
International Journal of Computer Vision 43(1), 7–27, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Contour and Texture Analysis for Image Segmentation

JITENDRA MALIK, SERGE BELONGIE, THOMAS LEUNG∗AND JIANBO SHI†

Computer Science Division, University of California at Berkeley, Berkeley, CA 94720-1776, USA

Received December 28, 1999; Revised February 23, 2001; Accepted February 23, 2001

Abstract. This paper provides an algorithm for partitioning grayscale images into disjoint regions of coherent
brightness and texture. Natural images contain both textured and untextured regions, so the cues of contour and
texture differences are exploited simultaneously. Contours are treated in the intervening contour framework, while
texture is analyzed using textons. Each of these cues has a domain of applicability, so to facilitate cue combination we
introduce a gating operator based on the texturedness of the neighborhood at a pixel. Having obtained a local measure
of how likely two nearby pixels are to belong to the same region, we use the spectral graph theoretic framework of
normalized cuts to find partitions of the image into regions of coherent texture and brightness. Experimental results
on a wide range of images are shown.

Keywords: segmentation, texture, grouping, cue integration, texton, normalized cut

1. Introduction

To humans, an image is not just a random collection
of pixels; it is a meaningful arrangement of regions
and objects. Figure 1 shows a variety of images. De-
spite the large variations of these images, humans have
no problem interpreting them. We can agree about the
different regions in the images and recognize the differ-
ent objects. Human visual grouping was studied exten-
sively by the Gestalt psychologists in the early part of
the 20th century (Wertheimer, 1938). They identified
several factors that lead to human perceptual group-
ing: similarity, proximity, continuity, symmetry, par-
allelism, closure and familiarity. In computer vision,
these factors have been used as guidelines for many
grouping algorithms.

The most studied version of grouping in computer vi-
sion is image segmentation. Image segmentation tech-
niques can be classified into two broad families—
(1) region-based, and (2) contour-based approaches.
Region-based approaches try to find partitions of the
image pixels into sets corresponding to coherent im-

∗Present address: Compaq Cambridge Research Laboratory.
†Present address: Robotics Institute, Carnegie Mellon University.

age properties such as brightness, color and texture.
Contour-based approaches usually start with a first
stage of edge detection, followed by a linking process
that seeks to exploit curvilinear continuity.

These two approaches need not be that different from
each other. Boundaries of regions can be defined to be
contours. If one enforces closure in a contour-based
framework (Elder and Zucker, 1996; Jacobs, 1996)
then one can get regions from a contour-based ap-
proach. The difference is more one of emphasis and
what grouping factor is coded more naturally in a given
framework.

A second dimension on which approaches can
be compared is local vs. global. Early techniques,
in both contour and region frameworks, made local
decisions—in the contour framework this might be
declaring an edge at a pixel with high gradient, in the
region framework this might be making a merge/split
decision based on a local, greedy strategy.

Region-based techniques lend themselves more
readily to defining a global objective function (for
example, Markov random fields (Geman and Ge-
man, 1984) or variational formulations (Mumford and
Shah, 1989)). The advantage of having a global ob-
jective function is that decisions are made only when



8 Malik et al.

Figure 1. Some challenging images for a segmentation algorithm. Our goal is to develop a single grouping procedure which can deal with all
these types of images.

information from the whole image is taken into account
at the same time.

In contour-based approaches, often the first step of
edge detection is done locally. Subsequently efforts are
made to improve results by a global linking process that
seeks to exploit curvilinear continuity. Examples in-
clude dynamic programming (Montanari, 1971), relax-
ation approaches (Parent and Zucker, 1989), saliency
networks (Sha’ashua and Ullman, 1988), stochastic
completion (Williams and Jacobs, 1995). A criticism
of this approach is that the edge/no edge decision is
made prematurely. To detect extended contours of very
low contrast, a very low threshold has to be set for the
edge detector. This will cause random edge segments
to be found everywhere in the image, making the task
of the curvilinear linking process unnecessarily harder
than if the raw contrast information was used.

A third dimension on which various segmentation
schemes can be compared is the class of images for
which they are applicable. As suggested by Fig. 1, we
have to deal with images which have both textured and
untextured regions. Here boundaries must be found us-
ing both contour and texture analysis. However what
we find in the literature are approaches which concen-
trate on one or the other.

Contour analysis (e.g. edge detection) may be ade-
quate for untextured images, but in a textured region

it results in a meaningless tangled web of contours.
Think for instance of what an edge detector would re-
turn on the snow and rock region in Fig. 1(a). The
traditional “solution” for this problem in edge detec-
tion is to use a high threshold so as to minimize the
number of edges found in the texture area. This is ob-
viously a non-solution—such an approach means that
low-contrast extended contours will be missed as well.
This problem is illustrated in Fig. 2. There is no recog-
nition of the fact that extended contours, even weak in
contrast, are perceptually significant.

While the perils of using edge detection in textured
regions have been noted before (see e.g. Binford, 1981),
a complementary problem of contours constituting a
problem for texture analysis does not seem to have been
recognized before. Typical approaches are based on
measuring texture descriptors over local windows, and
then computing differences between window descrip-
tors centered at different locations. Boundaries can then
give rise to thin strip-like regions, as in Fig. 3. For speci-
ficity, assume that the texture descriptor is a histogram
of linear filter outputs computed over a window. Any
histogram window near the boundary of the two regions
will contain large filter responses from filters oriented
along the direction of the edge. However, on both sides
of the boundary, the histogram will indicate a feature-
less region. A segmentation algorithm based on, say, χ2



Contour and Texture Analysis 9

Figure 2. Demonstration of texture as a problem for the contour process. Each image shows the edges found with a Canny edge detector for the
penguin image using different scales and thresholds: (a) fine scale, low threshold, (b) fine scale, high threshold, (c) coarse scale, low threshold,
(d) coarse scale, high threshold. A parameter setting that preserves the correct edges while suppressing spurious detections in the textured area
is not possible.

Figure 3. Demonstration of the “contour-as-a-texture” problem using a real image. (a) Original image of a bald eagle. (b) The groups found
by an EM-based algorithm (Belongie et al., 1998).

distances between histograms, will inevitably partition
the boundary as a group of its own. As is evident, the
problem is not confined to the use of a histogram of fil-
ter outputs as texture descriptor. Figure 3(b) shows the
actual groups found by an EM-based algorithm using
an alternative color/texture descriptor (Belongie et al.,
1998).

1.1. Desiderata of a Theory of Image Segmentation

At this stage, we are ready to summarize our desired
attributes for a theory of image segmentation.

1. It should deal with general images. Regions with
or without texture should be processed in the same

framework, so that the cues of contour and texture
differences can be simultaneously exploited.

2. In terms of contour, the approach should be able
to deal with boundaries defined by brightness step
edges as well as lines (as in a cartoon sketch).

3. Image regions could contain texture which could be
regular such as the polka dots in Fig. 1(c), stochastic
as in the snow and rock region in (a) or anywhere
in between such as the tiger stripes in (b). A key
question here is that one needs an automatic pro-
cedure for scale selection. Whatever one’s choice
of texture descriptor, it has to be computed over a
local window whose size and shape need to be de-
termined adaptively. What makes scale selection a
challenge is that the technique must deal with the



10 Malik et al.

wide range of textures—regular, stochastic, or in-
termediate cases—in a seamless way.

1.2. Introducing Textons

Julesz introduced the term texton, analogous to a
phoneme in speech recognition, nearly 20 years ago
(Julesz, 1981) as the putative units of preattentive hu-
man texture perception. He described them qualita-
tively for simple binary line segment stimuli—oriented
segments, crossings and terminators—but did not pro-
vide an operational definition for gray-level images.
Subsequently, texton theory fell into disfavor as a
model of human texture discrimination as accounts
based on spatial filtering with orientation and scale-
selective mechanisms that could be applied to arbitrary
gray-level images became popular.

There is a fundamental, well recognized, problem
with linear filters. Generically, they respond to any
stimulus. Just because you have a response to an ori-
ented odd-symmetric filter doesn’t mean there is an
edge at that location. It could be that there is a higher
contrast bar at some other location in a different orien-
tation which has caused this response. Tokens such as
edges or bars or corners can not be associated with the
output of a single filter. Rather it is the signature of the
outputs over scales, orientations and order of the filter
that is more revealing.

Here we introduce a further step by focussing on the
outputs of these filters considered as points in a high
dimensional space (on the order of 40 filters are used).
We perform vector quantization, or clustering, in this
high-dimensional space to find prototypes. Call these
prototypes textons—we will find empirically that these
tend to correspond to oriented bars, terminators and so
on. One can construct a universal texton vocabulary
by processing a large number of natural images, or
we could find them adaptively in windows of images.
In each case the K -means technique can be used. By
mapping each pixel to the texton nearest to its vector of
filter responses, the image can be analyzed into texton
channels, each of which is a point set.

It is our opinion that the analysis of an image into tex-
tons will prove useful for a wide variety of visual pro-
cessing tasks. For instance, in Leung and Malik (1999)
we use the related notion of 3D textons for recognition
of textured materials. In the present paper, our objec-
tive is to develop an algorithm for the segmentation
of an image into regions of coherent brightness and
texture—we will find that the texton representation will

enable us to address the key problems in a very natural
fashion.

1.3. Summary of Our Approach

We pursue image segmentation in the framework of
Normalized Cuts introduced by Shi and Malik (1997,
2000). The image is considered to be a weighted graph
where the nodes i and j are pixels and edge weights,
Wij, denote a local measure of similarity between the
two pixels. Grouping is performed by finding eigenvec-
tors of the Normalized Laplacian of this graph (§3). The
fundamental issue then is that of specifying the edge
weights Wij; we rely on normalized cuts to go from
these local measures to a globally optimal partition of
the image.

The algorithm analyzes the image using the two cues
of contour and texture. The local similarity measure
between pixels i and j due to the contour cue, W IC

ij ,
is computed in the intervening contour framework of
Leung and Malik (1998) using peaks in contour ori-
entation energy (§2 and §4.1). Texture is analysed us-
ing textons (§2.1). Appropriate local scale is estimated
from the texton labels. A histogram of texton densi-
ties is used as the texture descriptor. Similarity, W TX

ij ,
is measured using the χ2 test on the histograms (§4.2).
The edge weights Wij combining both contour and tex-
ture information are specified by gating each of the two
cues with a texturedness measure (§4.3).

In (§5), we present the practical details of going from
the eigenvectors of the normalized Laplacian matrix of
the graph to a partition of the image. Results from the
algorithm are presented in (§6). Some of the results
presented here were published in Malik et al. (1999).

2. Filters, Composite Edgels, and Textons

Since the 1980s, many approaches have been proposed
in the computer vision literature that start by convolv-
ing the image with a bank of linear spatial filters fi

tuned to various orientation and spatial frequencies
(Knutsson and Granlund, 1983; Koenderink and van
Doorn, 1987; Fogel and Sagi, 1989; Malik and Perona,
1990). (See Fig. 4 for an example of such a filter
set.)

These approaches were inspired by models of pro-
cessing in the early stages of the primate visual system
(e.g. DeValois and DeValois, 1988). The filter kernels
fi are models of receptive fields of simple cells in visual



Contour and Texture Analysis 11

Figure 4. Left: Filter set fi consisting of 2 phases (even and odd), 3 scales (spaced by half-octaves), and 6 orientations (equally spaced from
0 to π ). The basic filter is a difference-of-Gaussian quadrature pair with 3 : 1 elongation. Right: 4 scales of center-surround filters. Each filter is
L1-normalized for scale invariance.

cortex. To a first approximation, we can classify them
into three categories:

1. Cells with radially symmetric receptive fields. The
usual choice of fi is a Difference of Gaussians
(DOG) with the two Gaussians having different val-
ues of σ . Alternatively, these receptive fields can
also be modeled as the Laplacian of Gaussian.

2. Oriented odd-symmetric cells whose receptive
fields can be modeled as rotated copies of a hor-
izontal oddsymmetric receptive field. A suitable
point spread function for such a receptive field is
f (x, y) = G ′

σ1
(y)Gσ2(x) where Gσ (x) represents

a Gaussian with standard deviation σ . The ratio
σ2 : σ1 is a measure of the elongation of the fil-
ter.

3. Oriented even-symmetric cells whose receptive
fields can be modeled as rotated copies of a horizon-
tal evensymmetric receptive field. A suitable point
spread function for such a receptive field is

f (x, y) = G ′′
σ1

(y)Gσ2(x)

The use of Gaussian derivatives (or equivalently, dif-
ferences of offset Gaussians) for modeling receptive
fields of simple cells is due to Young (1985). One could
equivalently use Gabor functions. Our preference for
Gaussian derivatives is based on their computational
simplicity and their natural interpretation as ‘blurred
derivatives’ (Koenderink and van Doorn, 1987, 1988).

The oriented filterbank used in this work, depicted
in Fig. 4, is based on rotated copies of a Gaussian
derivative and its Hilbert transform. More precisely,
let f1(x, y) = G ′′

σ1
(y)Gσ2(x) and f2(x, y) equal the

Hilbert transform of f1(x, y) along the y axis:

f1(x, y) = d2

dy2

(
1

C
exp

(
y2

σ 2

)
exp

(
x2

�2σ 2

))

f2(x, y) = Hilbert( f1(x, y))

where σ is the scale, � is the aspect ratio of the fil-
ter, and C is a normalization constant. (The use of the
Hilbert transform instead of a first derivative makes f1

and f2 an exact quadrature pair.) The radially symmet-
ric portion of the filterbank consists of Difference-of-
Gaussian kernels. Each filter is zero-mean and L1 nor-
malized for scale invariance (Malik and Perona, 1990).

Now suppose that the image is convolved with such
a bank of linear filters. We will refer to the collection of
response images I ∗ fi as the hypercolumn transform
of the image.

Why is this useful from a computational point of
view? The vector of filter outputs I ∗ fi (x0, y0) char-
acterizes the image patch centered at x0, y0 by a set
of values at a point. This is similar to characterizing
an analytic function by its derivatives at a point—one
can use a Taylor series approximation to find the val-
ues of the function at neighboring points. As pointed
out by Koenderink and van Doorn (1987), this is more
than an analogy, because of the commutativity of the
operations of differentiation and convolution, the re-
ceptive fields described above are in fact computing
‘blurred derivatives’. We recommend Koenderink and
van Doorn (1987, 1988), Jones and Malik (1992), and
Malik and Perona (1992) for a discussion of other ad-
vantages of such a representation.

The hypercolumn transform provides a convenient
front end for contour and texture analysis:



12 Malik et al.

– Contour. In computational vision, it is customary
to model brightness edges as step edges and to de-
tect them by marking locations corresponding to
the maxima of the outputs of odd-symmetric filters
(e.g. Canny, 1986) at appropriate scales. However,
it should be noted that step edges are an inadequate
model for the discontinuities in the image that re-
sult from the projection of depth or orientation dis-
continuities in physical scene. Mutual illumination
and specularities are quite common and their ef-
fects are particularly significant in the neighbor-
hood of convex or concave object edges. In addi-
tion, there will typically be a shading gradient on
the image regions bordering the edge. As a conse-
quence of these effects, real image edges are not
step functions but more typically a combination of
steps, peak and roof profiles. As was pointed out
in Perona and Malik (1990), the oriented energy
approach (Knutsson and Granlund, 1983; Morrone
and Owens, 1987; Morrone and Burr, 1988) can be
used to detect and localize correctly these compos-
ite edges.

The oriented energy, also known as the “quadra-
ture energy,” at angle 0◦ is defined as:

OE0◦ = (I ∗ f1)
2 + (I ∗ f2)

2

OE0◦ has maximum response for horizontal con-
tours. Rotated copies of the two filter kernels are
able to pick up composite edge contrast at various
orientations.

Given OEθ , we can proceed to localize the com-
posite edge elements (edgels) using oriented non-
maximal suppression. This is done for each scale
in the following way. At a generic pixel q, let
θ∗ = arg max OEθ denote the dominant orientation
and OE∗ the corresponding energy. Now look at
the two neighboring values of OE∗ on either side
of q along the line through q perpendicular to the
dominant orientation. The value OE∗ is kept at the
location of q only if it is greater than or equal to
each of the neighboring values. Otherwise it is re-
placed with a value of zero.

Noting that OE∗ ranges between 0 and infinity,
we convert it to a probability-like number between
0 and 1 as follows:

pcon = 1 − exp(−OE∗/σIC) (1)

σIC is related to oriented energy response purely
due to image noise. We use σ = 0.02 in this paper.

The idea is that for any contour with OE∗ 	 σIC,
pcon ≈ 1.

– Texture. As the hypercolumn transform provides a
good local descriptor of image patches, the bound-
ary between differently textured regions may be
found by detecting curves across which there is a
significant gradient in one or more of the compo-
nents of the hypercolumn transform. For an elab-
oration of this approach, see Malik and Perona
(1990).

Malik and Perona relied on averaging with large
kernels to smooth away spatial variation for filter
responses within regions of texture. This process
loses a lot of information about the distribution of
filter responses; a much better method is to rep-
resent the neighborhood around a pixel by a his-
togram of filter outputs (Heeger and Bergen, 1995;
Puzicha et al., 1997). While this has been shown to
be a powerful technique, it leaves open two impor-
tant questions. Firstly, there is the matter of what
size window to use for pooling the histogram—the
integration scale. Secondly, these approaches only
make use of marginal binning, thereby missing out
on the informative characteristics that joint assem-
blies of filter outputs exhibit at points of interest.
We address each of these questions in the following
section.

2.1. Textons

Though the representation of textures using filter re-
sponses is extremely versatile, one might say that it is
overly redundant (each pixel value is represented by
Nfil real-valued filter responses, where Nfil is 40 for our
particular filter set). Moreover, it should be noted that
we are characterizing textures, entities with some spa-
tially repeating properties by definition. Therefore, we
do not expect the filter responses to be totally differ-
ent at each pixel over the texture. Thus, there should
be several distinct filter response vectors and all others
are noisy variations of them.

This observation leads to our proposal of cluster-
ing the filter responses into a small set of prototype
response vectors. We call these prototypes textons. Al-
gorithmically, each texture is analyzed using the filter
bank shown in Fig. 4. Each pixel is now transformed
to a Nfil dimensional vector of filter responses. These
vectors are clustered using K -means. The criterion for
this algorithm is to find K “centers” such that after as-
signing each data vector to the nearest center, the sum



Contour and Texture Analysis 13

Figure 5. (a) Polka-dot image. (b) Textons found via K -means with K = 25, sorted in decreasing order by norm. (c) Mapping of pixels to the
texton channels. The dominant structures captured by the textons are translated versions of the dark spots. We also see textons corresponding
to faint oriented edge and bar elements. Notice that some channels contain activity inside a textured region or along an oriented contour and
nowhere else.

of the squared distance from the centers is minimized.
K -means is a greedy algorithm that finds a local mini-
mum of this criterion.1

It is useful to visualize the resulting cluster centers
in terms of the original filter kernels. To do this, recall
that each cluster center represents a set of projections of
each filter onto a particular image patch. We can solve
for the image patch corresponding to each cluster center
in a least squares sense by premultiplying the vectors
representing the cluster centers by the pseudoinverse of
the filterbank (Jones and Malik, 1992). The matrix rep-

resenting the filterbank is formed by concatenating the
filter kernels into columns and placing these columns
side by side. The set of synthesized image patches for
two test images are shown in Figs. 5(b) and 6(b). These
are our textons. The textons represent assemblies of
filter outputs that are characteristic of the local image
structure present in the image.

Looking at the polka-dot example, we find that many
of the textons correspond to translated versions of dark
spots.2 Also included are a number of oriented edge
elements of low contrast and two textons representing



14 Malik et al.

Figure 6. (a) Penguin image. (b) Textons found via K -means with K = 25, sorted in decreasing order by norm. (c) Mapping of pixels to the
texton channels. Among the textons we see edge elements of varying orientation and contrast along with elements of the stochastic texture in
the rocks.

nearly uniform brightness. The pixel-to-texton map-
ping is shown in Fig. 5(c). Each subimage shows the
pixels in the image that are mapped to the correspond-
ing texton in Fig. 5(b). We refer to this collection of
discrete point sets as the texton channels. Since each
pixel is mapped to exactly one texton, the texton chan-
nels constitute a partition of the image.

Textons and texton channels are also shown for the
penguin image in Fig. 6. Notice in the two examples
how much the texton set can change from one image

to the next. The spatial characteristics of both the de-
terministic polka dot texture and the stochastic rocks
texture are captured across several texton channels. In
general, the texture boundaries emerge as point density
changes across the different texton channels. In some
cases, a texton channel contains activity inside a par-
ticular textured region and nowhere else. By compari-
son, vectors of filter outputs generically respond with
some value at every pixel—a considerably less clean
alternative.



Contour and Texture Analysis 15

We have not been particularly sophisticated in the
choice of K , the number of different textons for a given
image. How to choose an optimal value of K in K -
means has been the subject of much research in the
model selection and clustering literature; we used a
fixed choice K = 36 to obtain the segmentation results
in this paper. Clearly, if the images vary considerably in
complexity and number of objects in them, an adaptive
choice may give better results.

The mapping from pixel to texton channel provides
us with a number of discrete point sets where before
we had continuous-valued filter vectors. Such a repre-
sentation is well suited to the application of techniques
from computational geometry and point process statis-
tics. With these tools, one can approach questions such
as, “what is the neighborhood of a texture element?”
and “how similar are two pixels inside a textured
region?”

Several previous researchers have employed cluster-
ing using K -means or vector quantization as a stage in
their approach to texture classification—two represen-
tative examples are McLean (1993) and Raghu et al.
(1997). What is novel about our approach is the identi-
fication of clusters of vectors of filter outputs with the
Julesz notion of textons. Then first order statistics of
textons are used for texture characterization, and the
spatial structure within texton channels enables scale
estimation. Vector quantization becomes much more
than just a data compression or coding step. The next
subsection should make this point clear.

2.1.1. Local Scale and Neighborhood Selection. The
texton channel representation provides us a natural way
to define texture scale. If the texture is composed of dis-
crete elements(“texels”), we might want to define a no-
tion of texel neighbors and consider the mean distance

Figure 7. Illustration of scale selection. (a) Closeup of Delaunay triangulation of pixels in a particular texton channel for polka dot image. (b)
Neighbors of thickened point for pixel at center. The thickened point lies within inner circle. Neighbors are restricted to lie within outer circle.
(c) Selected scale based on median of neighbor edge lengths, shown by circle, with all pixels falling inside circle marked with dots.

between them to be a measure of scale. Of course, many
textures are stochastic and detecting texels reliably is
hard even for regular textures.

With textons we have a “soft” way to define neigh-
bors. For a given pixel in a texton channel, first con-
sider it as a “thickened point”— a disk centered at it.3

The idea is that while textons are being associated with
pixels, since they correspond to assemblies of filter out-
puts, it is better to think of them as corresponding to
a small image disk defined by the scale used in the
Gaussian derivative filters. Recall Koenderink’s apho-
rism about a point in image analysis being a Gaussian
blob of small σ !

Now consider the Delaunay neighbors of all the pix-
els in the thickened point of a pixel i which lie closer
than some outer scale.4 The intuition is that these will
be pixels in spatially neighboring texels. Compute the
distances of all these pixels to i ; the median of these
constitutes a robust local measure of inter-texel dis-
tance. We define the local scale α(i) to be 1.5 times
this median distance.

In Fig. 7(a), the Delaunay triangulation of a zoomed-
in portion of one of the texton channels in the polka-dot
dress of Fig. 5(a) is shown atop a brightened version
of the image. Here the nodes represent points that are
similar in the image while the edges provide proximity
information.

The local scale α(i) is based just on the texton chan-
nel for the texton at i . Since neighboring pixels should
have similar scale and could be drawn from other tex-
ton channels, we can improve the estimate of scale by
median filtering of the scale image.

2.1.2. Computing Windowed Texton Histograms.
Pairwise texture similarities will be computed by com-
paring windowed texton histograms. We define the



16 Malik et al.

window W(i) for a generic pixel i as the axis-aligned
square of radius α(i) centered on pixel i .

Each histogram has K bins, one for each texton chan-
nel. The value of the kth histogram bin for a pixel i is
found by counting how many pixels in texton channel k
fall inside the window W(i). Thus the histogram rep-
resents texton frequencies in a local neighborhood. We
can write this as

hi (k) =
∑

j∈W(i)

I [T ( j) = k] (2)

where I [·] is the indicator function and T ( j) returns
the texton assigned to pixel j .

3. The Normalized Cut Framework

In the Normalized Cut framework (Shi and Malik,
1997, 2000), which is inspired by spectral graph theory
(Chung, 1997), Shi and Malik formulate visual group-
ing as a graph partitioning problem. The nodes of the
graph are the entities that we want to partition; for ex-
ample, in image segmentation, they are the pixels. The
edges between two nodes correspond to the strength
with which these two nodes belong to one group; again,
in image segmentation, the edges of the graph corre-
spond to how much two pixels agree in brightness,
color, etc. Intuitively, the criterion for partitioning the
graph will be to minimize the sum of weights of con-
nections across the groups and maximize the sum of
weights of connections within the groups.

Let G = {V, E} be a weighted undirected graph,
where V are the nodes and E are the edges. Let A, B
be a partition of the graph: A ∪ B = V, A ∩ B = ∅. In
graph theoretic language, the similarity between these
two groups is called the cut:

cut(A, B) =
∑

i∈A, j∈B

Wij

where Wij is the weight on the edge between nodes
i and j . Shi and Malik proposed to use a normalized
similarity criterion to evaluate a partition. They call it
the normalized cut:

N cut(A, B) = cut(A, B)

assoc(A, V)
+ cut(B, A)

assoc(B, V)

where assoc(A, V) = ∑
i∈A,k∈V Wik is the total con-

nection from nodes in A to all the nodes in the graph.

For more discussion of this criterion, please refer to Shi
and Malik (2000).

One key advantage of using the normalized cut is that
a good approximation to the optimal partition can be
computed very efficiently.5 Let W be the association
matrix, i.e. Wij is the weight between nodes i and j
in the graph. Let D be the diagonal matrix such that
Dii = ∑

j Wij, i.e. Dii is the sum of the weights of all
the connections to node i . Shi and Malik showed that
the optimal partition can be found by computing:

y = arg min Ncut

= arg min
y

yT (D − W)y
yT Dy

(3)

where y = {a, b}N is a binary indicator vector speci-
fying the group identity for each pixel, i.e. yi = a if
pixel i belongs to group A and y j = b if pixel j belongs
to B. N is the number of pixels. Notice that the above
expression is a Rayleigh quotient. If we relax y to take
on real values (instead of two discrete values), we can
optimize Eq. (3) by solving a generalized eigenvalue
system. Efficient algorithms with polynomial running
time are well-known for solving such problems.

The process of transforming the vector y into a dis-
crete bipartition and the generalization to more than
two groups is discussed in (§5).

4. Defining the Weights

The quality of a segmentation based on Normalized
Cuts or any other algorithm based on pairwise sim-
ilarities fundamentally depends on the weights—the
Wij’s—that are provided as input. The weights should
be large for pixels that should belong together and small
otherwise. We now discuss our method for computing
the Wij’s. Since we seek to combine evidence from
two cues, we will first discuss the computation of the
weights for each cue in isolation, and then describe
how the two weights can be combined in a meaningful
fashion.

4.1. Images Without Texture

Consider for the moment the “cracked earth” image in
Fig. 1(e). Such an image contains no texture and may be
treated in a framework based solely on contour features.
The definition of the weights in this case, which we
denote W IC

ij , is adopted from the intervening contour
method introduced in Leung and Malik (1998).



Contour and Texture Analysis 17

Figure 8. Left: the original image. Middle: part of the image marked by the box. The intensity values at pixels p1, p2 and p3 are similar.
However, there is a contour in the middle, which suggests that p1 and p2 belong to one group while p3 belongs to another. Just comparing
intensity values at these three locations will mistakenly suggest that they belong to the same group. Right: orientation energy. Somewhere along
l2, the orientation energy is strong which correctly proposes that p1 and p3 belong to two different partitions, while orientation energy along l1

is weak throughout, which will support the hypothesis that p1 and p2 belong to the same group.

Figure 8 illustrates the intuition behind this idea. On
the left is an image. The middle figure shows a mag-
nified part of the original image. On the right is the
orientation energy. There is an extended contour sep-
arating p3 from p1 and p2. Thus, we expect p1 to be
much more strongly related to p2 than p3. This intuition
carries over in our definition of dissimilarity between
two pixels: if the orientation energy along the line be-
tween two pixels is strong, the dissimilarity between
these pixels should be high (and Wij should be low).

Contour information in an image is computed
“softly” through orientation energy (OE) from elon-
gated quadrature filter pairs. We introduce a slight mod-
ification here to allow for exact sub-pixel localization
of the contour by finding the local maxima in the orien-
tation energy perpendicular to the contour orientation
(Perona and Malik, 1990). The orientation energy gives
the confidence of this contour. W IC

ij is then defined as
follows:

W IC
ij = 1 − max

x∈Mij

pcon(x)

where Mij is the set of local maxima along the line join-
ing pixels i and j . Recall from (§2) that pcon(x), 0 <

pcon < 1, is nearly 1 whenever the orientated energy
maximum at x is sufficiently above the noise level. In
words, two pixels will have a weak link between them
if there is a strong local maximum of orientation energy
along the line joining the two pixels. On the contrary, if
there is little energy, for example in a constant bright-
ness region, the link between the two pixels will be
strong. Contours measured at different scales can be
taken into account by computing the orientation en-
ergy maxima at various scales and setting pcon to be
the maximum over all the scales at each pixel.

4.2. Images that are Texture Mosaics

Now consider the case of images wherein all of the
boundaries arise from neighboring patches of different
texture (e.g. Fig. 1(d)). We compute pairwise texture
similarities by comparing windowed texton histograms
computed using the technique described previously
(§2.1.2). A number of methods are available for com-
paring histograms. We use the χ2 test, defined as

χ2(hi , h j ) = 1

2

K∑
k=1

[hi (k) − h j (k)]2

hi (k) + h j (k)

where hi and h j are the two histograms. For an em-
pirical comparison of the χ2 test versus other texture
similarity measures, see Puzicha et al. (1997).

W TX
ij is then defined as follows:

W TX
ij = exp(−χ2(hi , h j )/σTX) (4)

If histograms hi and h j are very different, χ2 is large,
and the weight W TX

ij is small.

4.3. General Images

Finally we consider the general case of images that
contain boundaries of both kinds. This presents us with
the problem of cue integration. The obvious approach
to cue integration is to define the weight between pixels
i and j as the product of the contribution from each
cue: Wij = W IC

ij × W TX
ij . The idea is that if either of

the cues suggests that i and j should be separated,
the composite weight, Wij, should be small. We must
be careful, however, to avoid the problems listed in the



18 Malik et al.

Introduction (§1) by suitably gating the cues. The spirit
of the gating method is to make each cue “harmless”
in locations where the other cue should be operating.

4.3.1. Estimating Texturedness. As illustrated in
Fig. 2, the fact that a pixel survives the non-maximum
suppression step does not necessarily mean that that
pixel lies on a region boundary. Consider a pixel inside
a patch of uniform texture: its oriented energy is large
but it does not lie on the boundary of a region. Con-
versely, consider a pixel lying between two uniform
patches of just slightly different brightness: it does lie
on a region boundary but its oriented energy is small.
In order to estimate the “probability” that a pixel lies
on a boundary, it is necessary to take more surround-
ing information into account. Clearly the true value
of this probability is only determined after the final
correct segmentation, which is what we seek to find.
At this stage our goal is to formulate a local estimate
of the texturedness of the region surrounding a pixel.
Since this is a local estimate, it will be noisy but its
objective will be to bootstrap the global segmentation
procedure.

Our method of computing this value is based on a
simple comparison of texton distributions on either side
of a pixel relative to its dominant orientation. Consider
a generic pixel q at an oriented energy maximum. Let
the dominant orientation be θ . Consider a circle of ra-
dius α(q) (the selected scale) centered on q . We first
divide this circle in two along the diameter with ori-
entation θ . Note that the contour passing through q
is tangent to the diameter, which is its best straight
line approximation. The pixels in the disk can be parti-
tioned into three sets D0, D−, D+ which are the pixels
in the strip along the diameter, the pixels to the left
of D0, and the pixels to the right of D0, respectively.
To compute our measure of texturedness, we consider
two half window comparisons with D0 assigned to
each side. Assume without loss of generality that D0

is first assigned to the “left” half. Denote the K -bin
histograms of D0 ∪ D− by hL and D+ by h R respec-
tively. Now consider the χ2 statistic between the two
histograms:

χ2(hL , h R) = 1

2

K∑
k=1

[hL(k) − h R(k)]2

hL(k) + h R(k)

We repeat the test with the histograms of D− and
D0 ∪ D+ and retain the maximum of the two result-
ing values, which we denote χ2

LR. We can convert this

Figure 9. Illustration of half windows used for the estimation of
the texturedness. The texturedness of a label is based on a χ2 test
on the textons in the two sides of a box as shown above for two
sample pixels. The size and orientation of the box is determined by
the selected scale and dominant orientation for the pixel at center.
Within the rocky area, the texton statistics are very similar, leading
to a low χ2 value. On the edge of the wing, the χ2 value is relatively
high due to the dissimilarity of the textons that fire on either side of
a step edge. Since in the case of the contour the contour itself can
lie along the diameter of the circle, we consider two half-window
partitions: one where the thin strip around the diameter is assigned
to the left side, and one where it is assigned to the other. We consider
both possibilities and retain the maximum of the two resulting χ2

values.

to a probability-like value using a sigmoid as follows:

ptexture = 1 − 1

1 + exp
[ − (

χ2
LR − τ

)
/β

] (5)

This value, which ranges between 0 and 1, is small if
the distributions on the two sides are very different and
large otherwise. Note that in the case of untextured re-
gions, such as a brightness step edge, the textons lying
along and parallel to the boundary make the statistics
of the two sides different. This is illustrated in Fig. 9.
Roughly, ptexture ≈ 1 for oriented energy maxima in tex-
ture and ptexture ≈ 0 for contours. ptexture is defined to
be 0 at pixels which are not oriented energy maxima.

4.3.2. Gating the Contour Cue. The contour cue is
gated by means of suppressing contour energy accord-
ing to the value of ptexture. The gated value, pB , is de-
fined as

pB = (1 − ptexture)pcon (6)

In principle, this value can be computed and dealt with
independently at each filter scale. For our purposes, we
found it sufficient simply to keep the maximum value



Contour and Texture Analysis 19

Figure 10. Gating the contour cue. Left: original image. Top: oriented energy after nonmaximal suppression, OE∗. Bottom: 1 − ptexture. Right:
pB , the product of 1 − ptexture and pcon = 1 − exp(−OE∗/σIC). Note that this can be thought of as a “soft” edge detector which has been
modified to no longer fire on texture regions.

Figure 11. Gating the texture cue. Left: original image. Top: Textons label, shown in pseudocolor. Middle: local scale estimate α(i). Bottom:
1 − ptexture. Darker grayscale indicates larger values. Right: Local texton histograms at scale α(i) are gated using ptexture as explained in 4.3.3.

of pB with respect to σ . The gated contour energy is
illustrated in Fig. 10, right. The corresponding weight
is then given by

W IC
ij = 1 − max

x∈Mij

pB(x)

4.3.3. Gating the Texture Cue. The texture cue is
gated by computing a texton histogram at each pixel
which takes into account the texturedness measure
ptexture (see Fig. 11). Let hi be the K -bin texton his-
togram computed using Eq. (2). We define a (K + 1)-
bin histogram ĥi by introducing a 0th bin. The intuition

is that the 0th bin will keep a count of the number of
pixels which do not correspond to texture. These pix-
els arise in two forms: (1) pixels which are not oriented
energy maxima; (2) pixels which are oriented energy
maxima, but correspond to boundaries between two re-
gions, thus should not take part in texture processing to
avoid the problems discussed in (§1). More precisely,
ĥi is defined as follows:

ĥi (k) =
∑

j∈N (i)

ptexture( j) · I [T ( j) = k] ∀k = 1 . . . K

ĥi (0) = NB +
∑

j∈N (i)

(1 − ptexture( j))



20 Malik et al.

where N (i) denotes all the oriented energy maxima
lying inside the window W(i) and NB is the number
of pixels which are not oriented energy maxima.

4.3.4. Combining the Weights. After each cue has
been gated by the above procedure, we are free to per-
form simple multiplication of the weights. More specif-
ically, we first obtain W IC using Eq. (6). Then we obtain
W TX using Eq. (4) with the gated versions of the his-
tograms. Then we simply define the combined weight
as

Wij = W IC
ij × W TX

ij

4.3.5. Implementation Details. The weight matrix is
defined between any pair of pixels i and j . Naively, one
might connect every pair of pixels in the image. How-
ever, this is not necessary. Pixels very far away from
the image have very small likelihood of belonging to
the same region. Moreover, dense connectivity means
that we need to solve for the eigenvectors of a matrix
of size Npix × Npix, where Npix is close to a million for
a typical image. In practice, a sparse and short-ranged
connection pattern does a very good job. In our ex-
periments, all the images are of size 128 × 192. Each
pixel is connected to pixels within a radius of 30. Fur-
thermore, a sparse sampling is implemented such that
the number of connections is approximately constant
at each radius. The number of non-zero connections
per pixel is 1000 in our experiments. For images of
different sizes, the connection radius can be scaled ap-
propriately.

The parameters for the various formulae are given
here:

1. The image brightness lies in the range [0, 1].
2. σIC = 0.02 (Eq. (1)).
3. The number of textons computed using K -means:

K = 36.
4. The textons are computed following a contrast nor-

malization step, motivated by Weber’s law. Let
|F(x)| be the L2 norm of the filter responses at
pixel x . We normalize the filter responses by the
following equation:

F(x) ← F(x) ×
log

(
1 + |F(x)|

0.03

)
|F(x)|

5. σTX = 0.025 (Eq. (4)).
6. τ = 0.3 and β = 0.04 (Eq. (5))

Note that these parameters are the same for all the re-
sults shown in (§6).

5. Computing the Segmentation

With a properly defined weight matrix, the normal-
ized cut formulation discussed in (§3) can be used to
compute the segmentation. However, the weight ma-
trix defined in the previous section is computed using
only local information, and is thus not perfect. The
ideal weight should be computed in such a way that
region boundaries are respected. More precisely, (1)
texton histograms should be collected from pixels in a
window residing exclusively in one and only one re-
gion. If instead, an isotropic window is used, pixels
near a texture boundary will have a histogram com-
puted from textons in both regions, thus “polluting”
the histogram. (2) Intervening contours should only be
considered at region boundaries. Any responses to the
filters inside a region are either caused by texture or are
simply mistakes. However, these two criteria mean that
we need a segmentation of the image, which is exactly
the reason why we compute the weights in the first
place! This chicken-and-egg problem suggests an iter-
ative framework for computing the segmentation. First,
use the local estimation of the weights to compute a seg-
mentation. This segmentation is done so that no region
boundaries are missed, i.e. it is an over-segmentation.
Next, use this intial segmentation to update the weights.
Since the initial segmentation does not miss any region
boundaries, we can coarsen the graph by merging all
the nodes inside a region into one super-node. We can
then use these super-nodes to define a much simpler
segmentation problem. Of course, we can continue this
iteration several times. However, we elect to stop after
1 iteration.

The procedure consists of the following 4 steps:

1. Compute an initial segmentation from the locally
estimated weight matrix.

2. Update the weights using the initial segmentation.
3. Coarsen the graph with the updated weights to re-

duce the segmentation to a much simpler problem.
4. Compute a final segmentation using the coarsened

graph.

5.1. Computing the Initial Segmentation

Computing a segmentation of the image amounts
to computing the eigenvectors of the generalized



Contour and Texture Analysis 21

eigensystem: (D−W)v = λ Dv (Eq. (3)). The eigenvec-
tors can be thought of as a transformation of the image
into a new feature vector space. In other words, each
pixel in the original image is now represented by a vec-
tor with the components coming from the correspond-
ing pixel across the different eigenvectors. Finding a
partition of the image is done by finding the clusters in
this eigenvector representation. This is a much simpler
problem because the eigenvectors have essentially put
regions of coherent descriptors according to our cue
of texture and contour into very tight clusters. Simple
techniques such as K -means can do a very good job
in finding these clusters. The following procedure is
taken:

1. Compute the eigenvectors corresponding to the sec-
ond smallest to the twelfth smallest eigenvalues of
the generalized eigensystem ((D − W)v = λ Dv).6

Call these 11 eigenvectors vi , i = 2, . . . , 12. The
corresponding eigenvalues are λi , i = 2, . . . , 12.

2. Weight7 the eigenvectors according to the eigen-
values: v̂i = 1√

λi
vi , i = 2, . . . , 12. The eigenval-

ues indicate the “goodness” of the corresponding
eigenvectors. Now each pixel is transformed to an
11 dimensional vector represented by the weighted
eigenvectors.

3. Perform vector quantization on the 11 eigenvectors
using K -means. Start with K ∗ = 30 centers. Let the
corresponding RMS error for the quantization be
e∗. Greedily delete one center at a time such that
the increase in quantization error is the smallest.
Continue this process until we arrive at K centers
when the error e is just greater than 1.1 × e∗.

This partitioning strategy provides us with an initial
segmentation of the image. This is usually an over-
segmentation. The main goal here is simply to provide
an initial guess for us to modify the weights. Call this
initial segmentation of the image S0. Let the number of
segments be N0. A typical number for N0 is 10–100.

Figure 12. pB is allowed to be non-zero only at pixels marked.

It should be noted that this strategy for using multi-
ple eigenvectors to provide an initial oversegmentation
is merely one of a set of possibilities. Alternatives in-
clude recursive splitting using the second eigenvector
or first converting the eigenvectors into binary valued
vectors and using those simultaneously as in Shi and
Malik (2000). Yet another hybrid strategy is suggested
in Weiss (1999). We hope that improved theoretical in-
sight into spectral graph partitioning will give us a bet-
ter way to make this, presently somewhat ad hoc choice.

5.2. Updating Weights

The initial segmentation S0 found in the previous step
can provide a good approximation to modify the weight
as we have discussed earlier. With S0, we modify the
weight matrix as follows:

– To compute the texton histograms for a pixel in Rk ,
textons are collected only from the intersection of
Rk and the isotropic window of size determined by
the scale, α.

– pB is set to zero for pixels that are not in the region
boundaries of S0.

The modified weight matrix is an improvement over
the original local estimation of weights.

5.3. Coarsening the Graph

By hypothesis, since S0 is an over-segmentation of the
image, there are no boundaries missed. We do not need
to recompute a segmentation for the original problem
of N pixels. We can coarsen the graph, where each
node of the new graph is a segment in S0. The weight
between two nodes in this new graph is computed as
follows:

Ŵkl =
∑
i∈Rk

∑
j∈Rl

Wij (7)



22 Malik et al.

Figure 13. Initial segmentation of the image used for coarsening the graph and computing final segmentation.

Figure 14. Segmentation of images with animals.



Contour and Texture Analysis 23

Figure 15. Segmentation of images with people.

where Rk and Rl indicate segments in S0 (k and
l ∈ {1, . . . , N0}); Ŵ is the weight matrix of the coars-
ened graph and W is the weight matrix of the origi-
nal graph. This coarsening strategy is just an instance
of graph contraction (Chung, 1997). Now, we have
reduced the original segmentation problem with an
N × N weight matrix to a much simpler and faster
segmentation problem of N0 × N0 without losing in
performance.

5.4. Computing the Final Segmentation

After coarsening the graph, we have turned the segmen-
tation problem into a very simple graph partitioning

problem of very small size. We compute the final seg-
mentation using the following procedure:

1. Compute the second smallest eigenvector for the
generalized eigensystem using Ŵ .

2. Threshold the eigenvector to produce a bi-
partitioning of the image. 30 different values uni-
formly spaced within the range of the eigenvector
are tried as the threshold. The one producing a par-
tition which minimizes the normalized cut value is
chosen. The corresponding partition is the best way
to segment the image into two regions.

3. Recursively repeat steps 1 and 2 for each of the
partitions until the normalized cut value is larger
than 0.1.



24 Malik et al.

Figure 16. Segmentation of images of natural and man-made scenes.

5.5. Segmentation in Windows

The above procedure performs very well in images with
a small number of groups. However, in complicated
images, smaller regions can be missed. This problem
is intrinsic for global segmentation techniques, where
the goal is find a big-picture interpretation of the image.
This problem can be dealt with very easily by perform-
ing the segmentation in windows.

Consider the case of breaking up the image into
quadrants. Define Qi to be the set of pixels in the i th
quadrant. Qi ∩ Q j = ∅ and ∪4

i=1 Qi = Image. Ex-
tend each quadrant by including all the pixels which
are less than a distance r from any pixels in Qi , with r
being the maximum texture scale, α(i), over the whole

image. Call these enlarged windows Q̂i . Note that these
windows now overlap each other.

Corresponding to each Q̂i , a weight matrix Ŵ i is
defined by pulling out from the original weight matrix
W the edges whose end-points are nodes in Q̂i . For each
Ŵ i , an initial segmentation Ŝi

0 is obtained, according
to the procedure in (§5.1). The weights are updated as
in (§5.2). The extension of each quadrant makes sure
that the arbitrary boundaries created by the windowing
do not affect this procedure:

Texton histogram upgrade For each pixel in Qi , the
largest possible histogram window (a (2α+1)2 box)
is entirely contained in Q̂i by virtue of the extension.



Contour and Texture Analysis 25

Figure 17. Segmentation of paintings.

This means the texton histograms are computed from
all the relevant pixels.

Contour upgrade The boundaries in Qi are a proper
subset of the boundaries in Q̂i . So, we can set the
values of pB at a pixel in Qi to be zero if it lies on
a region boundary in Q̂i . This enables the correct
computation of W IC

ij . Two example contour update
maps are shown in Fig. 12.

Initial segmentations can be computed for each Q̂i

to give Ŝi
0. They are restricted to Qi to produce Si

0.
These segmentations are merged to form an initial seg-
mentation S0 = ∪4

i=1Si
0. At this stage, fake boundaries

from the windowing effect can occur. Two examples
are shown in Fig. 13. The graph is then coarsened and

the final segmentation is computed as in (§5.3) and
(§5.4).

6. Results

We have run our algorithm on a variety of natural im-
ages. Figures 14–17 show typical segmentation results.
In all the cases, the regions are cleanly separated from
each other using combined texture and contour cues.
Notice that for all these images, a single set of param-
eters are used. Color is not used in any of these ex-
amples and can readily be included to further improve
the performance of our algorithm.8 Figure 14 shows
results for animal images. Results for images contain-
ing people are shown in Fig. 15 while natural and



26 Malik et al.

man-made scenes appear in Fig. 16. Segmentation re-
sults for paintings are shown in Fig. 17. A set of
more than 1000 images from the commercially avail-
able Corel Stock Photos database have been segmented
using our algorithm.9

Evaluating the results against ground truth—What
is the correct segmentation of the image?—is a chal-
lenging problem. This is because there may not be a
single correct segmentation and segmentations can be
to varying levels of granularity. We do not address this
problem here; a start has been made in recent work in
our group (Martin et al., 2000).

Computing times for a C++ implementation of the
entire system are under two minutes for images of size
108×176 pixels on a 750 MHz Pentium III machine.
There is some variability from one image to another
because the eigensolver can take more or less time to
converge depending on the image.

7. Conclusion

In this paper we have developed a general algorithm
for partitioning grayscale images into disjoint regions
of coherent brightness and texture. The novel con-
tribution of the work is in cue integration for image
segmentation—the cues of contour and texture differ-
ences are exploited simultaneously. We regard the ex-
perimental results as promising and hope that the paper
will spark renewed research activity in image segmen-
tation, one of the central problems of computer vision.

Acknowledgments

The authors would like to thank the Berkeley vision
group, especially Chad Carson, Alyosha Efros, David
Forsyth, and Yair Weiss for useful discussions during
the development of the algorithm. We thank Doron
Tal for implementing the algorithm in C++. This re-
search was supported by (ARO) DAAH04-96-1-0341,
the Digital Library Grant IRI-9411334, NSF Graduate
Fellowships to SB and JS and a Berkeley Fellowship
to TL.

Notes

1. For more discussions and variations of the K -means algorithm,
the reader is referred to Duda and Hart (1973) and Gersho and
Gray (1992).

2. It is straightforward to develop a method for merging translated
versions of the same basic texton, though we have not found it

necessary. Merging in this manner decreases the number of chan-
nels needed but necessitates the use of phase-shift information.

3. This is set to 3% of the image dimension in our experiments. This
is tied to the intermediate scale of the filters in the filter set.

4. This is set to 10% of the image dimension in our experiments.
5. Finding the true optimal partition is an NP-hard problem.
6. The eigenvector corresponding to the smallest eigenvalue is con-

stant, thus useless.
7. Since normalized cut can be interpreted as a spring-mass system

(Shi and Malik, 2000), this normalization comes from the equipar-
tition theorem in classical statistical mechanics which states that
if a system is in equilibrium, then it has equal energy in each mode
(Belongie and Malik, 1998).

8. When color information is available, the similarity Wij becomes
a product of 3 terms: Wij = W IC

ij × W TX
ij × W COLOR

ij . Color sim-
ilarity, W COLOR

ij , is computed using χ2 differences over color
histograms, similar to texture measured using texture histograms.
Moreover, color can clustered into “colorons”, analogous to tex-
tons.

9. These results are available at the following web page: http://
www.cs.berkeley.edu/projects/vision/Grouping/overview.html

References

Belongie, S., Carson, C., Greenspan, H., and Malik, J. 1998. Color-
and texture-based image segmentation using EM and its appli-
cation to content-based image retrieval. In Proc. 6th Int. Conf.
Computer Vision, Bombay, India, pp. 675–682.

Belongie, S. and Malik, J. 1998. Finding boundaries in natural im-
ages: A new method using point descriptors and area completion.
In Proc. 5th Euro. Conf. Computer Vision, Freiburg, Germany, pp.
751–766.

Binford, T. 1981. Inferring surfaces from images. Artificial Intelli-
gence, 17(1–3):205–244.

Canny, J. 1986. A computational approach to edge detection. IEEE
Trans. Pat. Anal. Mach. Intell., 8(6):679–698.

Chung, F. 1997. Spectral Graph Theory, AMS. Providence, RI.
DeValois, R. and DeValois, K. 1988. Spatial Vision. Oxford

University Press. New York, N.Y.
Duda, R. and Hart, P. 1973. Pattern Classification and Scene Analy-

sis, John Wiley & Sons. New York, N.Y.
Elder, J. and Zucker, S. 1996. Computing contour closures. In

Proc. Euro. Conf. Computer Vision, Vol. I, Cambridge, England,
pp. 399–412.

Fogel, I. and Sagi, D. 1989. Gabor filters as texture discriminator.
Biological Cybernetics, 61:103–113.

Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distri-
bution, and the Bayesian retoration of images. IEEE Trans. Pattern
Anal. Mach. Intell., 6:721–741.

Gersho, A. and Gray, R. 1992. Vector Quantization and Signal Com-
pression, Kluwer Academic Publishers, Boston, MA.

Heeger, D.J. and Bergen, J.R. 1995. Pyramid-based texture analy-
sis/synthesis. In Proceedings of SIGGRAPH ’95, pp. 229–238.

Jacobs, D. 1996. Robust and efficient detection of salient convex
groups. IEEE Trans. Pattern Anal. Mach. Intell., 18(1):23–37.

Jones, D. and Malik, J. 1992. Computational framework to deter-
mining stereo correspondence from a set of linear spatial filters.
Image and Vision Computing, 10(10):699–708.



Contour and Texture Analysis 27

Julesz, B. 1981. Textons, the elements of texture perception, and their
interactions. Nature, 290(5802):91–97.

Knutsson, H. and Granlund, G. 1983. Texture analysis using two-
dimensional quadrature filters. In Workshop on Computer Archi-
tecture for Pattern Analysis and Image Database Management,
pp. 206–213.

Koenderink, J. and van Doorn, A. 1987. Representation of local ge-
ometry in the visual system. Biological Cybernetics, 55(6):367–
375.

Koenderink, J. and van Doorn, A. 1988. Operational significance of
receptive field assemblies. Biological Cybernetics, 58:163–171.

Leung, T. and Malik, J. 1998. Contour continuity in region-based
image segmentation. In Proc. Euro. Conf. Computer Vision, Vol. 1,
H. Burkhardt and B. Neumann (Eds.). Freiburg, Germany, pp. 544–
559.

Leung, T. and Malik, J. 1999. Recognizing surfaces using three-
dimensional textons. In Proc. Int. Conf. Computer Vision, Corfu,
Greece, pp. 1010–1017.

Malik, J., Belongie, S., Shi, J., and Leung, T. 1999. Textons, contours
and regions: Cue integration in image segmentation. In Proc. IEEE
Intl. Conf. Computer Vision, Vol. 2, Corfu, Greece, pp. 918–925.

Malik, J. and Perona, P. 1990. Preattentive texture discrimination with
early vision mechanisms. J. Optical Society of America, 7(2):923–
932.

Malik, J. and Perona, P. 1992. Finding boundaries in images. In Neu-
ral Networks for Perception, Vol. 1, H. Wechsler (Ed.). Academic
Press, pp. 315–344.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. 2000. A database of
human segmented natural images and its application to evaluat-
ing segmentation algorithms and measuring ecological statistics.
Technical Report UCB CSD-01-1133, University of California
at Berkeley. http://http.cs.berkeley.edu/projects/vision/Grouping/
overview.html.

McLean, G. 1993. Vector quantization for texture classification.
IEEE Transactions on Systems, Man, and Cybernetics, 23(3):637–
649.

Montanari, U. 1971. On the optimal detection of curves in noisy
pictures. Comm. Ass. Comput., 14:335–345.

Morrone, M. and Burr, D. 1988. Feature detection in human vision:
A phase dependent energy model. Proc. R. Soc. Lond. B, 235:221–
245.

Morrone, M. and Owens, R. 1987. Feature detection from local en-
ergy. Pattern Recognition Letters, 6:303–313.

Mumford, D. and Shah, J. 1989. Optimal approximations by piece-
wise smooth functions, and associated variational problems.
Comm. Pure Math., 42:577–684.

Parent, P. and Zucker, S. 1989. Trace inference, curvature consis-
tency, and curve detection. IEEE Trans. Pattern Anal. Mach. In-
tell., 11(8):823–839.

Perona, P. and Malik, J. 1990. Detecting and localizing edges com-
posed of steps, peaks and roofs. In Proc. 3rd Int. Conf. Computer
Vision, Osaka, Japan, pp. 52–57.

Puzicha, J., Hofmann, T., and Buhmann, J. 1997. Non-parametric
similarity measures for unsupervised texture segmentation and
image retrieval. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, San Juan, Puerto Rico, pp. 267–272.

Raghu, P., Poongodi, R., and Yegnanarayana, B. 1997. Unsupervised
texture classification using vector quantization and deterministic
relaxation neural network. IEEE Transactions on Image Process-
ing, 6(10):1376–1387.

Sha’ashua, A. and Ullman, S. 1988. ‘Structural saliency: The detec-
tion of globally salient structures using a locally connected net-
work. In Proc. 2nd Int. Conf. Computer Vision, Tampa, FL, USA,
pp. 321–327.

Shi, J. and Malik, J. 1997. Normalized cuts and image segmentation.
In Proc. IEEE Conf. Computer Vision and Pattern Recognition,
San Juan, Puerto Rico, pp. 731–737.

Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905.

Weiss, Y. 1999. Segmentation using eigenvectors: A unifying view.
In Proc. IEEE Intl. Conf. Computer Vision, Vol. 2, Corfu, Greece,
pp. 975–982.

Wertheimer, M. 1938. Laws of organization in perceptual forms (par-
tial translation). In A Sourcebook of Gestalt Psychology, W. Ellis
(Ed.). Harcourt Brace and Company, pp. 71–88.

Williams, L. and Jacobs, D. 1995. Stochastic completion fields: A
neural model of illusory contour shape and salience. In Proc. 5th
Int. Conf. Computer Vision, Cambridge, MA, pp. 408–415.

Young, R.A. 1985. The Gaussian derivative theory of spa-
tial vision: Analysis of cortical cell receptive field line-
weighting profiles. Technical Report GMR-4920, General Motors
Research.


