
New Estimation Algorithms for Streaming Data: Count-min Can Do More

Fan Deng
University of Alberta

fandeng@cs.ualberta.ca

Davood Rafiei
University of Alberta
drafiei@cs.ualberta.ca

Abstract

Count-min is a general-purpose data stream summary
technique, which can be used to answer multiple types
of approximate queries such as multiplicity (a.k.a point)
queries, join and self-join size estimations, and it has some
nice properties such as the one-sided error guarantee, bet-
ter space bounds and more accurate estimates for highly
skewed data in comparison with the best known alterna-
tives. However, based on our experiments for multiplicity
queries and self-join size estimations on both synthetic and
real data sets, we find that in practice the previous Count-
min estimation algorithms only perform well when the data
set is highly skewed; in other cases, these algorithms give
much less accurate results than Fast-AGMS (a.k.a Count-
sketch), which is an improvement based on the influential
sketching technique, AMS sketch.

In this paper, based on the existing Count-min data struc-
ture, we propose two new estimation algorithms for multi-
plicity queries and self-join size estimations, which signifi-
cantly improve the estimation accuracies compared with the
previous Count-min estimation algorithms when the data
set is less skewed, exactly where the previous algorithms
perform poorly. Moreover, we show both in theory and in
practice that the performance of our algorithms are very
similar to that of Fast-AGMS regardless of input data dis-
tributions. Thus, with both the new and previous estimation
algorithms, we argue that Count-min is more flexible and
powerful than Fast-AGMS, because Count-min performs al-
most the same as Fast-AGMS in terms of both estimation
accuracy and time efficiency using our new estimation algo-
rithms, while Count-min exhibits other nice properties using
the previous estimation algorithms as mentioned before.

1 Introduction

Data stream processing has drawn great interests in the
database community. Some of the work in the area focus
on building data stream management systems, whereas oth-
ers develop data stream processing algorithms aiming at

solving particular problems, which can benefit both data
stream systems and particular applications (see [3, 26] for
an overview). A typical data stream application, say real-
time IP traffic analyses, requires large amount of space and
extremely high processing rate. Gigabits of data can ar-
rive within one second at back-bone routers; this makes
real-time analyses challenging because large storages (e.g.
disks, sometime even ordinary DRAMs [15]) are not fast
enough to keep up with the data arrival rate, and fast RAMs
are usually limited compared with the data volume. There-
fore, both time and space efficiencies of algorithms are ex-
tremely important in these kinds of real-time applications.

In general, a data stream is a sequence of tuples, usu-
ally ordered based on their arrivals. Data stream sketches
(or sketches) are concise data summaries data constructed
in one pass to answer particular queries, possibly with er-
rors. Sketches can be useful and important in streaming ap-
plications such as real-time IP traffic analyses, sensor net-
work monitoring, web click tracking and so on. In some
other scenarios such as massive data analyses, sketches can
be helpful as well. Although the data is static and stored
on disks in those applications, it can be too expensive to go
through the data set multiple times to answer certain queries
precisely. Estimates with errors obtained in one pass may
be more desirable. Different time and space efficient sketch-
ing techniques have been proposed, some dedicated to one
type of query, and a few others such as Count-min [10] and
Fast-AGMS sketch (a.k.a Count-sketch) [5] can be used to
answer multiple queries. Two important queries that can
be answered using Count-min or Fast-AGMS sketches are
multiplicity queries and self-join size estimations. Although
our estimations algorithms can be extended to answering
others queries, in this paper we focus on these two queries.

A multiplicity query, also called a point query or a fre-
quency query, is to find the number of times a given element
appears in a data stream. This is an important query because
the techniques for answering multiplicity queries can be of-
ten applied to answer other frequency related queries such
as iceberg queries [6] (where the goal is to find the elements
whose frequencies exceed a threshold), finding top-K fre-
quent elements [5], range queries [10] (where the goal is to

1

find the sum of frequencies of elements within a range), and
approximating quantiles [10]. Multiplicity queries are also
important in traditional non-streaming settings (see [6] for
more examples).

The self-join size, also known as the second frequency
moment, of a multi-set is

���������
	�
, where � is the domain

from which the values are drawn, and
� �

is the frequency of
value � . The self-join size indicates the degree of skew of
a data set. For data distributions such as Zipfian and expo-
nential, the self-join size uniquely determines the parameter
of the distribution [1]. Knowing the parameter of a distribu-
tion can improve the accuracy of estimations. For instance,
in answering multiplicity queries, we can compute the Zip-
fian parameter of the input data stream (assuming it follows
the Zipfian model), and accordingly choose an algorithm
between the new one we propose in this paper and the one
previously proposed since both algorithms are based on the
same sketch. As another example, the self-join size can be
also useful in selecting an optimal sampling strategy to esti-
mate the number of distinct values [18]. More applications
of the self-join size can be found in [2] and [1].

To answer multiplicity queries and self-join size estima-
tions, we focus on Count-min sketches [10], which have
been implemented on an operational data stream monitoring
systems, AT&T’s Gigascope [12, 9], for real-time IP traffic
analyses (including multiplicity queries and self-join size
estimations) and for other operational reasons [22]. Count-
min has some nice properties such as one-sided errors and
better space bounds (smaller by a factor of ���� , where � is
the relative error) in comparison with the best known alter-
native sketching techniques. However, better space bounds
may not always guarantee better performance in practice.
Based on our experiments, we find that the previous esti-
mation algorithms using Count-min, referred to as CM, are
not as accurate as those using Fast-AGMS [5] on a wide
range of data sets. On slightly skewed or uniformly dis-
tributed data sets, in particular, Fast-AGMS performs sig-
nificantly better. In this paper, we demonstrate that Count-
min sketches can actually do as well as Fast-AGMS both
in theory and in practice regardless of the data distributions
using our new estimation algorithms. Furthermore, our new
estimation algorithms can be combined with those previ-
ous algorithms without conflicts, hence making Count-min
a more powerful and flexible sketch.

1.1 Our Contributions

First, we propose a new unbiased estimation algorithm,
referred to as CMM, based on Count-min sketches [10] to
approximately answer multiplicity queries of data streams.
Our experiments on both synthetic and real data sets show
that the new algorithm gives much more accurate results
(e.g. orders of magnitude improvement on the real data set)

than the CM estimation algorithm on a wide range of data
sets except when data is highly skewed.

Second, we show through theoretical analyses and exper-
imental evaluations that CMM performs very similarly to
the algorithms based on Fast-AGMS sketches [5, 8], and all
the analytical results reported for Fast-AGMS [5] also hold
for Count-min with our CMM algorithm. Hence, Count-
min can be also applied to the cases where Fast-AGMS is
used as a building block without losing accuracy, time and
space efficiency (e.g. [19] and [17]).

Having two estimation options with different properties,
Count-min can do more than Fast-AGMS. For example, the
CM estimation approach provides one-sided error approxi-
mations, which can be very useful in some cases. In find-
ing frequent elements in a data stream, all candidates whose
multiplicities exceed a given threshold are guaranteed to be
returned using the CM estimation. Multiplicity estimates
for all qualified candidates can be obtained using our CMM
approach since it is usually much more accurate in practice.
In contrast, Fast-AGMS fails to provide this deterministic
guarantee no matter how much space is given. In addition,
Count-min with the CM estimation is more accurate than
Fast-AGMS when the data set is highly skewed, and CM
has a better space bound, meaning that given an error bound
and a confidence interval, Count-min using CM needs less
space than Fast-AGMS.

Third, we propose a new unbiased algorithm for self-join
size estimations based on Count-min sketches. Unless there
is a confusion, we will also refer to this algorithm as CMM.
Similarly, the accuracy of this algorithm is much better than
the previous Count-min estimation algorithm (also referred
to as CM) in practice on a wide range of data sets except
when the data set is highly skewed. Through our analyti-
cal and empirical evaluations we show that CMM performs
very similarly to Fast-AGMS in terms of self-join size es-
timations. Again, having two estimation approaches with
different properties makes Count-min a more powerful and
flexible data stream summary.

1.2 Paper Outline

The rest of this paper is organized as follows. Section
2 gives background knowledge about Count-min sketches
and two other alternatives to be compared with. Then we
introduce our CMM estimation algorithm for multiplicity
queries in Section 3, where analyses and experimental re-
sults are also provided. Section 4 discusses our CMM al-
gorithm for self-join size estimations. In Section 5 we de-
scribe the research work closely related to ours. Section 6
concludes the paper.

2

2 Preliminaries

In this section, we review Count-min sketches [10] and
the previous estimation algorithms for answering multiplic-
ity queries and self-join size estimations based on Count-
min. Also, for the sake of comparison, we briefly review
the Fast-AGMS sketches [5, 8] and Spectral Bloom Filters
[6].

2.1 Count-min Sketches

Sketch construction and maintenance. A count-min
sketch ����� ������� is a 2-dimensional array of counters, with�

(sketch depth) rows and � (sketch width) columns. All
counters are initially set to � . To insert an element � into
the sketch,

�
hash functions � �! �
"$#�%&�'�)(*(*(*�!�,+-/. with�102�3�*()(*(4� � +- , picked uniformly at random are used to

determine which counters to be updated. For each row � ,
counter ����� �5��� � �6"7� is incremented by . The procedure
to delete an element � is similar: for each row � , counter����� ���5� � �6"8� is decremented by .

The CM algorithm for answering multiplicity
queries. To find the number of occurrences of an element � ,
all the

�
counters that � has touched, i.e. ����� ���5� � �
"7� with �90:�3�*(*()(4� � +;<" , are checked, and the minimum counter

value is returned as the estimated frequency of � . Clearly,
the estimate is an upper bound of the true frequency.

The CM algorithm for self-join size estimations. For
each row � of the sketch, sum up the square of each
counter value in that row, and return the minimum sum
of all

�
rows as the estimate. That is, the estimate => 	 0? �7@A%&B)C ?EDGFIHJLKIM ����� �������N" 	 �'�$0O�'�)(*(*(*� � +:�. . This esti-

mate is an upper bound of the true value as well.

2.2 Spectral Bloom Filters

Cohen and Matias [6] propose Spectral Bloom Filters
(SBF) to answer multiplicity queries. An SBF is a 1-
dimensional array of counters, initially all set to � . To insert
an element into the SBF, P hash functions are used to pick P
counters uniformly at random, and those counters are incre-
mented by . To answer a query, the P counters the query
element has touched are checked, and the minimum value
of those P counters is returned as the approximate query
answer.

To increase the accuracy, they also propose a heuristic,
Minimal Increase (MI), which changes the way an SBF is
constructed. To insert an element � into the SBF, only the
minimum counter/counters rather than all of the counters �
touches is increased by 1. This heuristics decreases the error
because it makes the counters increase slower. However, the
error reduction depends on data distribution and the order
of element insertions. Therefore, analyses become hard and

are given in [6] only in the case that element frequencies are
uniformly distributed. Also MI does not support element
deletions, unlike the basic SBF.

2.3 Fast-AGMS Sketches

Based on an influential sketching technique called AMS
[2], Charikar, Chen and Farach-Colton [5] propose Count-
sketches to estimate element multiplicities. The same
sketches are also called Fast-AGMS sketches [8] in self-join
size estimation scenarios. For the ease of presentation, we
only use the term Fast-AGMS sketches, to refer to this data
structure for the rest of the paper.

Sketch construction and maintenance. The Fast-
AGMS sketches are organized as a 2-dimensional array of
counters. To insert an element into the sketch, for each row
of the sketch, a hash function is used to determine which
counter should be updated according to the hash value of
the element, and another independent hash function maps
the element to either +� or uniformly at random, indi-
cating the value to be added to the counter. To delete an
element from the sketch, based on the same hash functions
either +� or is deducted from the counters the element is
hashed to.

The Fast-AGMS algorithm for multiplicity queries.
To check the multiplicity of a query element, for each row
of the sketch, map the element into a counter and a value (ei-
ther +� or), using the same two hash functions as in the
sketch construction process. Obtain the product between
the hash value (+� or) and the value of the counter the
element is mapped to, then report the median of those prod-
ucts from all rows as the multiplicity estimate. This estimate
is shown [5] to be unbiased.

The Fast-AGMS algorithm for self-join size estima-
tions. The main idea of this algorithm is as follows: for
each row of the sketch, sum up the squares of all counter
values, and return the median of those sums from all rows
as the self-join size estimate. Again, this is also an unbiased
estimate.

Next, we introduce our new estimation algorithms for
multiplicity queries based on Count-min sketches.

3 Unbiased Estimates for Multiplicity
Queries using Count-min Sketches

The estimation procedures described in Section 2.1 give
upper bounds of the true values. We propose our estimation
methods, count-mean-min (CMM) , which gives unbiased
estimates for both multiplicity queries and self-join size es-
timations using exactly the same count-min sketch. We dis-
cuss the multiplicity query case in this section.

3

3.1 Basic Idea

Recall the estimation procedure of CM: given a query
element Q and hash functions � � (�R0S�3�*(*()(4� � +T), the fre-
quency estimate =�/U is the minimum value of the counters Q
has touched (i.e. ����� ���5� �! Q/"7� , �90V�'�*()(*(4� � +S). Usually
the counters Q touches are also touched by other elements,
thus even the minimal counter value is expected to be larger
than the true value

� U
. The source of the error is the contri-

butions of other elements to the counters ����� �5��� � Q/"8� . We
characterize the contributions made by elements other thanQ to the counters ����� ���5� � Q/"8� as noise. The CM algorithm
returns the counter value with the least noise. Our CMM al-
gorithm tries to estimate the noise in each counter, removes
the noise and returns the residue.

Of course we do not know exactly the value of the noise
since the noise is a random variable, but we can estimate
its expected value. For a counter ����� �5��� � Q/"7� , the noise
can be estimated from the values of all other counters not
touched by Q in that row � . The value of each counter not
touched by Q can be considered as an independent random
variable following the same distribution as the noise, assum-
ing that the hash functions map each element � to the range� �3� � +-*� uniformly at random (pair-wise independence is
sufficiently for our theoretical results in this section). In
fact, for a multiplicity query, the values of the counters that
are not touched by the query element Q in row � demon-
strate the probability distribution of the noise in counter����� ���5� �! Q/"7� .
3.2 Our Estimation Algorithm

Given a query element Q , we use the same set of hash
functions � � (�W0X�3�*()(*(4� � +S) as used in constructing the
Count-min sketch, and check the

�
counters Q is mapped

to, i.e. ����� ���5� �! Q/"7� (�Y0Z�'�)(*()(4� � +X). Instead of re-
turning the minimum value of the

�
counters, we deduct

the value of estimated noise from each of those
�

coun-
ters, and return the median of the

�
residues. The esti-

mated noise in each counter ����� ���5� � Q/"8� can be computed
as the average value of all counters in row � except counter����� ���5� � Q/"7� itself. That is, the noise is estimated to be �[+\����� ���5� � Q/"7�]"L� �:+�<" , where

[
is the stream size

and � is the sketch width.

3.3 Analyses of Our Algorithm

Since for each row of the sketch, the analysis is the same,
we just discuss the case for a particular row � . Let ^`_ be a
Bernoulli random variable indicating if element � is hashed
to the same counter that the query element Q is hashed to,

i.e.

^ _ 0 a ��b� is hashed to the same counter as Q is;�'� otherwise.

Assuming that the hash function maps each element to one
of the � counters uniformly at random, the probabilities of
the above two cases are as follows: cedf� ^g_T0h4�10i&�&�
and cedf� ^j_k0l���W0O�+-��&� . The value of the counter Q
is hashed to is also a random variable,

�mUon � _fpK U � _�^j_ ,
where

��U
and

� _ are the true frequencies of Q and � respec-
tively.

Lemma 1. Given a hash function picked uniformly at ran-
dom from a pairwise independent family, for a multiplic-
ity query of element Q and each row of the sketch, our
CMM estimate =� U is expected to be

� U
, and the variance

is HDGFqH � _fpK U �
	_ , where � is the sketch width.

Proof. Due to the page limit, see the extended version [13]
of this paper for the proof.

Comparison with Fast-AGMS. As discussed in Sec-
tion 2, Fast-AGMS [5] can be used to answer multiplicity
queries as well. It is not hard to show the following state-
ment.

Lemma 2. Given sketches of the same width and depth and
pairwise independent hash functions, the expectation and
variance of the estimates from Fast-AGMS are the same as
those from our CMM algorithm.

Proof. Similar to the proof of Lemma 1, we can obtain the
expected value and the variance of the Fast-AGMS esti-
mate; the expectation is the same as that of CMM’s, and the
variance is HD � _rpK U �
	_ . Due to the page limit of the paper,
see the extended version [13] of this paper for the deriva-
tion process. Recall that the variance of our CMM estimate
is HDGFqH � _rpK U � 	_ , meaning that if CMM is given one more
counter in each row, the variances of these two methods will
be exactly the same. Given that CMM needs one less hash
function in each row, and this can lead to some saving in the
storage of the hash functions, we consider the two variances
the same. Even if there is any, the difference is negligible
especially when the depth of the sketch is small due to the
time cost.

Theorem 1. The analytical results reported for Fast-AGMS
[5] are all applicable to the Count-min sketch using the
CMM algorithm. Due to the space limit, we choose not to
duplicate them here.

Proof. Because the expectations and variances of the two
methods are the same, all proofs in [5] can be adapted to
our CMM estimation. See [5] for the detailed proof. Note
that the presentation style and some of the notations in [5]
are different from ours.

4

3.4 Experiments for Multiplicity Queries

In this section, we experimentally compare CMM to the
related estimation algorithms (reviewed in Section 2): CM,
Fast-AGMS and SBF with the MI heuristic.

Implementation issues. In our CMM algorithm for an-
swering multiplicity queries, we also use the median of all
counters in a sketch row as the estimated noise besides us-
ing the mean as described in the algorithm, because median
is less sensitive to outliers in data values. Computing the
median of the counters not touched by the query element
for each query is costly. To improve the time efficiency, we
consider the median of all counters as the noise, which can
be obtained once and used for all queries. This estimate
is still accurate because the median of all counters in one
sketch row is approximately the same as the median of that
row with one less counter.

To further increase accuracy for both CMM and Fast-
AGMS, we return � if CMM or Fast-AGMS gives a nega-
tive estimate since the estimate is clearly wrong. Similarly,
if CMM gives an estimate larger than the one from CM, we
return the latter instead since an estimate above the upper
bound is also obviously wrong. Having multiple estimates
from multiple sketch rows, we return the median as the final
estimate for both CMM and Fast-AGMS. The hash func-
tions we use are obtained from MassDal [24].

Synthetic and real data sets. We generated synthetic
data sets whose element frequencies followed Zipfian dis-
tributions with different Zipfian parameters between � ands

. Each data set had 1 million elements, where the elements
are integers drawn from the domain from to million. The
code used for generating the data sets were also obtained
from MassDal [24]. We also ran experiments on a Web
crawl data set, originally obtained from Internet Archive
[20], containing a stream of URLs sequentially extracting
from the crawled pages. We hashed each URL in this collec-
tion to a 64-bit fingerprint, verified the data set and find no
hash collisions between the URLs. The stream size (num-
ber of URL fingerprints) we used was 1 million. Using the
second frequency moment of this URL stream, we approxi-
mately computed the Zipfian parameter assuming the URL
frequencies follow the Zipfian model, and found that the
Zipfian parameter were between 0.8 and 0.9. We also used
longer and shorter stream sizes, but found similar Zipfian
parameters and experimental results.

Experimental settings. In the experiments, we queried
the multiplicities of all elements in the domain and the mul-
tiplicities of the top-100 frequent elements appeared in the
data set using different sketching techniques. We obtained
true frequencies of the elements using a sufficiently large
buffer, and computed the absolute values of the differences
between the estimates and the true frequencies as the error
measurement.

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 0 0.5 1 1.5 2

A
bs

ol
ut

e
er

ro
rs

Skew

Fast-AGMS
CM

CMM
MI

CMM-mean

Figure 1. Average absolute errors vs. data
set skew, comparing Fast-AGMS, CM, MI and
our CMM; queries are all elements in the do-
main. The sketch width and depth are 64 and
3 respectively.

Varying the skew of the synthetic data sets. In our
first experiment, we query each element in the domain once
and return the average of the absolute errors of all queries.
The result from data sets with different Zipfian parameters
is shown in Figure 1. CMM-mean represents the algorithm
using the mean value of counters as the noise, while CMM
represents the algorithm using the median of all counter val-
ues in a row as the noise. From the figure we can see that
when the data set is less skewed, CMM-mean, Fast-AGMS
and CMM all perform significantly better than CM and MI,
while CM and MI become more accurate than Fast-AGMS
when the data set is highly skewed.

Among CMM-mean, Fast-AGMS and CMM we also
see some differences: CMM-mean and CMM both per-
form better than Fast-AGMS when the data set is highly
skewed because of the CM bound applied to both CMM-
mean and CMM; when the data set is less skewed, the per-
formance of Fast-AGMS is between those of CMM-mean
and CMM. Actually, CMM-mean performs well mainly be-
cause of the � bound we used. When the data set is skewed,
it is very likely that there are some large outliers in row
counters, which make CMM-mean significantly overesti-
mate the noise, and accordingly return a negative estimate.
This is good for those � -frequency elements which do not
appear in the data set, because the final CMM-mean esti-
mate will be � whenever CMM-mean returns a negative es-
timate. In contrast, CMM has less chance of overestimating
the noise, thus CMM is less likely to take advantage of the� bound. Regarding Fast-AGMS, the chance of returning
a negative estimate is one half for those � -frequency ele-
ments. Given that a large fraction of query elements in the
domain have frequency � in the synthetic data sets, which
makes the � bound a dominant factor, in the rest of our ex-

5

1

4

16

64

256

1024

4096

0 0.5 1 1.5 2

A
bs

ol
ut

e
er

ro
rs

Skew

Fast-AMGS
CM

CMM
MI

Figure 2. Average absolute errors vs. data set
skew, for top-100 frequent element queries
using Fast-AGMS, CM, CMM and MI. The
sketch width and depth are 256 and 5 respec-
tively.

periments we focus on finding the multiplicities of frequent
elements, where the � bound has much less impact on the
experimental results.

In our second experiment, we query the multiplicities of
the top-100 frequent elements. The average of the abso-
lute errors of the 100 query answers on the data sets with
different skew is shown in Figure 2. Some general trends
observed from the figure are as follows. First, the accuracy
difference between CMM and Fast-AGMS is small. Sec-
ond, CMM and Fast-AGMS significantly outperform CM
when the data set is less skewed; the difference becomes
smaller when the skew increases; when the data set is highly
skewed, CM becomes more accurate than CMM and Fast-
AGMS. Third, the MI heuristic consistently outperforms
CM; but it is still much less accurate than CMM and Fast-
AGMS for less skewed data; in the high skew cases, MI is
much better.

One clear inconsistence between Figure 1 and 2 is the
performance of MI. In the high skew cases, when query el-
ements are the frequent ones, MI performs much better than
all others, while MI performs much worse in Figure 1. This
is because when the data set is highly skewed, there are less
high frequent elements. The counters those elements are
mapped to are very likely to be increased to a high value
by the frequent elements themselves. When a non-frequent
element arrives, it will only increase the minimum counters
it is mapped to, which are less likely to be the ones frequent
elements have touched because the values of those coun-
ters are likely to be very large already. Therefore, when
the query elements are frequent ones, MI only gives very
small errors. As discussed in Section 2.2, the benefit of this
method depends on the frequency distribution and the or-
der in which elements arrive. So it is difficult to be further

 1

 4

 16

 64

 256

 1024

 4096

 16384

 64 256 1024 4096 16384 65536

A
bs

ol
ut

e
er

ro
rs

Sketch width

Fast-AGMS
CM

CMM
MI

Figure 3. Average absolute errors vs. sketch
width, for top-100 frequent element queries
using Fast-AGMS, CM, CMM and MI on the 1M
URL data set. The sketch depth is 5.

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14

A
bs

ol
ut

e
er

ro
rs

Sketch depth

Fast-AGMS
CM

CMM
MI

Figure 4. Average absolute errors vs. sketch
depth, for top-100 frequent element queries
using Fast-AGMS, CM, CMM and MI on the 1M
URL data set. The sketch width is 256.

analyzed.
Varying the sketch width on the real data set. In this

set of experiments, we fixed the sketch depth to t and var-
ied the sketch width. The results are shown in Figure 3.
Similar to the results from the previous experiments, CMM
performs very closely to Fast-AGMS, and they both per-
forms significantly better than CM. MI does not perform
well when the space is small; but it becomes better when
the space is large.

Varying the sketch depth on the real data set. In this
set of experiments, we fixed the sketch width to

s t/u and
varied the sketch depth. The results are shown in Figure 4.
Similar to the results from the previous experiments, CMM
performs very similarly to Fast-AGMS, and they both per-
forms significantly better than CM. MI is better than CM,

6

but not as good as CMM and Fast-AGMS.

3.5 Summary of Comparisons

In this paper, we discuss 4 algorithms for approximately
answering multiplicity queries: CM, Fast-AGMS, CMM
and MI.

CMM, CM and Fast-AGMS. In general, CMM and
Fast-AGMS give better estimates over a larger range of data
sets. They perform similarly both in theory and in practice.
But CM and CMM are 2 different estimation algorithms
using exactly the same sketch. Therefore, the Count-min
sketches can be more powerful than Fast-AGMS sketches
as discussed in Section 1.

MI and other techniques. The MI heuristic consistently
improves the accuracy of CM estimates, especially when
the queries are frequent elements. In general, it may per-
form better than CMM and Fast-AGMS for highly skewed
data sets when querying frequent elements. When the data
set is less skewed, CMM and Fast-AGMS seem to perform
better. But we are unable to reach a conclusion for our com-
parison because the results of MI may vary greatly even for
data sets with the same skew but different element arrival
orders. Furthermore, MI does not have certain nice prop-
erties, such as the ability to handle element deletions and
the ease of analysis, which CMM, CM and Fast-AGMS all
have. This is again because the arrival order of elements
will change the performance of MI, while this order has
no effect on CM, CMM and Fast-AGMS. In other words,
the sketch will be the same for CM, CMM or Fast-AGMS
as long as the frequencies of elements do not change, and
hence the estimation will be the same regardless of the el-
ement order. Because MI is hard to be analyzed, the space
bound remains the same as that of CM.

Time cost comparisons. The time cost of per element
update for CM, CMM and Fast-AGMS is the same, i.e.v � " where

�
is the depth of the sketch. The time cost for

MI depends on the number of hash functions used, and we
are not how to set the number of hash functions properly to
minimize the error.

As for the query time cost, CM needs
v � " time to find

the minimum counter. Both CMM and Fast-AGMS can find
the median in

v � " time as well using the SELECT algo-
rithm [7], under the condition that the mean of all counters
except the one touched by the query element is used to es-
timate the noise in CMM. But if CMM uses the median of
each row for noise estimation, as we did in our experiments,
then CMM needs

v �w" preprocessing time to find the medi-
ans of counters for each sketch row. But those medians need
to be computed only once and can be used for all queries.

4 Unbiased Self-join Size Estimates from
Count-min Sketches

Count-min sketches can be also used to estimate the self-
join size of a data stream as discussed in Section 2, where
the estimate is an upper bound of the true value. Similar
to the case of multiplicity queries, we propose a new es-
timation algorithm which gives an unbiased self-join size
estimate of a data stream.

4.1 Our Estimation Algorithm

The CM algorithm [10] computes the sum of squares of
all counters in each sketch row, and returns the minimum
sum of all rows as the self-join size estimate. Our approach
(CMM) use the same sketch with width � and depth

�
, but

the estimation procedure is different: for each counter in a
sketch row, we compute the average value of all other coun-
ters in the row except the counter itself, and deduct the av-
erage from that counter; by doing this, � residues are ob-
tained, one for each counter. We then calculate the sum of
the squares of the � residues, and return the product of the
sum and

 ��+;&"L�&� as the self-join size estimate from that
row. The final estimate is the median of the estimates from
all
�

rows.
Formally, given a Count-min sketch ����� �W(*()(� +��5�W(*()(8�X+x*� with

�
rows and � columns, we return the

median of the following
�

values as the estimate:

�S+\�
DGFqHy
JLKqM

 ����� �5�7���3+ �S+\
 z[+{����� �������N"L" 	 �

�}|\�~| � +�m�
where

[
is the stream size, � is the row index and � is

the counter index within a row. Next we show that this
CMM algorithm gives an unbiased estimate for the self-join
size and the variance is the same as that of AMS and Fast-
AGMS.

4.2 Analyses of Our Algorithm

Lemma 3. The estimate from each row of a Count-min
sketch using the above CMM algorithm is expected to be the
true self-join size (pairwise independent hash functions),
and the variance is �DGFIH � _/�
� �
	_ �
	� (4-wise independent
hash functions), where � and � is an arbitrary pair of dis-
tinct elements of the stream.

Proof. See the extended version [13] of this paper.

Note that the variances of estimates from AMS [2, 1] and
Fast-AGMS [8] are both �D � _/�
� �
	_ �
	� given 4-wise inde-
pendent hash functions. The difference between the expres-
sion of this variance and that of our CMM is in the terms �

7

and �-+S , meaning that CMM needs one more counter to
reach the same variance. Since our CMM only needs one
hash function per sketch row, while Fast-AGMS needs two
per row and AMS needs � per row, CMM needs less space
in storing hash functions. Thus, we consider the CMM vari-
ance the same as that of Fast-AGMS, and slightly smaller
than that of AMS.

Theorem 2. Let => 	 be the self-join size estimate of a data
stream using our CMM algorithm, and

> 	 be the true self-
join size. Given

v z���<�q &�/�/"L�/� 	 " counters, with probabilityW+�� , the relative error � => 	 + > 	 � � > 	 |;� .
Proof. This result is the same as that of AMS [2, 1] and
Fast-AGMS [8] (the result for Fast-AGMS is shown in the
form of join size of two data streams). Since in Lemma
3, we have shown that the variances of the estimates from
these algorithms are all the same, the rest of the proof is
just applying Chebyshev’s Inequality. Details can be found
in [2].

4.3 Experiments for Self-join Size Estimations

To verify the performance of CMM in estimating self-
join sizes, we ran two sets of experiments comparing CMM
with CM and Fast-AGMS. Since AMS needs to update all
sketch counters for each element, which is too slow for
many real-time data stream applications, and Fast-AGMS
is a much faster but similar alternative with the same esti-
mation expectation and variance, we do not include AMS in
our experiments.

Experimental settings. For each sketch row, we com-
puted a self-join size estimate using CMM, Fast-AGMS and
CM respectively. Then for CMM and Fast-AGMS, we re-
turn the median of estimates obtained from all sketch rows;
for CM, we return the minimum value of estimates obtained
from all sketch rows.

The data sets used in this experiments and the sketch
construction process were the same as in the multiplicity
query experiments described in Section 3.4. Cormode and
Muthukrishnan [11] propose a variation of the CM algo-
rithm, called CM-, for less skewed (Zipfian parameter �
1) and uniform data sets. Their experiments on data sets
similar to ours shows that CM and CM- performs similarly,
hence we did not include CM- in our experiments.

Varying data set skew. In this experiment we fixed the
sketch width and depth and varied the skew of the synthetic
data sets. The results are shown in Figure 5. The two sub-
figures are the same except that the second one shows a
small error range so that the difference between CMM and
Fast-AGMS can be seen.

From the figure we can see that when the data set is low
skewed, CMM and Fast-AGMS perform significantly bet-
ter than CM; when the data set is more skewed, the differ-

ence becomes smaller. Furthermore, the difference between
CMM and Fast-AGMS is always small.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2

ab
s(

E
st

im
at

e/
Tr

ue
V

al
ue

-1
)

Skew

Fast-AGMS
CM

CMM

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

ab
s(

E
st

im
at

e/
Tr

ue
V

al
ue

-1
)

Skew

Fast-AGMS
CM

CMM

Figure 5. Self-join size estimation errors vs.
data set skew, comparing Fast-AGMS, CM and
CMM. The sketch width and depth are 16 and
5 respectively. (The 2nd sub-figure zooms in
the 1st one). The stream sizes are all 1 million.

Varying the sketch width. In this experiment, we fixed
the sketch depth varying the sketch width and ran our ex-
periments on the URL fingerprint data set. The results
are shown in Figure 6. From the sub-figures we can see
that CMM and Fast-AGMS always perform similarly, and
they both outperform CM significantly especially when the
space is small.

Varying the sketch depth. In this experiment, we fixed
the sketch width varying the sketch depth and ran our ex-
periments on the URL fingerprint data set. The results are
shown in Figure 7. Again, from the figure we can see that
CMM and Fast-AGMS perform similarly, and they both
outperform CM significantly. Furthermore, increasing the
sketch depth within a small range (e.g. from to)�) has
almost no impact on the estimation accuracy for all tested
algorithms. Because of the time cost, exponentially increas-
ing the sketch depth is infeasible in most real-time applica-
tions.

8

 0

 500

 1000

 1500

 2000

 2500

 4 16 64 256 1024 4096 16384 65536

ab
s(

E
st

im
at

e/
Tr

ue
V

al
ue

-1
)

Sketch width

Fast-AGMS
CM

CMM

 0

 0.5

 1

 1.5

 2

 4 16 64 256 1024 4096 16384 65536

ab
s(

E
st

im
at

e/
Tr

ue
V

al
ue

-1
)

Sketch width

Fast-AGMS
CM

CMM

Figure 6. Self-join size estimation error vs.
sketch width, comparing Fast-AGMS, CM and
CMM on the 1M URL data set. The sketch
depth is 3. The 2nd sub-figure zooms in the
1st one.

Time cost comparisons. The time efficiencies for
CMM, CM and Fast-AGMS are the same. In terms of per
element update, CMM, CM and Fast-AGMS all need

v � "
time. Regarding the query answering time, the costs of
these methods are still the same: they all scan counters in
a sketch row linearly, i.e.

v �w" time; in CMM and Fast-
AGMS, finding the median of estimates from all rows re-
quires

v � " time using the SELECT algorithm [7]; finding
the minimum value of the counters in CM also requires the
same time.

5 Related Work

There are many data stream summary techniques, each
proposed for different purposes. In this section, we only dis-
cuss the work closely related to ours and not covered earlier
in this paper.

Bloom filters and their extensions. In 1970, Bloom
propose a simple space-efficient data structure, known as
Bloom Filters (BF) [4], to approximately answer member-

0.015625

0.0625

0.25

1

4

16

64

256

1024

1 2 3 4 5 6 7 8 9 10

ab
s(

E
st

im
at

e/
Tr

ue
V

al
ue

-1
)

Sketch depth

Fast-AGMS
CM

CMM

Figure 7. Self-join size estimation error vs.
sketch depth, comparing Fast-AGMS, CM and
CMM on the 1M URL data set. The sketch
width is 16.

ship queries, where users give an element and want to know
if this element belongs to a particular set. In addition to
static data set scenarios, BF is also extended to answer
membership queries in a streaming environment [14].

Elements can be inserted into a BF, but cannot be
deleted. To handle deletions, Fan et al. [16] extend BF to
Counting Bloom Filters (CBF). Even though CBF is orig-
inally proposed for membership queries, it can be used to
answer multiplicity queries as well. In a sketch called Spec-
tral Bloom Filters (SBF), Cohen and Matias [6] use CBF as
their basis for answering multiplicity queries. To increase
the accuracy, they propose two independent (but incompat-
ible) heuristics: Minimal Increase (MI) and Recurring Min-
imum (RM). Since RM is less accurate than MI [6], and
we have difficulties in setting the parameters (e.g. the sec-
ondary SBF size) of RM properly, it is not included in our
experiments.

AMS sketches and their extensions In their seminal pa-
per [2], Alon, Matias and Szegedy propose sketching tech-
niques to approximate frequency moments, including a gen-
eral algorithm approximating the k-th (PV��) frequency
moment and an improved algorithm (AMS) specialized in
estimating the second frequency moment. In another work
[1], Alon, Gibbons, Matias and Szegedy extend their tech-
niques to approximate join and self-join size.

Count-sketches [5] and Fast-AGMS [8, 17] are exten-
sions of AMS to answer multiplicity queries and join/self-
join size estimations respectively. Both extensions are in-
cluded in our experiments. The expectation and variance of
Fast-AGMS estimates are the same as those of AMS, but
Fast-AGMS is much more time-efficient. Thus, we only
compare our CMM with Fast-AGMS for self-join size esti-
mations.

Finding frequent elements. There are some work (e.g.

9

[23, 21, 25]) focusing on finding frequent elements approx-
imately in a data stream. These algorithms also construct
data summaries in one pass, but they are specialized for
finding frequent items and not for other queries.

Recent applications of Count-min and Fast-AGMS.
Korn et al. [22] use Count-min sketches as underlying data
structures to answer multiplicity queries, self-join size esti-
mations, range sum queries, quantile approximations. Cor-
mode and Garofalakis [8] apply Fast-AGMS in a distributed
environment to answer multiple queries such as multiplic-
ity queries, iceberg queries, range queries, join and self-join
size estimations. Indyk and Woodruff [19] use Fast-AGMS
as a building block to find the P -th (Pk� s) frequency mo-
ments.

6 Conclusions and Future Work

In this paper, we propose new estimation algorithms,
CMM, for multiplicity queries and self-join size estima-
tions based on a data stream summary technique, Count-
min. Compared to the previous estimation algorithms based
on Count-min, our new methods significantly improve the
estimation accuracy on a wide range of data sets. In con-
trast with another influential general-purpose data stream
summary technique Fast-AGMS, Count-min sketches can
give estimates with the same accuracy, time and space ef-
ficiency using CMM. Moreover, there are other attractive
estimation options and error bounds for Count-min, which
are not applicable to Fast-AGMS; with our new estimation
algorithms, we make a case that Count-min is more flexible
and powerful.

In addition to the applications of finding the top-k fre-
quent elements and answering iceberg queries, CMM can be
potentially extended to answer other queries such as SUM
aggregates (i.e. a generalization of multiplicity queries
where frequency updates are not limited to 1 and -1), range
queries, quantiles approximations and join size estimations,
as shown by Cormode and Muthukrishnan [10] for CM.
Some of these extensions can be straightforward, but oth-
ers may need further research.

References

[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Track-
ing join and self-join sizes in limited storage. In PODS,
1999.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complex-
ity of approximating the frequency moments. JCSS, 58(1),
1999. Also in: STOC, 1996.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In PODS, 2002.

[4] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. CACM, 13(7), 1970.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding fre-
quent items in data streams. Theoretical Computer Science
(TCS), 312(1), 2004. Also in: ICALP, 2002.

[6] S. Cohen and Y. Matias. Spectral bloom filters. In SIGMOD,
2003.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, 2nd Edition. The MIT Press,
2001.

[8] G. Cormode and M. N. Garofalakis. Sketching streams
through the net: Distributed approximate query tracking. In
VLDB, 2005.

[9] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan,
O. Spatscheck, and D. Srivastava. Holistic udafs at stream-
ing speeds. In SIGMOD, 2004.

[10] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
Journal of Algorithms, 55(1), 2005. Also in: LATIN, 2004.

[11] G. Cormode and S. Muthukrishnan. Summarizing and min-
ing skewed data streams. In SIAM International Conference
on Data Mining (SDM), 2005.

[12] C. D. Cranor, T. Johnson, O. Spatscheck, and
V. Shkapenyuk. Gigascope: A stream database for
network applications. In SIGMOD, 2003.

[13] F. Deng and D. Rafiei. New estimation algorithms for
streaming data: Count-min can do more (extended ver-
sion). http://www.cs.ualberta.ca/˜fandeng/
paper/cmm_full.pdf.

[14] F. Deng and D. Rafiei. Approximately detecting duplicates
for streaming data using stable bloom filters. In SIGMOD,
2006.

[15] C. Estan and G. Varghese. New directions in traffic mea-
surement and accounting. In SIGCOMM, 2002.

[16] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Sum-
mary cache: a scalable wide-area web cache sharing pro-
tocol. IEEE/ACM Transactions on Networking, 8(3), 2000.
also in:SIGCOMM, 1998.

[17] S. Ganguly, M. N. Garofalakis, and R. Rastogi. Process-
ing data-stream join aggregates using skimmed sketches. In
EDBT, 2004.

[18] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct values
of an attribute. In VLDB, 1995.

[19] P. Indyk and D. P. Woodruff. Optimal approximations of the
frequency moments of data streams. In STOC, 2005.

[20] InternetArchive. http://www.archive.org/.
[21] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple

algorithm for finding frequent elements in streams and bags.
TODS, 28(1), 2003.

[22] F. Korn, S. Muthukrishnan, and Y. Wu. Modeling skew in
data streams. In SIGMOD, 2006.

[23] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, 2002.

[24] MassDal. Massdal public code bank. http://www.cs.
rutgers.edu/˜muthu/massdal-code-index.
html, 2006.

[25] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient com-
putation of frequent and top-k elements in data streams. In
ICDT, 2005.

[26] S. Muthukrishnan. Data streams: algorithms and applica-
tions. In SODA, 2003.

10

