Approximately Detecting Duplicates for Streaming Data using Stable Bloom Filters

Fan Deng
University of Alberta
fandeng@cs.ualberta.ca

Davood Rafiei

University of Alberta

drafiei@cs.ualberta.ca

ABSTRACT

Traditional duplicate elimination techniques are not applicable to many data stream applications. In general, precisely eliminating duplicates in an unbounded data stream is not feasible in many streaming scenarios. Therefore, we target at approximately eliminating duplicates in streaming environments given a limited space. Based on a well-known bitmap sketch, we introduce a data structure, Stable Bloom Filter, and a novel and simple algorithm. The basic idea is as follows: since there is no way to store the whole history of the stream, SBF continuously evicts the stale elements so that SBF has room for those more recent ones. After finding some properties of SBF analytically, we show that a tight upper bound of false positive rates is guaranteed. In our empirical study, we compare SBF to alternative methods. The results show that our method is superior in terms of both accuracy and time efficiency when a fixed small space and an acceptable false positive rate are given.

1. INTRODUCTION

Eliminating duplicates is an important operation in traditional query processing, and many algorithms have been developed [22]. A common characteristic of these algorithms is the underlying assumption that the whole data set is stored and can be accessed if needed. Thus, multiple passes over data are possible, which is the case in a traditional database scenario. However, this assumption does not hold in a new class of applications, often referred to as data stream systems [3], which are becoming increasingly important. Consequently, detecting duplicates precisely is not always possible. Instead, it may suffice to identify duplicates with some errors.

While it is useful to have duplicate elimination in a Data Stream Management System (DSMS)[3], some new properties of these systems make the duplicate detection problem more challenging and to some degree different from the one in a traditional DBMS. First, the timely response property of data stream applications requires the system to respond

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD 2006 June 27–29,2006, Chicago, Illinois, USA Copyright 2006 ACM 1-59593-256-9/06/0006 ... \$5.00.

quickly in real-time. There is no choice but to store the data in limited main memory rather than in huge secondary storage. Sometimes even main memory is not fast enough. For example, for network traffic measurement and accounting, ordinary memory (DRAM) is too slow to process each IP packet in time, and fast memory (on-chip SRAM) is small and expensive [19, 5].

Second, the potentially unbounded property of data streams indicates that it is not possible to store the whole stream in a limited space. As a result, exact duplicate detection is infeasible in such data stream applications.

On the other hand, there are cases where efficiency is more important than accuracy, and therefore a quick answer with an allowable error rate is better than a precise one that is slow. Sometimes there is no way to have a precise answer at all. Therefore, load shedding is an important topic in data stream system research [33, 4]. Next, we provide some motivating examples.

1.1 Motivating Examples

URL Crawling. Search engines regularly crawl the Web to enlarge their collections of Web pages. Given the URL of a page, which is often extracted from the content of a crawled page, a search engine must probe its archive to find out if the URL is in the engine collection and if the fetching of the URL can be avoided [8, 24].

One way to solve the problem is to store all crawled URLs in main memory and search for a newly encountered URL in it. However, the set of URLs can be too large to fit in memory. Partially storing URLs in the secondary storage is also not perfect because of the large volume of searches that is expected to be performed within a time unit.

In practice, detecting duplicates precisely may not be indispensable. The consequence of an imprecise duplicate detection is that some already-crawled pages will be crawled again, or some new URLs which should be crawled are missed. The first kind of errors may lead the crawler to do some redundant crawling. This may not have a great influence on performance as long as the error rate is not high. For the second kind of errors, since a search engine can archive only a small portion of the entire web, a small miss rate is usually acceptable. In addition, if a missed URL refers to a high quality page, it is quite likely that the URL will be listed in the content of more than one crawled page, and there is less chance of missing it again. The solution adopted by the Internet Archive crawler introduces the second kind of errors[24].

Selecting distinct IP addresses. In network monitoring and accounting, it is often important to understand

the traffic and users on the network [25]. The following two queries, for example, may be interesting to network monitors: who are the users on the network within past one hour? Where do they go? The queries may be written as:

Select distinct Source/Destination IP from IP_PacketsStream
Within Past 1 Hour

The result could be helpful for further analyzing the user profiles, interests and the network traffic. Because of the high throughput of Internet routers and limited amount of fast memory, currently it is hard to capture per package information precisely, and sampling is often used as a compromise [18]. We are not sure if sampling is good for this duplicate elimination problem.

Duplicate detection in click streams. Recently, Metwally et al. propose another application for approximate duplicate detection in a streaming environment [29]. In a Web advertising scenario, advertisers pay web site publishers for clicks on their advertises (or links). For the sake of profit, it is possible that a publisher fakes some clicks (using scripts), hence a third party, called an advertising commissioner, may want to detect those false clicks by monitoring duplicate user IDs. We discuss more about their work in the related work section.

1.2 Our Contributions

In this paper, we propose Stable Bloom Filter(SBF), which extends and generalizes the regular Bloom filter, and accordingly, a novel algorithm which dynamically updates the sketch to represent recent data. We find and prove the stable properties of an SBF including stability, exponential convergence rate and monotonicity, based on which we show that using constant space the chance of a false positive can be bounded to a constant independent of the stream size, and this constant is explicitly derived. Furthermore, we show that the processing time of SBF for each element in the stream is also constant independent of the stream size. To make our algorithm readily applicable in practice, we provide detailed discussions of the parameter setting issues both in theory and in experiments. And we compare our method to alternative methods using both real and synthetic data. The result shows that our method is superior in terms of both accuracy and time efficiency when a fixed small space and an acceptable false positive rate are given.

1.3 Roadmap

In Section 2, we present the problem statement and some background on existing approaches. Our solution is presented and discussed in Section 3. In Section 4, we discuss how our algorithm can be used in practice. In Section 5, we verify our theoretical findings, experimentally evaluate our method and report the results of our comparisons to those from alternative methods. Related work is reviewed in Section 6, and conclusions and future work are discussed in Section 7.

2. PRELIMINARIES

This section presents the problem statement in a data stream model and some possible solutions.

2.1 Problem Statement

We consider a data stream as a sequence of numbers, denoted by $S_N = x_1, \ldots, x_i, \ldots, x_N$, where N is the size of the stream. The value of N can be infinite, which means that the stream is not bounded. In general, a stream can be a sequence of records, but it is not hard to transform each record to a number (e.g., using hashing or fingerprinting) and use this stream model.

Our problem can be stated as follows: given a data stream S_N and a certain amount of space, M, estimate whether each element x_i in S_N appears in x_1, \ldots, x_{i-1} or not. Since our assumption is that M is not large enough to store all distinct elements in x_1, \ldots, x_{i-1} , there is no way to solve the problem precisely. Our goal is to approximate the answer and minimize the number of errors, including both false positives and false negatives, where a false positive is a distinct element wrongly reported as duplicate, and a false negative is a duplicate element wrongly reported as distinct.

To address this problem, we examine two techniques that have been previously used in different contexts.

2.2 The Buffering Method

A straightforward solution is to allocate a buffer and fill the buffer with enough elements of the stream. For each new element, the buffer can be checked, and the element may be identified as distinct if it is not found in the buffer, and duplicate otherwise. When the buffer is full, a newly arrived element may evict another element out of the buffer before it is stored. There are many replacement policies for choosing an element to be dropped out (e.g. [22]). Clearly, buffering introduces no false positives. We will use this method in our experiments and compare its performance to that of our method.

2.3 Bloom Filters

Bloom [7] proposes a synopsis structure, known as the Bloom filter, to approximately answer membership queries. A Bloom filter, BF, is a bit array of size m, all of which are initially set to 0. For each element, K bits in BF are set to 1 by a set of hash functions $\{h_1(x), \ldots, h_K(x)\}$, all of which are assumed to be uniformly independent. It is possible that one bit in BF is set multiple times, while only the first setting operation changes 0 into 1, and the rest have no effect on that bit. To know whether a newly arrived element x_i has been seen before, we can check the bits $\{h_1(x_i), \ldots, h_K(x_i)\}$. If any one of these bits is zero, with 100% confidence we know x_i is a distinct element. Otherwise, it is regarded as a duplicate with a certain probability of error. An error may occur because it is likely that the cells $\{h_1(x_i), \ldots, h_K(x_i)\}$ are set before by elements other than x_i .

The probability of a false positive (false positive rate) $FP = (1-p)^K$, where $p = (1-1/m)^{Kn}$ is the probability that a particular cell is still zero after seeing n distinct elements. It is shown that when the number of hash functions $K = \ln(2)(m/n)$, this probability will be minimized to $(1/2)^{\ln(2)(m/n)}$, where m is the number of bits in BF and n is the number of distinct elements seen so far [30].

3. STABLE BLOOM FILTERS

The Bloom filter is shown to be useful for representing the presence of a set of elements and answering membership queries, provided that a proper amount of space is allocated according to the number of distinct elements in the set.

3.1 The Challenge to Bloom Filters

However, in many data stream applications, the allocated space is rather small compared to the size of the stream. When more and more elements arrive, the fraction of zeros in the Bloom filter will decrease continuously, and the false positive rate will increase accordingly, finally reaching the limit, 1, where every distinct element will be reported as a duplicate, indicating that the Bloom filter is useless.

Our general solution is to avoid the state where the Bloom filter is full by evicting some "elements" from it before the error rate reaches a predefined threshold. This is similar to the replacement operation in the buffering method, in which there are several possible policies for choosing a past element to drop. In many real world data stream applications, often the recent data is more important than the older data [13, 31]. However, for the regular Bloom filter, there is no way to distinguish the recent elements from the past ones, since no time information is kept. Accordingly, we add a random deletion operation into the Bloom filter so that it does not exceed its capacity in a data stream scenario.

3.2 Our Approach

To solve this problem, we introduce the Stable Bloom Filter, an extension of the regular Bloom filter.

DEFINITION 1 (STABLE BLOOM FILTER (SBF)). An SBF is defined as an array of integer $SBF[1], \ldots, SBF[m]$ whose minimum value is 0 and maximum value is Max. The update process follows Algorithm 1. Each element of the array is allocated d bits; the relation between Max and d is then $Max = 2^d - 1$. Compared to bits in a regular Bloom filter, each element of the SBF is called a **cell**.

Concretely speaking, we change bits in the regular Bloom filter into cells, each consisting of one or more bits. The initial value of the cells is still zero. Each newly arrived element in the stream is mapped to K cells by some uniform and independent hash functions. As in a regular Bloom filter, we can check if a new element is duplicate or not by probing whether all the cells the element is hashed to are non-zero. This is the duplicate detection process.

After that, we need to update the SBF. We first randomly decrement P cells by 1 so as to make room for fresh elements; we then set the same K cells as in the detection process to Max. Our symbol list is shown in Table 1, and the detailed algorithm is described in Algorithm 1.

3.3 The Stable Property

Based on the algorithm, we find an important property of SBF both in theory and in experiments: after a number of iterations, the fraction of zeros in the SBF will become fixed no matter what parameters we set at the beginning.

We call this the *stable property* of SBF and deem it important to our problem because the false positive rate is dependent on the fraction of zeros in SBF.

Theorem 1. Given an SBF with m cells, if in each iteration, a cell is decremented by 1 with a probability p and set to Max with a probability k, the probability that the cells becomes zero after N iterations is a constant, provided that N is large enough, i.e.

$$\lim_{N \to \infty} \Pr(SBF_N = 0)$$

exists, where SBF_N is the value of the cell at the end of iteration N .

Algorithm 1: Approximately Detect Duplicates using SBF

Data: A sequence of numbers $S = x_1, \dots, x_i, \dots, x_N$. **Result**: A sequence of "Yes/No" corresponding to each input number.

```
begin
   initialize SBF[1]...SBF[m] = 0
   for each x_i \in S do
      Probe K cells SBF[h_1(x_i)] \dots SBF[h_K(x_i)]
      if none of the above K cells is 0 then
      DuplicateFlag = "Yes"
      else
      DuplicateFlag = "No"
      Select P different cells uniformly at random
      SBF[j_1] \dots SBF[j_P], P \in \{1, \dots, m\}
      for each cell SBF[j] \in \{SBF[j_1], \dots, SBF[j_P]\}
         for each cell \in \{SBF[h_1(x_i)], \dots, SBF[h_K(x_i)]\}
       Output DuplicateFlag
end
```

In our formal discussion, we assume that the underlying distribution of the input data does not change over time. Our experiments on the real world data show that this is not a very strong assumption, and the experimental results verify our theory.

PROOF. Within each iteration, there are three operations: detecting duplicates, decreasing cell values and setting cells to Max. Since the first operation does not change the values of the cells, we just focus on the other two operations.

Within the process of iterations from 1 to N, the cell could be set 0, ..., (N-1) or even N times. Since the newest setting operation clears the impact of any previous operations, we can just focus on the process after the newest setting operation.

Let A_l denote the event that within the N iterations the most recent setting operation applied to the cell occurs at iteration N-l, which means that no setting happened within the most recent l iterations (i.e. from iteration N-l+1 to iteration N, l < N), and let \bar{A}_N denotes the event that the cell has never been set within the whole N iterations. Hence, the probability that the cell is zero after N iterations is as follows:

$$Pr(SBF_N = 0) = \sum_{l=Max}^{N-1} [Pr(SBF_N = 0 \mid A_l)Pr(A_l)] + Pr(SBF_N = 0 \mid \bar{A}_N)Pr(\bar{A}_N),$$
(1)

where

$$Pr(SBF_N = 0 \mid A_l) = \sum_{j=Max}^{l} {l \choose j} p^j (1-p)^{l-j}$$
 (2)

$$Pr(A_l) = (1 - k)^l k \tag{3}$$

$$Pr(SBF_N = 0 \mid \bar{A}_N) = 1 \tag{4}$$

Table	1:	The	Symbol	List

Symbols	Meanings
N	Number of elements in the input stream
M	Total space available in bits
m	Number of cells in the SBF
Max	The value a cell is set to
d	Number of bits allocated per cell
K	Number of hash functions
k	The probability that a cell is set
	in each iteration
P	Number of cells we pick to decrement by 1
	in each iteration
p	The probability that a cell is picked
	to be decremented by 1 in each iteration
h_i	The <i>ith</i> hash function

$$Pr(\bar{A}_N) = (1-k)^N. \tag{5}$$

We have Eq 2 because during those l iterations, there is no setting operation, and the cell becomes zero if and only if it is decremented by 1 no less than Max times. Clearly when l < Max, the cell is impossible to be decreased to 0, and l = N means \bar{A}_N happens, so we just consider the cases of $Max \le l \le (N-1)$ in Eq 2. When \bar{A}_N happens, the cell is 0 with a probability 1 because the initial value of the cell is 0 and it has never been set, therefore we have Eq 4. Having the above equations, we can prove that $\lim_{N\to\infty} Pr(SBF_N=0)$ exists. See Appendix for the details. \square

Having Theorem 1, now we can prove our stable property statement.

Corollary 1 (Stable Property). The expected fraction of zeros in an SBF after N iterations is a constant, provided that N is large enough.

PROOF. In each iteration, each cell of the SBF has a certain probability of being set to Max by the element hashed to that cell. Since the underlying distribution of the input data does not change, the probability that a particular element appears in each iteration is fixed. Therefore, the probability of each cell being set is fixed.

Meanwhile, the probability that an arbitrary cell is decremented by 1 is also a constant. According to Theorem 1, the probabilities of all cells in the SBF becoming 0 after N iterations are constants, provided that N is large enough. Therefore, the expected fraction of 0 in an SBF after N iterations is a constant, provided that N is large enough. \square

Now we know an SBF converges. In fact this convergence is like the process that a buffer is filled by items continually. SBF is stable means that its maximum capacity is reached, similar to the case that a buffer is full of items. Another important property is the convergence rate.

Corollary 2 (Convergence Rate). The expected fraction of 0s in the SBF converges at an exponential rate.

PROOF. From Equations 1, 4 and 5, we can derive

$$Pr(SBF_{N} = 0) - Pr(SBF_{N-1} = 0)$$

$$= Pr(SBF_{N} = 0 \mid A_{N-1})Pr(A_{N-1})$$

$$+ Pr(\bar{A}_{N}) - Pr(\bar{A}_{N-1})$$

$$= k(1 - k)^{N-1}(Pr(SBF_{N} = 0 \mid A_{N-1}) - 1)$$
(6)

Clearly, Eq. 6 exponentially converges to 0. i.e. $Pr(SBF_N[c]=0)$ converges at an exponential rate, and this is true for all cells in the SBF. Therefore, the expected fraction of 0s in the SBF converges at an exponential rate. \square

LEMMA 1 (MONOTONICITY). The expected fraction of 0s in an SBF is monotonically non-increasing.

PROOF. Since the value of Eq. 6 is always no greater than 0, the probability that a cell becomes zero is always decreasing or remains the same. Similar to the proof of Corollary 2, we can draw the conclusion. \square

This lemma will be used to prove our general upper bound of the false positive rate where the number of iterations needs not to be infinity.

3.4 The Stable Point

Currently we know the fraction of 0s in an SBF will be a constant at some point, but we do not know the value of this constant. We call this constant the stable point.

Definition 2 (Stable Point). The stable point is defined as the limit of the expected fraction of 0s in an SBF when the number of iterations goes to infinity. When this limit is reached, we call SBF stable.

From Eq 1, we are unable to obtain the limit directly. However, we can derive it indirectly.

Theorem 2. Given an SBF with m cells, if a cell is decremented by 1 with a constant probability p and set to Max with a constant probability k in each iteration, and if the probability that the cell becomes 0 at the end of iteration N is denoted by $Pr(SBF_N=0)$,

$$\lim_{N \to \infty} Pr(SBF_N = 0) = \left(\frac{1}{1 + \frac{1}{p(1/k - 1)}}\right)^{Max}$$
 (7)

PROOF. The basic idea is to make use of the fact that SBF is stable, the expected fraction of 0,1,...,Max in SBF should be all constant. See Appendix for the details. \square

The theorem can be verified by replacing the parameters in Eq. 1 with some testing values.

From Theorem 2 we know the probability that a cell becomes 0 when SBF is stable. If all cells have the same probability of being set, we can obtain the stable point easily. However, that requires the data stream to be uniformly distributed. Without this uniform distribution assumption, we have the following statement.

Theorem 3 (SBF Stable Point). When an SBF is stable, the expected fraction of 0s in the SBF is no less than

$$\left(\frac{1}{1+\frac{1}{P(1/K-1/m)}}\right)^{Max},$$

where K is the number of cells being set to Max and P is the number of cells decremented by 1 within each iteration.

PROOF. The basic idea is to prove the case of m=2 first, and generalize it to $m \geq 2$. See Appendix for the details. \square

3.5 False Positive Rates

In our method, there could be two kinds of errors: false positives (FP) and false negatives (FN). A false positive happens when a distinct element is wrongly reported as duplicate; a false negative happens when a duplicate element is wrongly reported as distinct. We call their probabilities false positive rates and false negative rates.

Corollary 3 (FP Bound when Stable). When an SBF is stable, the FP rate is a constant no greater than FPS,

$$FPS = \left(1 - \left(\frac{1}{1 + \frac{1}{P(1/K - 1/m)}}\right)^{Max}\right)^{K}.$$
 (8)

PROOF. If $Pr_j(0)$ denotes the probability that the cell SBF[j] = 0 when the SBF is stable, the FP rate is

$$\left(\frac{1}{m}(1 - Pr_1(0)) + \dots + \frac{1}{m}(1 - Pr_m(0))^K\right)$$
$$= \left(1 - \frac{1}{m}(Pr_1(0) + \dots + Pr_m(0))\right)^K$$

Please note that $\frac{1}{m}(Pr_1(0) + \cdots + Pr_m(0))$ is the expected fraction of 0s in the SBF. According to Theorems 1 and 3, the FP rate is a constant and Eq. 8 is an upper bound of the FP rate. \square

This upper bound can be reached when the stream elements are uniformly distributed.

COROLLARY 4 (THE CASE OF REACHING THE FP BOUND). Given an SBF with m cells, if the stream elements are uniformly distributed when the SBF is stable, the FP rate is FPS (Eq. 8).

PROOF. Because elements in the input data stream are uniformly distributed, each cell in the SBF will have the same probability to be set to Max. According to Theorem 1 and the proof of Theorem 3 we can derive this statement. \square

COROLLARY 5 (GENERAL FP BOUND). Given an SBF with m cells, FPS (Eq. 8) is an upper bound for FP rates at all time points, i.e. before and after the SBF becomes stable.

PROOF. This can be easily derived from Lemma 1 and Corollary 3. \qed

Therefore, the upper bound for FP rates is valid no matter the SBF is stable or not.

From Eq. 8 we can see that m has little impact on FPS, since 1/m is negligible compared to 1/K ($m \gg K$). This means the amount of space has little impact on the FP bound once the other parameters are fixed. The value of P has a direct impact on FPS: the larger the value of P, the smaller the value of FPS. This can be seen intuitively: the faster the cells are cleared, the more 0s the SBF has, thus the smaller the value of FPS is. Oppositely, increasing the value of Max results in the increase of FPS. In contrast to P and Max, from the formula we can see the impact of the value of K on FPS is twofold: intuitively, using more hash functions increases the distinguishing power for duplicates (decreases FPS), but "fills" the SBF faster (increases FPS).

3.6 False Negative Rates

A false negative (FN) is an error when a duplicate element is wrongly reported as distinct. It is generated only by duplicate elements, and is related to the input data distribution, especially the distribution of gaps. A gap is the number of elements between a duplicate and its nearest predecessor.

Suppose a duplicate element x_i whose nearest predecessor is $x_{i-\delta_i}(x_i = x_{i-\delta_i})$ is hashed to K cells, $SBF[C_{i1}]$... $SBF[C_{iK}]$. An FN happens if any of those K cells is decremented to 0 during the δ_i iterations when x_i arrives. Let $PR0(\delta_i, k_{ij})$ be the probability that cell C_{ij} (j = 1...K) is decremented to 0 within the δ_i iterations. This probability can be computed as in Eq 1:

$$PR0(\delta_i, k_{ij}) = \sum_{l=Max}^{\delta_i - 1} [Pr(SBF_{\delta_i} = 0 \mid A_l)Pr(A_l)] + Pr(SBF_{\delta_i} = 0 \mid \bar{A}_{\delta_i})Pr(\bar{A}_{\delta_i}),$$
(9)

where

$$Pr(SBF_{\delta_i} = 0 \mid A_l) = \sum_{j=Max}^{l} {l \choose j} p^j (1-p)^{l-j},$$
 (10)

$$Pr(A_l) = (1 - k_{ij})^l k_{ij},$$
 (11)

$$Pr(SBF_{\delta_i} = 0 \mid \bar{A}_{\delta_i}) = \sum_{j=Max}^{\delta_i} {\delta_i \choose j} p^j (1-p)^{\delta_i - j}, \quad (12)$$

$$Pr(\bar{A}_{\delta_i}) = (1 - k_{ij})^{\delta_i}, \tag{13}$$

and k_{ij} is the probability that cell C_{ij} is set to Max in each iteration. The meanings of the other symbols are the same as those in the proof of Theorem 1. Also, most of above equations are similar, except that Eq. 12 is different from Eq. 4. This is because the initial value of the cell in the case of Theorem 1 is 0, but it is Max here.

Furthermore, The probability that an FN occurs when x_i arrives can be expressed as follows:

$$Pr(FN_i) = 1 - \prod_{i=1}^{K} (1 - PR0(\delta_i, k_{ij})).$$
 (14)

When $\delta_i < Max$, $PR0(\delta_i, k_{ij})$ is 0, which means the FN rate is 0. Besides, for distinct elements who have no predecessors, the FN rates are 0. The value of δ_i depends on the input data stream. In the next section, we discuss how to adjust the parameters to minimize the FN rate under the condition that the FP rate is bounded within a user-specified threshold.

4. FROM THEORY TO PRACTICE

In the previous section we propose the SBF method and analytically study some of its properties: stability, convergence rate, monotonicity, stable point, FP rates (upper bound) and FN rates. In this section, we discuss how SBF can be used in practice and how our analytical results can be applied.

4.1 Parameters Setting

Since FP rates can be bounded regardless of the input data but FN rates cannot, given a fix amount of space, we can choose a combination of Max, K and P that minimizes the number of FNs under the condition that the FP rate is within a user-specified threshold. Meanwhile we take into account the time spent on each element, which is crucial in many data stream applications.

The expected number of FNs. Since our goal is to minimize the number of FNs, we can compute the expected number of FNs, E(#FN), as the sum of FN rates for each duplicate element in the stream: $E(\#FN) = \sum_{i=1}^{\tilde{N}} Pr(FN_i)$, where \tilde{N} is the number of duplicates in the stream. Combining it with Eq. 14 we have

$$E(\#FN) = \sum_{i=1}^{\tilde{N}} [1 - \prod_{j=1}^{K} (1 - PR0(\delta_i, k_{ij}))], \quad (15)$$

where δ_i is the number of elements between x_i and its predecessor, and k_{ij} is the probability that cell C_{ij} is set to Max in each iteration. C_{ij} is the cell element x_i is hashed to by the jth hash function. Since the function $PR0(\delta, k)$ is continuous, for each x_i there must be a \bar{k}_i such that

$$(1 - PR0(\delta_i, \bar{k}_i))^K = \prod_{j=1}^K (1 - PR0(\delta_i, k_{ij})).$$

For the same reason, there must be an "average" $\hat{\delta}$ and an "average" \hat{k} such that

$$\widetilde{N}[1 - (1 - PR0(\widehat{\delta}, \widehat{k}))^K] = \sum_{i=1}^{\widetilde{N}} [1 - (1 - PR0(\delta_i, \bar{k}_i))^K] = E(\#FN).$$

Let $f(\hat{\delta}, \hat{k})$ be the average FN rate, i.e.

$$f(\widehat{\delta}, \widehat{k}) = 1 - (1 - PR0(\widehat{\delta}, \widehat{k}))^{K}. \tag{16}$$

Our task then becomes setting the parameters to minimize this average FN rate, $f(\hat{\delta}, \hat{k})$, while bounding the FP rate within an acceptable threshold.

The setting of P. Suppose users specify a threshold FPS, indicating the acceptable FP rate. This threshold establishes a constraint between the parameters: Max, K, P, m and FPS according to Corollary 5. Thus, users can set P based on the other parameters:

$$P = \frac{1}{\left(\frac{1}{(1 - FPS^{1/K})^{1/Max}} - 1\right)(1/K - 1/m)}.$$
 (17)

Since m is usually much larger than K, 1/m is negligible in the above equation, which means that the setting of P is dominated only by FPS, Max, K, and is independent of the amount of space.

The setting of K. Since the FP constraint can be satisfied by properly choosing P, we can set K such that it minimizes the number of FNs. From the above discussions we know the relationship between the expected number of FNs and the probabilities that cells are set to Max. Next, we connect these probabilities with our parameters K, m and the input stream.

Suppose there are N elements in the stream of which n are distinct, and the frequency for each distinct element x_l is f'_l . Clearly $\sum_{l=1}^n f'_l = N$. Assuming that the hash functions are uniformly at random, for a cell that element x_i is hashed to, the number of times the cell is set to Max after seeing all N elements is a random variable, $f_i + \sum_{l=1}^{n-1} f'_l I_l$, where f_i is the frequency of x_i in the stream, and each $I_l(l=1...n-1)$ is an independent random variable following the Bernoulli distribution, i.e.

$$I_{l} = \begin{cases} 1, & Pr(I_{l} = 1) = \frac{K}{m}, \\ 0, & Pr(I_{l} = 0) = 1 - \frac{K}{m}. \end{cases}$$

Thus, $k_i = \frac{1}{N}f_i + \frac{1}{N}\sum_{l=1}^{n-1}f_l'I_l$ is also a random variable. For the K cells an element x_i is hashed to, the probabilities that those cells are set to Max in each iteration can be considered as K trials of k_i . Since the mean and the variance of each I_l are $\mu_{I_l} = \frac{K}{m}$ and $\sigma_{I_l}^2 = \frac{K}{m}(1 - \frac{K}{m})$ respectively, it is not hard to derive that the mean and variance of k_i : $\mu_{k_i} = \frac{1}{N}f_i + \frac{1}{N}\frac{K}{m}\sum_{l=1}^{n-1}f_l' = \frac{1}{N}f_i + \frac{K}{m}(1 - \frac{1}{N}f_i)$ and $\sigma_{k_i}^2 = \frac{1}{N^2}\frac{K}{m}(1 - \frac{K}{m})\sum_{l=1}^{n-1}f_l'^2$. Let

$$\phi_i = \frac{k_i - \mu_{k_i}}{\sqrt{\frac{K}{m}(1 - \frac{K}{m})}} = \frac{k_i - \frac{1}{N}f_i - \frac{K}{m}(1 - \frac{1}{N}f_i)}{\sqrt{\frac{K}{m}(1 - \frac{K}{m})}}$$
(18)

be a transformation on k_i . Then $\phi_i \in \left[-\frac{\frac{1}{N}f_i + \frac{K}{m}(1 - \frac{1}{N}f_i)}{\sqrt{\frac{K}{m}(1 - \frac{K}{m})}}\right]$

 $\frac{1-\frac{1}{N}f_i-\frac{K}{m}(1-\frac{1}{N}f_i)}{\sqrt{\frac{K}{m}(1-\frac{K}{m})}}]$ is a random variable whose mean and

variance are: $\mu_{\phi_i} = 0$ and $\sigma_{\phi_i}^2 = \frac{1}{N^2} \sum_{l=1}^{n-1} f_l'^2$. Note that $\sigma_{\phi_i}^2 \leq \frac{1}{N^2} \sum_{l=1}^{n-1} (f_l' f_{max}') < \frac{1}{N^2} \sum_{l=1}^{n} (f_l' f_{max}') = \frac{f_{max}'}{N}$, where f_{max}' is the frequency of the most frequent element in the stream. Since the mean and the variance of the random variable ϕ_i are independent of K and m, we may consider ϕ_i independent of K and m in practice. In other words, ϕ_i can be seen as a property of the input stream. Similar to \bar{k}_i we can obtain a $\bar{\phi}_i$ such that

$$1 - (1 - PR0(\delta_i, \bar{\phi}_i))^K = 1 - \prod_{j=1}^K (1 - PR0(\delta_i, \phi_{ij})) = Pr(FN_i)$$
(19)

where $\bar{\phi}_i \in [Min(\phi_{ij}), Max(\phi_{ij})]$, and ϕ_{ij} are K trials of $\phi_i(j=1...K)$. Since the standard deviation of ϕ_i is very small compared to the range of its possible values, and ϕ_i is considered independent of K and m, $\bar{\phi}_i$ can be approximately considered independent of K and K as well. For example, when $\frac{f'_{max}}{N} = 0.01$, $\frac{f_i}{N} = \frac{1}{10^6}$, $\frac{m}{K} = 10^6$, the value range of ϕ_i is approximately [0, 1000], while $\sigma_{\phi_i} \leq 0.1$.

To set K, keeping all other parameters fixed we vary the values of K and compute the FN rate based on Equations 19, 9, 17 and 18. By trying different combinations of parameter settings $(Max=1,3,7,15,FPS=0.2,0.1,0.01,0.001,m=1000,10^5,10^7,10^9,\ \delta_i=10,100,1000,10^5,10^7,10^9,\ fxn=\frac{f_i}{N}=0.5,0.1,\ 0.01,0.0001,0.000001$ and $\bar{\phi}_i=0.001,0.1,1,10,100,1000,\ldots)$, we find that once the values of FPS and Max are fixed, the value of the optimal or near optimal K is independent of the values of $\delta_i,\ f_i/N,\ \bar{\phi}_i$ and m.

OBSERVATION 1. The value of the optimal or near optimal K is dominated by Max and FPS. The input data and the amount of the space have little impact on it. Furthermore, the value is small (<10 in all of our testing).

For example, when FPS=0.2 and Max=1, the value of the optimal or near optimal K is always between 1 and 2; when FPS=0.1 and Max=3, it is always between 2 and 3; when FPS=0.01 and Max=3, it is always between 4 and 5. Therefore, without considering the input data stream we can pre-compute the FN rates for different values of K based on Max and FPS and choose the optimal one. Our experimental results reported in the next section are consistent with this observation.

Figure 1 shows an example of how the FN rates change with different values of K under different parameter settings based on Eq. 19 and Eq. 9. From the figure we can see that in the case of Max = 1 and FPS = 0.1, we can set K to

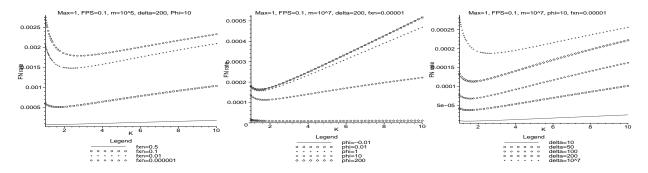


Figure 1: FN rates vs. K

2 regardless of the input stream and the amount of space. Therefore, in practice we can set ϕ_i , δ_i and f_i/N to some testing values (e.g. 0, 200, 0.00001 respectively) and find the optimal or near optimal K using the formulas.

The setting of Max. Based on the above discussion, we can set K regardless of the input data, but to choose a proper value of Max, we need to consider the input. More specifically, to minimize the expected number of FNs, we need to know the distributions of gaps in the stream to try different possible values of Max on Eq. 16 and 9. Since the expected value of ϕ_i is 0 and its standard deviation is very small compared to its value domain, we set $\widehat{\phi}$ to 0 in the formulas.

To effectively use the space we only set Max to 2^d-1 (d is the number of bits/cell), otherwise the bits allocated for each cells are just wasted. Furthermore, in terms of the time cost, Max should be set as small as possible, because the larger Max is set, the larger P will be (see Eq.17, assuming K is a constant). For example, when Max=1, FPS=0.01 and K=3(the optimal K), the computed value of P is 10; while Max=15, FPS=0.01, and K=6 (the optimal K), the value of P computed is 141 (the value of P is not sensitive to m). In practice, we limit our choice of Max to 1, 3 and 7 (if higher time cost can be tolerated, larger values of Max can be tried similarly).

To choose a Max from these candidates, we try each value on Eq. 16 and Eq. 9, and find the one minimizing the average FN rate.

Figure 2 depicts the difference of average FN rates between Max=3 and Max=1 based on Eq.16 and Eq.9. We set $\frac{f_i}{N}=0$ because we are considering the entire stream rather than a particular element in this case. The figure shows that if the values of $\mathrm{gaps}(\hat{\delta})$ are smaller than a threshold, Max=3 is a better choice. When the gaps become larger, Max=1 is better. If the gaps are large enough, there is not much difference between the two options. The figure shows the cases under different settings of $\hat{\phi}$, space sizes and acceptable FP rates.

We also tested the FN rate difference between Max = 7 and Max = 3, and observe the same general rule: a larger value of Max is better for smaller gaps, and a smaller FPS suggests a larger setting of Max. Similarly, we find no exceptions under other combinations of settings: FPS = 0.2, 0.1, 0.01, 0.001 and $m = 1000, 10^5, 10^7, 10^9$.

Trying different value of Max on Eq. 16 and Eq. 9, we set $\hat{\phi}$ to 0 and assume that the distribution of the gaps are known. If the assumption cannot be satisfied in practice, we suggest setting Max to 1, because this setting often benefits

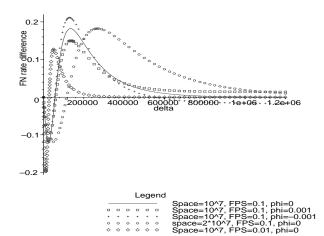


Figure 2: FN rates difference between Max = 3 and Max = 1 (Max3 - Max1) vs. gaps. K is set to the optimal value respectively under different settings.

a larger range of gaps in the stream. And our experiments also show that in most cases setting Max to 1 achieves better improvements in terms of error rates compared to the alternative method, LRU buffering. In fact, buffering performs well when gaps are small, which is similar to the cases that Max is larger. The behavior of our SBF becomes closer to the buffering method when the value of Max is set larger.

Summary of parameters setting and FP/FN tradeoff. In practice, given an FPS, the amount of available space and the gap distribution of the input data, to set the parameters properly, we first establish a constraint for P, which means P can be computed based on FPS, m, Maxand K; then find the optimal values of K for each case of Max(1,3,7) by trying limited number (< 10) of values of K on the FN rate formulas; Last, we estimate the expected number of FNs for each candidate of Max using its corresponding optimal K and some prior knowledge of the stream, and thus choose the optimal value of Max. In the case that no prior knowledge of the input data is available, we suggest setting Max = 1. The described parameter setting process can be implemented within a few lines of codes. In addition, based on the above analysis, we obtain a constraint function between FN rates, FPS and other parameters, where the tradeoff between FPs and FNs can be clearly seen: when the other parameters are fixed, the larger the FP bound, the smaller the FN rate is.

4.2 Time Complexity

Since our goal is to minimize the error rates given a fixed amount of space and an acceptable FP rate, we do not discuss space complexity, and just focus on time complexity. There are several parameters to be set in our method: K, Max and P. Within each iteration, we firstly need to probe K cells to detect duplicates. After that we pick P cells and decrement 1 from them. Last we set the same K cells as probed in the first step to Max.

Therefore, the time cost of our algorithm for handling each element is dominated by K and P.

Theorem 4 (Time Complexity). Given that K and Max are constants, processing each data stream element needs O(1) time, independent of the size of the space and the stream.

PROOF. From Eq.17 we know the constraint among K, P, m, Max and FPS (the user-specified upper bound of false positive rates). If K, Max and FPS are constants, the relationship between P and m is inversely proportional, which means m has no impact on the processing time. Since Max, K and FPS are all constants, the time complexity is O(1). \square

Based on the discussion of parameter settings, we know that the selection of K is insensitive to m. Furthermore, the value of m and the stream size have little impact on the selection of Max based on our testing on Eq. 16. Therefore, our algorithm needs O(1) time per element, independent of the size of space.

5. EXPERIMENTS

In this section, we first describe our data set and the implementation details of 4 methods: SBF, Bloom Filter(BF), Buffering and FPBuffering (a variation of buffering which can be fairly compared to SBF). We then report some of the results on both real and synthetic data sets. Last, we summarize the comparison between different methods.

5.1 Data Sets

Real World Data. We simulated a web crawling scenario [8] as discussed in Section 1, using a Web crawl data set obtained from the Internet archive [2]. We hashed each URL in this collection to a 64-bit fingerprint using Rabin's method [32], as was done earlier [8]. With this fingerprinting technique, there is a very small chance that two different URLs are mapped to the same fingerprint. We verified the data set and did not find any collisions between the URLs. In the end, we obtained a 28GB data file that contained about 700 million fingerprints of links, representing a stream of URLs encountered in a Web crawling process.

Synthetic Data. We used 2 steps in generating the synthetic data. First, we generated a sequence of positive integers in which there was only one frequent integer appearing multiple times, and all others were distinct integers. Second, we scanned through the integer sequence generated in the first step, and randomly converted the only frequent integer into another integer with certain probability. We describe the details next.

In the first step, we used 2 different models to simulate the arrival positions of the only frequent integer in the sequence: the Poisson model and the b-model. The Poisson model is widely used in modeling real world traffic [15]; it is also

shown that when the traffic has a bursty or a self-similar property, the b-model is more accurate [36].

The Poisson model had a parameter $\lambda (\leq 1)$, indicating the number of arrivals of the frequent integer within a unit time interval. Since we used a tuple-based stream model, there were no explicit timestamps for elements in our case. Instead, we used the element arrival positions as timestamps. As a result, when the arrivals of the only frequent integer followed a Poisson process with a parameter λ , the fraction of the frequent integer among an arbitrary number of elements is λ on average. It was also shown that the inter-arrival time (the number of elements in our case) between two consecutive arrivals followed an exponential distribution with a parameter $1/\lambda$ [15].

To simulate bursty traffics we used the b-model. The b-model had 3 parameters: bias $b(\geq 0.5)$, aggregation level l, and total volume v. When b=0.7 and l=1, the entire time interval under consideration was divided into 2 equal sub-intervals: v*b traffic volume in the first sub-interval, and v*(1-b) in the second sub-interval. In other words, 70% of the total volume v was in the first sub-interval and 30% in the second sub-interval (or 30% in the first and 70% in the second, but we assumed the former case for the ease of presentation). If l=2, we could further divide the first sub-interval into two equal finer sub-intervals, and allocate 70% of the volume in the higher level sub-interval into the first finer sub-interval and the remaining 30% into the second finer sub-interval. This process could be continued recursively for a larger l.

In our tuple-based stream model, there were no explicit time intervals. Instead, we used the element arrival positions as timestamps. The traffic volume v in our case was the fraction of duplicates. As an example, b = 0.7 and l = 1meant that 70% of the arrivals of the frequent integer were in the first half of the sequence, and 30% in the second half. However, it was possible that the predicted number of arrivals of the frequent integer in the first half was greater than the total number of arrivals in the first half. For example, if v = 0.9, the number of duplicates in the first half of the sequence was 0.9 * 0.7 = 0.63, which meant that 63% of the total number of elements in the sequence should be allocated in the first half of the sequence. This was obviously infeasible. Observing this, we obtained a constraint between v, b and $l: l \leq ln(v)/ln(\frac{1}{2b})$. This constraint indicated that to obtain a larger aggregation levels l, the value of v and b should be smaller. For example, when v = 0.1and $b=0.7,\,l\leq 6.$ But when v=0.5 and $b=0.8,\,l\leq 1.$ When b = 0.5, there was no constraint because the recursive division process was always possible.

In the second step, we scanned through the integer sequence generated in the first step using the Poisson model or the b-model, and randomly converted the only frequent integer into another number i with a probability q_i , which followed an exponential distribution with a parameter u. After the second step, there were more than one frequent integer in the sequence, and the new arrival process of any frequent number i still followed the Poisson model or b-model, with a new parameter different from the old one by a factor of q_i (the Poisson case) or with the same parameter (the b-model case). By varying the parameters of the Poisson model or b-model in the first step, we were able to tune the arrival rate or the burstness of duplicates. By varying the parameters of the exponential distribution in the second

step, we were able to tune the fraction of distinct integers in the set of duplicates and the frequency distribution of those duplicates.

5.2 Implementation Issues

SBF Implementation. Our algorithm is simple and straightforward to implement: 1) hash each incoming stream element into K numbers, and check the corresponding K cells; 2) generate a random number, decrement the corresponding cell and (P-1) cells adjacent to it by 1; 3) set those K cells checked in step 1 to Max. One issue we have to deal with is setting the parameters Max, K and P.

Based on the previous discussion, we can find some typical settings for different FPS regardless of different data sets. For example, for FPS=10%, we set Max=1, K=2 and P=4, which worked well for different data sets in our experiments. To evaluate our work, we implemented 3 alternative methods: Bloom Filters(BF), buffering and FPBuffering.

Bloom Filters Implementation. In our implementation, BF becomes a special case of SBF where Max=1 and P=0. Knowing the number of distinct elements and the amount of space, we can compute the optimal K (see the discussion in Section 2.3).

Buffering Implementation. Implementing buffering needs more work. First, to detect duplicates we need to search the buffer. To speed up the searching process, we used a hash table, as was done by Broder et al. [8]. Second, when the buffer is full, we have to choose a policy to evict an old element and make room for the newly coming one. Broder et al. [8] compared 5 replacement policies for caching Web crawls. They showed that LRU and Clock, the latter of which is used as an approximation of LRU, were the best practical choices for the URL data set (there were some ideal but impractical ones as well); in terms of miss rate (FN rate in our case), there was almost no difference between these two though. We chose LRU in our experiments. Both LRU and clock need a separate data structure for buffering elements, so that we can choose one for eviction [8]. For simplicity of the implementation, we used a double linked list, while Broder et al. chose a heap. This difference should not affect our experimental results since our error rate comparison did not account for the extra space we used in buffering.

FPbuffering Implementation. To fairly and effectively compare our method to buffering method, we introduced a variation of buffering called FPbuffering. There are two reasons for this. First, SBF has both FPs and FNs while buffering has only FNs. In different applications the importance of FPs and FNs may be different. So it is hard to compare SBF to buffering directly. Second, the fraction of duplicates in the data stream is a dominant factor affecting the error rates, because FNs are only generated by duplicates and FPs by distincts. For buffering, a data stream full of duplicates will cause many FNs, while a stream consisting of all distincts cause no errors at all.

FPbuffering works as follows: when a new data stream element arrives, we search it in the buffer. If found, report duplicate as in the original buffering; if not found, we report it as a duplicate with a probability q, and as a distinct with probability (1-q). In the original buffering, if an element is not found in the buffer, it is always reported as a distinct. This variation can increase the overall error rates of buffering when there are more distincts in the stream,

but can decrease the error rates when there are more duplicates in the stream. Clearly, FPbuffering has both FPs and FNs. In fact, q is the FP rate since a distinct element will be reported as duplicate with a probability q. By setting a common FP rate with SBF, we can fairly compare their FN rates, and this comparison will not be affected by the fraction of duplicates in the stream.

In our experiments, we assumed that buffering and FP-buffering required 64 bits per URL fingerprint on the Web data (same as [8]), and 32 bits per element on the synthetic data simulating the size of an IP address. In other words, each element occupies 64 bits for the real data and 32 bits for the synthetic data.

5.3 Theory Verification

In an experiment to verify some of our theoretical results, we tested the stable properties of our SBF and the convergence rate. The results are shown in Figures 3. From the graph we can see that the fraction of zeros in the SBF decreases until it becomes stable. When the allocated space is small, the convergence rate is higher. This is because when the space is larger, the probability a cell being set is smaller. From Corollary 2 and Eq 6 we know the convergence rate should be lower in this case. Also, we can see that when the SBF is stable, the fraction of zeros is still fluctuating slightly. This can be caused by the input data stream whose underlying distributions is varying. Furthermore, the fraction of 0s keeps decreasing in general before being stable; at this point, the FP rate should reach its maximum, and our theoretical upper bound for FP rates is also valid before the SBF become stable in this case. Our next experiments show the effectiveness of our theoretical FP bound. When the space is relatively small, the real FP rate is close to the bound.

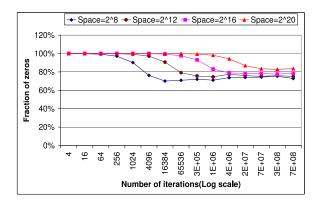


Figure 3: Fraction of zeros changed with time on the whole real data set (Max=1, K=2, P=4, FPS=10%), space unit=64bits

5.4 Error Rates Comparison

This experiment compared the error rates between SBF, FPbuffering, buffering and BF on the real data by varying the size of the space. The real data set contained 694,984,445 URL fingerprints, of which 14.75% were distinct. To do the comparison under different fractions of distinct elements, we built two more real data sets by using the first 100,000 and 10 million elements of the original data file. The fractions of distinct elements for these two data set respectively were 75.66% and 48.51%. For SBF, we set the acceptable FP

rate (number of FPs/number of distincts), FPS, to 10%, and Max, K,P to 1, 2, 4 respectively. The results under different FPS settings will be shown in the next experiment. For FPbuffering, we set the FP rates to the same number as SBF so that both generated exactly the same number of FPs, and we can just compare their FN rates. Please note that buffering and BF only generate FNs and FPs respectively, and FPbuffering reduces the FN rates of buffering substantially in most cases by introducing a certain amount of FPs.

76% Distinct(100K elements)

Space	FPBuffering	SBF	SBF&FPBuffering	Buffering	BF
(bits)	FN Rate	FN Rate	FP Rate	FN Rate	FP Rate
16384	46%	35%	8.4%	50%	83.8%
65536	35%	23%	6.7%	37%	43.4%
262144	24%	11%	3.0%	25%	7.2%
1048576	9%	4%	0.4%	9%	0.6%
4194304	0.1%	1%	0.1%	0.1%	0.1%
40% Distinct (10M alaments)					

49% Distinct (10M elements)						
Space	FPBuffering	SBF	SBF&FPBuffering	Buffering	BF	
(bits)	FN Rate	FN Rate	FP Rate	FN Rate	FP Rate	
16384	60%	54%	8.1%	65.7%	99.7%	
262144	48%	40%	6.6%	51.5%	95.9%	
4194304	30%	23%	4.5%	31.7%	43.5%	
67108864	11%	5%	0.5%	11.0%	0.7%	
1073741824	0.0%	0.4%	0.1% (only SBF)	0.0%	0.1%	
15% Distinct (695M elements)						

13 % District (093W elements)					
Space	FPBuffering	SBF	SBF&FPBuffering	Buffering	BF
(bits)	FN Rate	FN Rate	FP Rate	FN Rate	FP Rate
16384	71%	68%	8.2%	78%	99.99%
262144	65%	60%	7.0%	70%	99.81%
4194304	55%	50%	5.7%	58%	96.93%
67108864	43%	36%	3.5%	45%	54.08%
1073741824	17%	13%	1.6%	17%	2.65%
4294967296	2%	5%	1.6%	2%	1.87%

Figure 4: Error rates comparison between SBF, FP-Buffering, Buffering and BF

Comparison between different methods. The tables in Figure 4 show that when the space is relatively small, SBF is better. SBF beats FPbuffering by 3-13% in terms of FN rate on different data sets, when their FP rates are the same. For the problem we are studying, we think this amount of improvement is nontrivial for 2 reasons. First, Broder et al. [8] implemented a theoretically optimal buffering algorithm called MIN, which assumes "the entire sequence of requests is known in advance", and accordingly chooses the best replacement strategy. Even this obviously impractical and ideal algorithm can only reduce the miss rates (FN rates in our case) of the LRU buffering, by no more than 5% in about 2/3 region (different buffer sizes). Second, from the tables we can see that even increasing the amount of the space by a factor of 4, the FN rates for buffering can be decreased by around 10-20%, which means the improvement from SBF may be equivalent of that from doubling the amount of space. The FP rates of BF is much higher than the acceptable FP rates in the first 2-3 rows of each table. Since buffering only generates FNs, it is not comparable to SBF here. But we can see that the FN rates of FPbuffering also decrease by introducing FPs into it.

However, we also notice that when the space is relatively large (the last row of each table), SBF performs not as good as buffering and BF. This is because when the space is large, BF might be able to hold all the distincts and keep a reasonable FP rates. We can directly compute the amount of

space required based on the FP rates desired and the number of distincts in the data set according to the formula in Section 2.3. In this case, there is no need to evict elements out of the BF, which means SBF is not applicable. If we can afford even more space, which is large enough to hold all the distincts in the data set using a buffer, there will be no errors at all. The last row of the second table shows this scenario. But in many data stream applications, a fast storage is needed to satisfy real time constraints and the size of this storage is typically less than the universe of the stream elements as discussed in Introduction.

Another fact is that in both SBF and buffering, we can refresh the storage and bias it towards recent data; they both evict stale elements continuously and keep those fresh ones. While BF is not applicable in this case since BF can be only used to represent a static data set. Thus, it is not useful in many data stream scenarios that require dynamic updates.

Varying acceptable FP rates. Another experiment we ran was to test the effect of changing the acceptable FP rates. The results are shown in Figure 5. In this experiments, we set Max=3, K=4 when acceptable FP rates are set to 0.5% and 1%, and set Max=1, K=2 when acceptable FP rates are set to 10% and 20%. The bar chart depicts the FN rate difference between FPbuffering and SBF. Again, the FP rates of both methods are set to the same number. Clearly, it shows that the more FPs are allow, the better SBF performs.

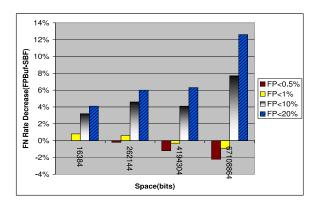


Figure 5: FN rate differences between FPBuffering and SBF varying allowable FP rate(695M elements)

Comparison on different data sets. To see the impact of different data sets on both the SBF and FPBuffering methods, we ran similar experiments on the synthetic data. In general, the results were consistent with those from the real data. See Appendix for the details.

5.5 Time Comparison

As discussed in the implementation section, SBF and BF need O(1) time to process each element. The exact time depends on the the parameter settings. For example, when K=2 and P=4, SBF needs less than 10 operations within each iteration.

For buffering and FPbuffering, their processing time is the same. It depends on 2 processes: element searching and element evicting. Searching can be quite expensive without an index structure. Both our experiments and those of Broder et al.[8] used a hash table to accelerate the search process. The extra space that is needed for a hash table to keep the search time constant is linear in the number of elements stored. The process of maintaining the LRU replacement policy(finding the least recently used element) is also costly, and extra space is needed to make it faster. This extra space can be quite large for LRU. However, this cost can be reduced to 2 bits per elements by using the Clock approximation of LRU [8].

Therefore, buffering and FPbuffering need extra space linear in the number of buffer entries to reach a similar O(1) processing time. But in our error rate comparison, we did not count this extra space for buffering and FPbuffering.

5.6 Methods Comparison Summary

We compared 4 methods in this section: SBF, BF, FP-buffering and buffering. Among them, BF and buffering have only FPs and FNs respectively, and SBF and FPbuffering have errors of both sides.

BF is a space efficient data structure which has been studied in the past and is widely used. It is good for representing a static set of data provided that the number of distinct elements is known. However, in data stream environments, the data is not static and it keeps changing. Usually it is hard to know the number of distinct elements in advance. Moreover, BF is not applicable in cases where dynamic updates are needed since elements can only be inserted into BF, but cannot be dropped out. Consequently, BF is not suitable for many data stream applications.

SBF, buffering and FPBuffering can be all applied to data stream scenarios. SBF is better in terms of accuracy and time when certain amount of FP rates are acceptable and the space is relatively small, which is the case in many data stream applications due to the real-time constraint. When the space is relatively large or only tiny FP rates are allowed, buffering is better.

6. RELATED WORK

The recent work of Metwally et al. [29] also study the duplicate detection problem in a streaming environment based on Bloom filters(BF) [7]. They consider different window models: Landmark windows, sliding windows and jumping windows. For the landmark window model, which is the scenario we consider, they apply the original Bloom filters without variations to detect duplicates, and thus do not consider the case that the BFs become "full". For the sliding window model, they use counting BFs [20] (change bits into counters) to allow removing old information out of the Bloom filter. However, this can be done only when the element to be removed is known, which is not possible in many streaming cases. For example, if the oldest element needs to be removed, one has to know that which counters are touched by the oldest element, but this information cannot be found in counting BFs, and maintaining this knowledge can be quite expensive. For the jumping window model, they cut a large jumping window into multiple sub-windows, and represent both the jumping window and the sub-windows with counting BFs of the same size. Thus, the jumping window can "jump" forward by adding and removing sub-window BFs.

Another solution for detecting duplicates in a streaming environment is the buffering or the caching method, which has been studied in many areas such as database systems [22], computer architecture [23], operating systems [34], and more recently URL caching in Web crawling [8]. We compare our method with those of Broder et al.[8] in the experiments.

The problem of exact duplicate elimination is well studied, and there are many efficient algorithms (e.g. see [22] for details and references). For the problem of approximate membership testing in a non-streaming environment, the Bloom filter has been frequently used (e.g. [27, 26]) and occasionally extended [20, 30]. Cohen and Matias [14] extend the Bloom filter to answer multiplicity queries. Counting distinct elements using the Bloom filter is proposed by Whang et al. [38]. Another branch of duplicate detection focus on fuzzy duplicates [11, 1, 6, 37], where the distinction between elements is not straightforward to see.

A related problem to duplicate detection is counting the number of distinct elements. Flajolet and Martin[21] propose a bitmap sketch to address this problem in a large data set. The same problem is also studied by Cormode et al. [16], and a sketch based on stable random variables is introduced. Besides, the sticky sampling algorithm of Manku and Motwani [28] also randomly increment and decrement counters storing the frequencies of stream elements, but the decrement frequency is varying and not for each incoming element. Their goal is to find the frequent items in a data stream.

As for data stream systems [3, 9, 35, 10, 17, 12], as far as we know, most of them divide the potentially unbounded data stream into windows with limited size and solve the problem precisely within the window. For example, Tucker et al. introduce punctuations into data streams, and thus duplicate eliminations could be implemented within data stream windows using traditional methods[35].

Since there is no way to store the entire history of an infinite data stream using limited space, our SBF essentially represents the most recent information by discarding those stale continuously. This is useful in many scenarios where the recent data is more important and this importance decays over time. A number of such kinds of applications are provided in [13] and [31]. Our motivating example of web crawling also has this property, since it may not matter that much to redundantly fetch a Web page that have been crawled a long time ago compared to fetching a page that have been crawled more recently.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the SBF method to approximately detect duplicates for streaming data. SBF extends the Bloom filter to allow outdated information to be removed from the summary structure so as to have enough space to represent fresh data. We formally and experimentally study the properties of our algorithm including stability, exponential convergence rates, monotonicity, stable points, bounded FP rates, FN rates dependent on input data stream, O(1) time independent of the stream size and space.

We empirically evaluate SBF and report the conditions under which our method outperforms the alternative methods, in particular buffering and FPBuffering methods using LRU replacement policy, both of which need extra space linear in the buffer size to obtain constant or nearly constant processing time.

Our SBF method works in a "landmark" window environment where the starting point of the window is fixed. SBF implicitly favors recent data, but no explicit sliding windows

can be specified by users to indicate the "recentness" range. We are working on the sliding version now.

8. REFERENCES

- R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data warehouses. In Proc. of VLDB, 2002.
- [2] Internet Archive. http://www.archive.org/.
- [3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In *Proc. of PODS*, 2002.
- [4] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over data streams. In *Proc. of ICDE*, 2004.
- [5] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core routers: Is there an alternative to cams? In *Proc. of INFOCOMM*, 2003.
- [6] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity m easures. In *Proc. of KDD*, 2003.
- [7] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. In CACM, 1970.
- [8] A. Z. Broder, M. Najork, and J. L. Wiener. Efficient url caching for world wide web crawling. In *Proc. of* WWW, 2003.
- [9] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. B.Zdonik. Monitoring streams - a new class of data management applications. In *Proc. of VLDB*, 2002.
- [10] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A. Shah. Telegraphcq: Continuous dataflow processing for an uncertain world. In *Proc. of CIDR*, 2003
- [11] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy duplicates. In *Proc. of ICDE*, 2005.
- [12] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query system for internet databases. In *Proc. of SIGMOD*, 2000.
- [13] E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates. In $Proc.\ of\ PODS,\ 2003.$
- [14] S. Cohen and Y. Matias. Spectral bloom filters. In Proc. of SIGMOD, 2003.
- [15] R. B. Cooper. Introduction to Queueing Theory(2nd edition). Elsevier, 1981.
- [16] G. Cormode, M. Datar, P. Indyk, and S.Muthukrishnan. Comparing data streams using hamming norms (how to zero in). *IEEE Trans.* Knowl. Data Eng., 15(3):529–540, 2003.
- [17] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope: A stream database for network applications. In *Proc. of SIGMOD*, 2003.
- [18] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better netflow. In *Proc. of SIGCOMM*, 2004.
- [19] C. Estan and G. Varghese. Data streaming in computer networks. In Proc. of Workshop on Management and Processing of Data Streams(MPDS) in cooperation with SIGMOD/PODS, 2003.

- [20] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide area web cache sharing protocol. *IEEE/ACM Trans. Netw.*, 8(3):281–293, 2000.
- [21] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.
- [22] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Implementation. Prentice Hall, 2000.
- [23] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, 3rd Edition. Morgan-Kaufmann, 2002.
- [24] A. Heydon and M. Najork. Mercator: A scalable, extensible web crawler. World Wide Web, 2(4), 1999.
- [25] Cisco System Inc. Cisco network accounting services. http://www.cisco.com/warp/public/cc/pd/iosw/ prodlit/nwact_wp.pdf, 2002.
- [26] L. F. Mackert and G. M. Lohman. R* optimizer validation and performance evaluation for distributed queries. In *Proc. of VLDB*, 1986.
- [27] U. Manber and S. Wu. An algorithm for approximate membership checking with application to password security. *Information Processing Letters*, 50(4), 1994.
- [28] G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In *Proc. of VLDB*, 2002.
- [29] A. Metwally, D. Agrawal, and A. E. Abbadi. Duplicate detection in click streams. In Proc. of WWW, 2005.
- [30] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans. Netw., 10(5):604–612, 2002.
- [31] T. Palpanas, M. Vlachos, E. J. Keogh, D. Gunopulos, and W. Truppel. Online amnesic approximation of streaming time series. In *Proc. of ICDE*, 2004.
- [32] M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81, Center for Research in Computing Technology, Harvard University, 1981.
- [33] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a data stream manager. In *Proc. of VLDB*, 2003.
- [34] A. Tenenbaum. Modern Operating Systems, 2nd Edition. Prentice Hall, 2001.
- [35] P. A. Tucker, D. Maier, and T. Sheard. Applying punctuation schemes to queries over continuous data streams. *IEEE Data Eng. Bull.*, 26(1):33–40, 2003.
- [36] M. Wang, N. H. Chan, S. Papadimitriou, and T. M. Madhyastha C. Faloutsos. Data mining meets performance evaluation: Fast algorithms for modeling bursty traffic. In *Proc. of ICDE*, 2002.
- [37] M. Weis and F. Naumann. Dogmatix tracks down duplicates in xml. In Proc. of SIGMOD, June 2005.
- [38] K. Whang, B. T. V. Zenden, and H. M.Taylor. A linear-time probabilistic counting algorithm for database applications. ACM Trans. Database Syst., 15(2):208–229, 1990.

APPENDIX

Theorem 1

$$\lim_{N \to \infty} \Pr(SBF_N = 0)$$

exists.

PROOF. (The last step.) From Eq 4 and Eq 5 we can

clearly see the limit of the second part of $Pr(SBF_N = 0)$

$$Pr(SBF_N = 0 \mid \bar{A}_N) * Pr(\bar{A}_N)$$

is 0. So we just need to focus on the first part of Eq 1, i.e.

$$\sum_{l=Max}^{N-1} (Pr(SBF_N = 0 \mid A_l) * Pr(A_l)),$$

which is denoted by $Pr_{Part1}(0)$ in the rest of this proof. Now let us look at the first part of $Pr_{Part1}(0)$:

$$Pr(SBF_N = 0 \mid A_l) = \sum_{j=Max}^{l} {l \choose j} p^j (1-p)^{l-j}$$

$$= 1 - \sum_{j=0}^{Max-1} {l \choose j} p^j (1-p)^{l-j} \le 1 - {l \choose 0} p^0 (1-p)^{l-0}$$

$$= 1 - (1-p)^l$$

$$Pr_{Part1}(0) \leq \sum_{l=Max}^{N-1} (1 - (1-p)^l)(1-k)^l k$$

$$= \sum_{l=Max}^{N-1} (k(1-k)^l) - \sum_{l=Max}^{N-1} (k(1-k)^l(1-p)^l)$$

$$= (1-k)^{Max} - (1-k)^N$$

$$- \frac{k}{k+p-kp} ((1-k)^{Max}(1-p)^{Max} - (1-k)^N(1-p)^N)$$

$$\lim_{N \to \infty} Pr_{Part1}(0)$$

$$\leq (1-k)^{Max} - \frac{k}{k+n-kn} ((1-k)^{Max} (1-p)^{Max})^{Max}$$

∴ $Pr_{Part1(0)}$ monotonically increase when $N \in [Max, \infty)$ ∴ $\lim_{N \to \infty} Pr_{Part1}(0)$ exists. ∴ The limit of the second part of $Pr(SBF_N = 0)$ also exists. ∴ The limit of $Pr(SBF_N = 0)$ exists. \square

Theorem 2

$$\lim_{N \to \infty} \Pr(SBF_N = 0) = \left(\frac{1}{1 + \frac{1}{p(1/k - 1)}}\right)^{Max}$$

PROOF. Similar to the proof of Theorem 1, we can prove that

$$\lim_{N \to \infty} \Pr(SBF_N = v)$$

exists, where $0 \leq v \leq Max$. In other words, when N is large enough, the probability that the cell becomes v is a constant. We do not provide the details here. To simplify our notation, we will refer to $\lim_{N \to \infty} Pr(SBF_N = v)$ as Pr(v) in this proof.

The key idea of this proof is as follows: since Pr(v) is a constant, when the SBF is stable, the probability that the cell changes to v from some other values (e.g. v+1) in each iteration must be the same as the probability that the cell changes from v to other values. Otherwise, Pr(v) will either increase or decrease. Note that the probabilities of those changes caused by the decrementing and setting operations are all constants (p and k).

For example, we can consider the case of Max = 3 and Pr(1). In each iteration, we decrement 1 from the cell with

a constant probability p, and set the cell to Max with a constant probability k. Since Pr(1) is a constant after the SBF becomes stable, the probability that the cell changes from 2 to 1 should be the same as the probability that the cell changes from 1 to 0 and Max. This can be expressed as

$$Pr(2 \to 1 \mid SBF = 2) * Pr(2)$$

= $Pr(1 \to 0 \mid SBF = 1) * Pr(1)$
+ $Pr(1 \to Max \mid SBF = 1) * Pr'(1))$ (20)

Note that Pr'(1) is the probability of SBF=1 after the decrementing but before the setting operation. Accordingly, we have

$$p*Pr(2) = p*Pr(1) + k*(p*Pr(2) - p*Pr(1) + Pr(1)).$$

The left hand side of the above equation is the probability of gaining 1s from the decrementing operation, and right hand side is the probability of losing 1s from both the decrementing and setting operations.

Using the same idea, the relationship among Pr(0), Pr(1), ..., Pr(Max) can be expressed as follows (when $Max \geq 3$): when v = 0,

$$p * Pr(v+1) = k * (p * Pr(v+1) + Pr(v)), \tag{21}$$

when 0 < v < Max,

$$p*Pr(v+1) = p*Pr(v) + k*(p*Pr(v+1) - p*Pr(v) + Pr(v)), \tag{22}$$

when v = Max,

$$k * (1 - Pr(v) + p * Pr(v)) = p * Pr(v).$$
 (23)

From the above equations, we can derive

$$Pr(0) = \left(\frac{1}{1 + \frac{1}{p(1/k - 1)}}\right)^{Max}$$

Currently this equation only holds when Max >= 3 since we have this assumption earlier. But it is not hard to verify that it holds when Max = 1, 2 as well using the same idea. \square

Theorem 3. Given an SBF with m cells, $SBF[c_1], \ldots, SBF[c_m]$, when the SBF is stable, the expected fraction of 0s in the SBF is no less than

$$\left(\frac{1}{1+\frac{1}{P(1/K-1/m)}}\right)^{Max},$$

where K is the number of cells being set and P is the number of cells being decremented by 1 within each iteration.

PROOF. To simplify our notation, we refer to $\lim_{N\to\infty} Pr(SBF_N[c_i]=0)$ as $Pr_i(0)$, $(i=1,\ldots,m)$ and $(\frac{1}{1+\frac{1}{P(1/K-1/m)}})^{Max}$ as LBound in this proof.

We know that when all cells have the same probability being set, the expected fraction of 0s in the SBF is *LBound*.

Now we prove that when cells have different probabilities being set, the expected fraction of 0s in the SBF is no less than LBound. In other words, we need to prove when $k_1 = k_2 = \ldots = k_m = K/m$, the average probability

$$\frac{1}{m} \sum_{i=1}^{m} Pr_i(0) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{1 + \frac{1}{p(1/k_i - 1)}}\right)^{Max},$$

reaches the minimum value, where k_i is the probability that $SBF[c_i]$ is set. Note that $\sum_{i=1}^{m} k_i = K$.

To simplify the problem, we first prove when m=2, $k_1+k_2=\alpha, (0\leq\alpha\leq K)$, the above statement holds, i.e. when $k_1=k_2=\alpha/2$, $\frac{1}{1+\frac{1}{p(1/k_1-1)}}+\frac{1}{1+\frac{1}{p(1/k_2-1)}}$ is minimized. If $F(k_1)$ denote the above formula and $f(k_1)$ denote the first part, $F(k_1)=f(k_1)+f(\alpha-k_1)$. For $f(k_1)$, we can verify that the derivative of $f(k_1)$ w.r.t. k_1 , $df/dk_1<0$, and $d^2f/dk_1^2>0$ when $k_1\in[0,\alpha]$. Because of the symmetric property between $f(k_1)$ and $f(\alpha-k_1)$, the decreasing rate of $f(k_1)$ is faster than the increasing rate of $f(\alpha-k_1)$ when $k_1\in[0,\alpha/2)$, thus $F(k_1)$ monotonically decreases within this period. When $k_1=\alpha/2$, those two rates are equal. Symmetrically it increases monotonically when $k_1\in(\alpha/2,\alpha]$. Therefore, when $k_1=\alpha/2, F(k_1)$ is minimized.

Now we prove when m > 2, this conclusion also holds. First we assume $m=2^{j}$, where j is an integer greater than zero. Later we will discuss the general case without this assumption. Since we have proved the case of two cells, we can group all cells into m/2 pairs arbitrarily. For each pair, we know if those two cells are set with an equal probability, the sum of $Pr_i(0)$ will decrease. For example, if we group SBF[1] and SBF[2] together, we can minimize $Pr_1(0)$ + $PR_2(0)$ simply by changing both k_1 and k_2 into $(k_1 + k_2)/2$. This is the case for all other pairs. After the first grouping, we have at most m/2 different k_i s. We then group those m/2cells into pairs and minimized their sums again by balance those pairs. We can keep doing this until all cells are all balanced, i.e. all of them have the same probability being set. Now the sum is minimized because in each step the partial sum is minimized.

When the assumption $m=2^j$ does not hold, we can divide one cell into two, where both have a same k_x and the sum does not change. For example, when m=3, we can pick one cell arbitrarily, say SBF[3], whose probability being set is k_3 . We can find a proper k_x , such that $f(k_3)=2f(k_x)$. Therefore, we can transform all cases into what we have proved, i.e. $m=2^j$. \square

Experimental results from the synthetic data. The acceptable FP rate was set to 10%, and the parameters for SBF were as follows: Max = 1, K = 2 and P = 4. In these data sets, the stream sizes were all fixed to 2^{24} (about 16 million elements). The parameters generating the data sets are shown in Figure 6.

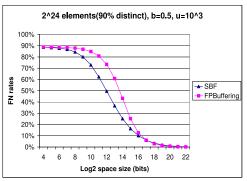
Between the two data sets shown in Figure 6(a) and 6(b), the only difference is the bias parameter b, which indicates the burstness of the data sets. These two sub-figures show that the FN rate difference between SBF and FPBuffering becomes smaller when the data set has the bursty property (b=0.7) compared to the case that the data set is not bursty (b=0.5). But the impact of this burstness is not significant.

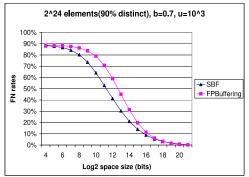
We also set b to 0.7 and change the exponential distribution parameter u, which controls the frequency distribution of duplicates, from 10^3 to 10^6 . In the data set generated under this setting, the gaps between duplicates are increased in general, because increasing u means that the exponential distribution becomes less skewed, and the number of distinct elements in the set of frequent elements is increased (we consider the first time that a frequent element appears as a distinct element), and thus the probability of generating two identical integers within a short period becomes smaller. Figure 6(c) shows the results obtained from exper-

iments run on this data set. It demonstrates that both SBF and FPBuffering need more space to reach a particular FN rate when the gaps are increased. The region that the FN rate is 90% means that the space allocated to both methods is too small and does not help much, because without any space cost one can obtain similar results by randomly predicting each element as a duplicate at a probability 0.1.

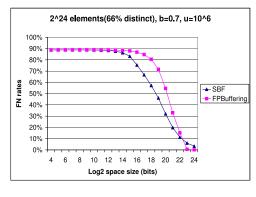
Figure 6(d) depicts the results from the experiments run on the Poisson data set. u is set to the same value as in the previous sub-figure. Since there are more duplicates in this data set, the gaps in general are smaller compared to the previous data set. As a result, to reach a certain FN rate, both methods need less space. From this and some others experiments whose results are not shown here we find that SBF consistently outperforms FPBuffering on datasets generated using both the Poisson and the b- models.

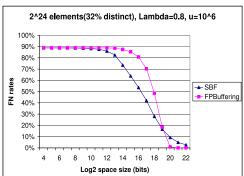
Besides, all sub-figures in Figure 6 also show that SBF can beat FPBuffering up to 30% in terms of FN rates when both methods have exactly the same FP rate ($\leq 10\%$). When the allocated space is large (but not large enough to store all distinct elements), FPBuffering may be more accurate than SBF. But in this case, as discussed in the comparison on the real world data, the original BF method (which is also a special case of SBF) is usually the best since it only generates FPs under the acceptable threshold and no FNs. Of course, if the available space is large enough to store all distinct elements, buffering is the best in terms of accuracy, since it is precise.





- (a) B-model dataset 1 (aggregation level l=6).
- (b) B-model dataset 2 (aggregation level l=6).





- (c) B-model dataset 3 (aggregation level l=6).
- (d) Poisson dataset

Figure 6: FN rate comparisons between SBF and FPBuffering on synthetic data sets (FP rates $\leq 10\%$, in the SBF method Max=1,~K=2 and P=4).