be the same. Two similar shapes may
still have small variations in their starting points, but
those variations can be easily resolved by allowing some
variations in starting points. This is discussed in Sec-
tion 3.4.3.

There are sophisticated techniques to do phase nor-
malization [PF77, WW80]. For example, Wallace et al.
[WW80] suggest making the phases of the two coeffi-
cients of largest amplitude equal to zero. This is believed
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to shift the starting point over the axis of symmetry and
also rotate the axis of symmetry such that it coincides
with the real axis. However, it should be noted that none
of these techniques are perfect in the sense that a shape
can have two or more different phase normalizations,
each as good as the others; or equivalently, two fairly
similar shapes may have descriptors which are far from
each other.

For the purpose of indexing, important features of
the description need to be identified and placed in the
fingerprint. First, changing the orientation or the start-
ing point of a boundary only affects the phases of de-
scriptors. To insulate the index from such changes, the
information about the phases of descriptors is not stored
in a fingerprint. Second, as is shown in Figure 3, the
lower frequency descriptors contain information about
the general shape, and the higher frequency descrip-
tors contain information about smaller details. There are
strong reasons to believe that for a large class of bound-
ary functions, the lower frequency descriptors contain
most of the energy. For example, for continuous piece-
wise smooth functions, the amplitude spectrum |S¢| de-
creases at a rate proportional to f~2? [RH74, Page 373].
Thus we can define a fingerprint of a shape as follows:

Definition 2 Given a shape description (shy, shy, sc,S_1,
Sa2,8_2,...,Sm,S_n), the fingerprint of the shape is
defined as (Shw7$hy7 s¢, |S—1|7 |SQ|7 |S—2|7 ) |Sk|> |S—k|)
where k (< M ) is the cut-off frequency.

Next we show the completeness of the feature extrac-
tion.

3.2 Using Fingerprints for Indexing

The completeness of the indexing method is based on
the following lemma:

Lemma 1 The use of a fingerprint, in place of a full
shape description for shape matching always returns a
superset of the answer set.

Proof: For every pair of boundaries S and S’ of length
2M + 1 and for every k < M, we have

M k

oo S-S >

f=—M,f#0,1 f==Fk,f7#0,1

IS¢ = 1S71I* (6)

This is due to the fact that for every term |[Sy|—|S%||
in the right side of the inequality, there is a term | Sy —S%|
in the left side and |Sy — S} > [|Sy[ — [S}l. O

Thus, storing the fingerprints of shapes in the index
does not affect the correctness since the index returns
a superset of the answer set. Furthermore, the distance
function on the right side of Equation 6 is invariant to
changes in the starting point of the boundary and rota-
tion.
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Fig. 3 Example of reconstructions from Fourier descriptors.

However, the index will not be effective if the choice
of k results in a large number of false hits or high in-
dex dimensionality (the curse of dimensionality). Our
experiments in Section 4.2 show that the value of k can
be chosen as low as 2 which results in storing 5 Fourier
amplitudes in the index.

There are a large number of multidimensional data
structures which can be used for indexing (see the sur-
vey by Gaede and Giinther [GG98] for details). We use
the R*-tree as it is expected to work well for up to 20
dimensions and the length of a fingerprint is expected to
be less than 20.

3.8 Basic Similarity Queries

Within this section, we assume that the shapes being
compared have the correct sizes, positions and orien-
tations. Such a match can also be useful, for example
before insertions, to prevent storing two replicas of the
same image. We consider the three basic similarity queries
over a shape database: (a) proximity query !, (b) all-
pairs query and (c) nearest-neighbours query.

In a proximity query, we are given a query shape
and a threshold €, and we would like to find all database
shapes that are within distance € of the query shape. To
perform a proximity query, both the shape description
and its fingerprint are computed as described in Sec-
tion 3.1, in the same way as each data shape has been.
The fingerprint is then used as a search key into the
shape index, to retrieve all data shapes that are located
in its proximity. Note that the index retrieves a superset
of the answer set since it only keeps the fingerprints of
shape descriptions. The actual result is obtained in an

! This is often referred to as a range query as well [AFS93,
LIF94].

4 descriptors are used

N

10 descriptors are used

6 descriptors are used

N

12 descriptors are used

n

additional step where the Euclidean distance between
the full database record of every matching shape and
the query shape is computed.

In an all-pairs query, we are given two data sets and a
threshold €, and we want to find all pairs of shapes such
that one shape is within distance € of the other. To per-
form an all-pairs query, we do a spatial join between the
corresponding indices of the two data sets. This is fol-
lowed by an additional step where the Euclidean distance
between the full database records of matching shapes are
computed.

In a nearest-neighbours query, we are given a query
shape, and we wish to find data shapes which are the
closests to the query shape in distance. To perform a
nearest-neighbours query, both the shape description and
its fingerprint are computed (as discussed in Section 3.1),
and the fingerprint is used as a search key over the in-
dex. Since the index employs the distance between fin-
gerprints for its pruning and this distance is an underes-
timate of the real distance between descriptions, a near-
est neighbour identified through searching the index may
not be the real nearest neighbour. For example, of the
two shapes a and b, a could be the closest to the query
shape based on the distance between full descriptions,
but the index will return b if b is the closest based on
the distance between fingerprints.

To fix the problem, we pick the nearest neighbour(s)
identified through the index and compute the distances
between full descriptions of the retrieved shapes and the
query shape. If we denote the minimum distance over
all retrieved shapes with €, the distance from the real
nearest neighbours cannot be greater than e; otherwise
the shapes identified through the index are the nearest
neighbours. The full algorithm is as follows:

Algorithm 1 :



1. Using a nearest-neighbours search algorithm (such as
[RKV95]), retrieve the nearest neighbour(s) from the
index.

2. For every candidate returned in step 1, retrieve its
full database record and compute its real distance
from the query shape. Let NN be the set of all data
shapes at the minimum real distances from the query
shape; let € be this minimum distance.

3. Using € as an initial threshold, pose an incremental
proximity query to the index (results are returned
one at a time and the threshold e can be tightened
during the process).

4. Get the next data shape within distance e of the
query shape. If the distance between the data shape
and the query shape is less than e, then set NN to
be the new data shape and € to be the new distance;
if the distance between the new data shape and the
query shape is €, then add the new data shape to NN.
Repeat this step until there are no more qualifying
data shapes.

Algorithm 1 is a refinement of the nearest-neighbours
algorithm given by Korn et al. [KSF*96]. The refinement
is in the form of tightening the proximity query threshold
in Step 4 as more data shapes are retrieved. There is
another incremental refinement of the same algorithm,
proposed by Seidl and Kriegel [SK98], which can also be
used.

3.4 Queries with Transformations

A natural way of doing shape matching is to remove
certain differences before running a comparison. We can
think of this process as applying certain transformations
to images before doing a matching. We consider the fol-
lowing four kinds of transformations.

1. Shifting and scaling

2. Rotation

3. Change of starting point
4. Smoothing

In this section, we center our discussion on proximity
queries, but the same techniques are applicable to nearest-
neighbours and all-pairs queries.

Transformations 1 to 3 can be supported in a multidi-
mensional index by providing a function that computes
the distance between a data shape and a query shape;
transformations can be applied to shape descriptions in-
side the function. Transformation 4 can be supported
by registering an additional function that checks if an
index entry overlaps with a query entry. The transfor-
mation can then be applied to either the index entry or
the query entry (or both) before checking for an over-
lap. Most multidimensional index structures allow users
to define such a function.
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The next four subsections respectively discuss the
evaluations of queries that use individual transforma-
tions 1 to 4 in their expressions of similarities. More
details on evaluating queries that use a combination of
transformations in their expressions of similarities can
be found elsewhere [RMO00].

3.4.1 Match with Shifting or Scaling In many cases we
do not care about the position of a shape within a coor-
dinate system or about its size for matching purposes.

To match with shifting or scaling, a fingerprint is
computed for the query shape, as described in Section 3.1,
and this fingerprint is used as a search key for the index.
If we are interested in a match invariant under shift-
ing, we simply discard the shift factor of the query point
and permit any value for the shift factor. Similarly, for
scaling-invariant matching, we discard the scale factor
of the query point and permit any value for the scale
factor.

3.4.2 Match with Rotation We often wish to match shapes
irrespective of small variations in orientation. For ex-
ample, the two shapes shown in Figure 1 make a per-
fect match, if one shape is rotated by 30°. To achieve
this, we state in our query the range of the rotation we
wish to perform before doing a shape matching. Query 2,
for instance, retrieves all database shapes that match a
given query shape after one shape is being rotated by
0 € [-30°,30°].

Sometimes, we would like to do matching totally in-
variant to rotation. For example, we may not care about
the orientation at all if we are doing airplane recognition.
This can be accomplished by simply allowing a rotation
of # € [-180°,180°] before matching.

To perform a match with rotation, a fingerprint is
computed for the query shape and is used as a search
key to the index. The search key is used to retrieve all
candidates from the index. These candidates include all
data points that match the query point irrespective of
rotation factor. They also include false positives, i.e. data
points that are not in the proximity of the query point
for any rotation factor. To discard false positives, we
need to retrieve the full database record of every candi-
date and check whether it actually falls in the proximity
(say within distance €) of the query shape after being
rotated by some 6 € [61,62]. On the other hand, rotat-
ing a shape boundary by 8 is equivalent to multiplying
every descriptor Sy by e/?. We can thus rewrite Eq. 5 to
make it reflect the rotation.

D?(8,8') = %

f=—M,f#0,1

Sy — .85 (7)

Lemma 2 The minimum and the mazimum of Eq. 7
take place at 8 = arctan(—X/Y) + c.wr where ¢ is an
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integer, X =) pgsingy, Y =3 prcosyy and S}.5; =
psel¥s (x denotes the complex conjugation ? ).

Since we are interested in the minimum of Eq. 7
when 0 € [01,602] and —7 < 61,65 < m, the minimum
must take place either at an endpoint (i.e. 6; or 6;) or
any point 8 € {arctan(—A/B) — m,arctan(—A/B) + m,
arctan(—A/B)} which is inside the region. It is straight-
forward to compute the distance function for these values
and find out the optimal rotation factor that results in
the minimum distance.

3.4.8 Match with Changing Starting Point When we
compare two boundaries, we do not care about their
starting points. If we use the same tracing algorithm for
every boundary, there cannot be large variations in the
starting point (though small variations are still possible).
However, we may not have much control over the tracing
algorithm, and as a result two similar shapes may have
different starting points; or even if we use the same trac-
ing algorithm for all boundaries, we may want to remove
small variations (if any) before doing a comparison.
Shifting the starting point of a boundary by o 2 is
equivalent to multiplying every descriptor Sy by e//@.
This operation, similar to rotation, only affects the phases
of Fourier descriptors. Thus, we can still use the index
to retrieve all candidates. To discard false positives, we
need to retrieve the full database record of every candi-
date and check whether it still qualifies after the starting
point is being shifted by some a € [a1, az]. We can again
rewrite Eq. 5 to make it reflect the shift in starting point.

D2(8,8") = f:

f=—M,f#0,1

Sy —efeSi2 (8)

The optimal value for a can be obtained by equating the
derivative of the above equation to zero and finding the
roots. This can be done using numerical techniques up
to the machine precision [PTVF92].

3.4.4 Match with Smoothing Occasionally, we wish to
do matching based on overall shape, irrespective of small
variations in details and noise. In such cases, we would
like to smooth out sharp edges and small variations be-
fore doing the comparison. To achieve this, we can ap-
ply a moving average transformation to shape bound-
aries. When an lpoint moving average is applied to a
boundary, every point is replaced with the average of
its [ surrounding points. On the other hand, applying
a moving average to a boundary in the spatial domain
corresponds to a vector multiplication in the frequency
domain. For example, to apply a 2-point moving average

2 The complex conjugate of z = = + yj is defined as 2* =
T —yj.

3 For example, a = 2mwso/N for a boundary of length N
means shifting its starting point by so points in ccw direction.

to a boundary with 10 points, we can equivalently mul-
tiply its Fourier descriptors by the Fourier transform of
vector mz = (3,1,0,0,0,0,0,0,0,0). This gives us the
Fourier descriptors of the smoothed boundary.

A distinguishing feature of smoothing, compared to
other transformations discussed in this paper, is that its
effect on a shape depends on the characteristics of the
shape. This is unlike rotation, for instance, where the
effect of rotating a data shape by 6 before a comparison
is the same as that of rotating the query shape by —6.

Given a query shape and a desired moving average for
smoothing, the matching can be performed as follows:

1. Find the Fourier transform of the desired moving av-
erage (as demonstrated for 2-point moving average);
let us denote this by M.

2. Transforming the query shape: Apply the transforma-
tion to the query shape description (shg, shy, sc, Q)
by replacing Q with Q' where Q; = Q; * M; for
i=-1,-2,2,...,—k k.

3. Construct a search key by computing the fingerprint
of the new shape description.

4. Transforming the index: Apply M to data entries
stored in the index before checking for an overlap
between a data entry and the search key; this is done
inside the function that checks if a data entry from
the index overlaps the search key.

5. For every candidate, retrieve its full database record,
apply M to it and check if the resulting shape falls
in the proximity of Q’.

The transformation can be applied to the index on the
fly as the index is being traversed. The issue of on-the-fly
applying single or multiple transformations to an index is
studied in the domain of time series data [RM97,RMO00].
The same techniques can be applied to the domain of
shapes.

4 Experiments

To determine the effectiveness of our proposed technique,
we implemented our method and ran experiments on a
dataset of 11,000 real hand-written digits. The data was
obtained from the CEDAR CDROM dataset, which was
gathered from scanned ZIP codes at the Buffalo Post Of-
fice [Hul94]. For every digit, the dataset held 1,100 im-
ages. Each image was originally in the form of a 16x16
gray-scale image which was converted into a binary im-
age (by thresholding) and was traced to identify a shape
boundary. Then, the boundary was encoded using 30
lower Fourier descriptors. For boundaries with length
less than 30, zero was padded at the end. For each shape,
both its description and its fingerprint are computed, as
outlined in Section 3.1, and used for the purpose of in-
dexing. As our index, we used Norbert Beckmann’s im-
plementation of the R*-tree [BKSS90]. For the nearest-
neighbours search, we implemented the algorithm de-



veloped by Roussopoulos et al. [RKV95] as part of Al-
gorithm 1 over R*-tree. We stored 10,000 shapes (1,000
samples of each digit) in the index and used the 1,000 re-
maining samples as queries. We ran each query 10 times
and averaged the execution times from these runs. All
our experiments were conducted on a 168MHZ Ultra-
sparc station.
We investigated the following questions:

— How effective and practical is our technique in clas-
sifying shapes in a real data domain?

— How many Fourier coefficients should we store in the
index? Storing larger number of coeflicients reduces
the number of false positives but increases the index
dimensionality, and as a result the search time.

— How does our technique compare to sequential scan-
ning?

4.1 Shape Classification

To verify the effectiveness of our proposed technique in
classifying shapes, we tried to classify all 1,000 query
shapes by assigning every query shape to the class of
its nearest neighbours. When there was more than one
nearest neighbours for a shape, we picked one randomly.
The result was interesting: 96.4% of shapes were clas-
sified correctly. Some of those query shapes are shown,
in their gray scale and binary representation, in the two
top rows of Figure 4 along with their nearest neighbours
shown in the two bottom rows of the same figure. As is
shown, query shapes shown in Figs. 4a to 4h are classi-
fied correctly with their Euclidean distances from their
nearest neighbours varying from 0 to 0.40. The query
shape shown in Fig. 47 is not classified correctly, but
its binary representation looks quite similar to that of
its nearest neighbour. The query shape shown in Fig. 4j
looks different from its nearest neighbour, though their
boundaries still look similar.

In another experiment, we used Query 2 and tried
to identify for each query shape its nearest neighbour
irrespective of a rotation factor § € [—30°,30°]. This
did not change the overall classification rate, i.e. only
96.4% of shapes were classified correctly. However, al-
lowing a rotation factor in general did retrieve better
matches. Figure 5 shows six query shapes (in the top
two rows), their original nearest neighbours (in the mid-
dle two rows) and their optimal nearest neighbours (in
the bottom two rows) when the rotation factor varied
from —30° to 30°. As is shown, for example rotating the
data shape shown at the bottom of Fig. 5a by 11° in
the ccw direction reduces its Euclidean distance from
the query shape to 0.30; this is less than the Euclidean
distance between the same query shape and its origi-
nal nearest neighbour. Table 1 summarizes the effect of
various rotations in correctly classifying shapes. As is
shown, applying a small rotation (8 € [—10,10]) to data
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Rotation factor | Fraction of query shapes

0 e classified correctly (%)
[0,0] 96.4%

[-10, 10] 96.5%

[—20, 20] 96.4%

[—30,30] 96.4%

[—40, 40] 96.3%

[—50, 50] 96.3%

Table 1 Various ranges of rotations and their effects in cor-
rectly classifying the shapes of hand-written digits

shapes before matches slightly improves the classifica-
tion rate of hand-written digits; larger rotations, on the
other hand, either have no effect or deteriorate the rate
of correct classifications. This is because the digit data
is generally sensitive to orientations and allowing larger
rotations can potentially retrieve more non-identical dig-
its.
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Fig. 5 Query shapes (the top two rows), their original near-
est neighbours (the middle two rows) and their optimal near-
est neighbours (the bottom two rows) varying the rotation
factor in [—30°,30°].

We later picked 1,000 shapes among those stored in
the database, applied to each shape a random rotation in
the range [—m, 7] and used it as a query shape. We only
specified the rotation interval in our query. As expected,
for each query shape, only the shape itself was retrieved
from the database.

4.2 Varying the Cut-Off Frequency

The effectiveness of the index mainly depends on the
concentration of the key shape information within a few
descriptors of fingerprints. To measure this effectiveness,
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Fig. 6 The fraction of query shapes classified correctly, vary-
ing the number of Fourier amplitudes used for classification.

we ran some experiments varying the number of Fourier
descriptors stored in a fingerprint. Figure 6 shows the
ratio of query shapes that are classified correctly (ac-
cording to the criteria outlined in Section 4.1) to all
query shapes varying the number of Fourier amplitudes
used for classification. As the number of amplitudes in-
creases up to 6, the ratio of shapes that are classified
correctly increases accordingly up to 0.778. This ratio re-
mains the same despite increasing the number of Fourier
amplitudes from 6 to 10. Compared to a full shape de-
scription which consists of both the amplitudes and the
phases of 30 lower Fourier coefficients, classifying 96.4%
of the shapes correctly, a fingerprint does a pretty good
job using only 6 amplitudes which make up only 10%
of a full shape description and still classifying 0.778% of
the shapes correctly.

Figure 7a shows the average execution time of Al-
gorithm 1 for 1,000 nearest-neighbours queries, broken
into (1) search time in Step 1 to identify the initial ap-
proximate nearest neighbours, and (2) search time in
Step 3 to find the real nearest neighbours. Figure 7b
shows the fraction of index nodes accessed, averaged over

1,000 nearest-neighbours queries, again broken into the
fractions accessed in Step 1 and Step 3.

As the number of Fourier amplitudes increases, the
index selectivity improves, i.e. the index gives fewer false
hits. The number of false hits, as is depicted in Figure 8
for a proximity query, mainly depends on the number of
Fourier amplitudes used in fingerprints and the output
size of the query. Due to the high similarity between
different shapes of the same digit, a large fraction of our
false hits (for example, 62% when the output size was
11 and the number of Fourier amplitudes was 6) were
other shapes of the same digit depicted by the query
shape which were not within the specified distance of
the query shape.

The reduction in false hits reduces the search time
since less time is needed to remove those false hits. How-
ever, increasing the number of Fourier amplitudes af-
ter some point, often called the cut-off frequency, either
does not reduce the number of false hits or reduces it
only slightly. This is because higher frequency ampli-
tudes carry less of the energy than lower frequency ones.
On the other hand, the search time increases with the
index dimensionality, because the tree becomes deeper.
Furthermore, the pruning becomes harder, as is shown
in Fig. 7 with the ratio of index nodes that are accessed,
because the probability of an arbitrary data bounding
rectangle being close to the query point increases with
the dimensionality.

Given the trade-off between the tree search time and
the time spent for removing false hits, it is natural to
expect that there is an optimal cut-off frequency. Based
on our experiments, as illustrated in Figures 6 and 7, the
optimal cut-off frequency occurs for as few as 6 Fourier
amplitudes.

4.8 Comparison to Sequential Scanning

Figure 9 shows the average execution time of our pro-
posed method compared to sequential scanning for 1,000
nearest-neighbours queries. To get its best performance,
we used buffered input for sequential scanning, in a sys-
tem with buffer size of 8,192 bytes. For the experiment
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shown in Figure 9a, the border length was fixed to 30
while the database size varied from 10,000 to 30,000
shapes. Since the size of dataset was limited, we doubled
or tripled the size by adding one or two randomly rotated
copies of each shape to the database. This doubling did
not affect the performance of sequential scanning, which
was linear in the input size, but we expected the dou-
bling to deteriorate the performance of our method since
high similarity among database shapes would increase
the number of false hits. For the experiment shown in
Figure 9b, the number of shapes was fixed at 10,000 while
the number of Fourier descriptors used to represent a
boundary varied from 20 to 50. As shown in the figure,
increasing either the number of shapes or the border
length increases the relative advantage of our method,
making it more attractive for large databases.

5 Conclusions

We have proposed an indexing technique that can ef-
ficiently retrieve images of objects based on similarity
between their boundary shapes. We have used Fourier
descriptors as our shape features and have developed an
index organization such that similar shapes can be easily
retrieved irrespective of their differences in size, position
and orientation. The highlight of our contribution is an
index structure that helps find optimal matches between
shapes irrespective of various differences between them.
Our technique has the following desirable properties:

— It uses a shape matching mechanism which is well-
studied in the area of pattern recognition.

— It exploits the fact that important features of a large
class of shapes are concentrated within only a few
Fourier descriptors.

— It can handle shapes of various sizes.

— It guarantees efficient retrieval of all qualifying shapes.

Furthermore, we have presented a refinement of an
earlier nearest-neighbours search algorithm for feature
vectors that are truncated, due to the significance of
some features over others, before being stored in a R-
tree index.
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