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Abstract. In this work we propose a feature-based segmentation ap-
proach that is domain independent. While most existing approaches are
based on application-specific hand-crafted features, we propose a frame-
work for learning features from data itself at multiple scales and depth.
Our features can be easily integrated into classifiers or energy-based seg-
mentation algorithms. We test the performance of our proposed method
on two MICCAI grand challenges, obtaining the top score on VESSEL12
and competitive performance on BRATS2012.

1 Introduction

The choice of image representation plays a crucial role in the success of medical
image segmentation algorithms. Most existing methods utilize hand-crafted fea-
tures incorporated into an energy-based segmentation method or into a machine
learning classifier. Commonly, energy-based methods utilize engineered features
such as Gabor filters for texture-based segmentation [1], while machine learning
approaches use many more simple features like Haar or steerable filters leav-
ing the classification method to disambiguate the ones that are significant for
the segmentation task. Popular examples of machine learning methods are ones
based on decision trees [2] or random forests [3]. Some methods use very spe-
cialized filters designed for a particular task, such as extracting linear structures
based on eigenvalues of the image Hessian matrix [4].

Recently there has been much interest within the machine learning and com-
puter vision communities to automatically learn feature representations from
scratch. Feature learning methods are general, while hand-crafted features re-
quire a certain insight and understanding of the given image data to be analyzed,
thus they are often not optimal when applied to a new dataset. Moreover, fea-
ture learning algorithms can benefit from many unlabeled examples, even those
that may come from a different distribution than the target data [5]. Features
can be learned either in an unsupervised setting or in a joint end-to-end system
trained with supervision. Successful applications have included object recogni-
tion [6] [7], scene parsing and segmentation [8], annotation and retrieval [9],
multimodal applications [10] and large-scale learning [11]. What these meth-
ods have in common is the emphasis on learning hierarchical representations as
opposed to single-layer algorithms such as sparse coding.

Unfortunately, most of the above methods are not directly applicable to med-
ical imaging tasks as they often assume the use of natural images and require a
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Table 1: A comparison of different feature learning architectures for application to
medical image segmentation: Y is yes, N is no and S is sometimes. Multi-scale and
multi-depth methods can often improve performance while patch-based and stagewise
learning improve speed. Here sparse coding eefers to any method that aims to learn a
filter bank with a sparsity cost.

Method Patch-based Multi-scale Multi-depth Stagewise

Sparse coding Y N N Y
Convolutional sparse coding N N N Y
Convolutional networks N S Y N
Proposed approach Y Y Y Y

large number of labeled examples to be effective. There exist few feature learning
methods applied to medical data like the segmentation of linear [12] and curvilin-
ear [13] structures; segmentation of electron microscopy (EM) images [14] and a
recent work on MS lesions segmentation [15]. In this paper we propose a frame-
work that is domain independent and utilizes features learned from multiple
scales and depth. The key features that make our method fast and thus suitable
for medical data are detailed below and can be summarized as: (1) patch-based,
(2) stage-based system and a (3) fast dictionary learning method.

Table 1 summarizes and distinguishes four types of feature learning architec-
tures. Simpler single layer sparse coding methods like [15] also use patches but
with no scales or depth. Convolutional sparse coding algorithms, such as those
used by [12],[16] and [13], differ from standard sparse coding methods as con-
volution is incorporated into the optimization procedure. The third architecture
describes convolutional networks, used by [14] for EM segmentation, which are
learned jointly with supervision. While convolutional networks are often very
effective, jointly training the whole model can be time consuming. Furthermore,
convolutional networks require many labeled examples in order to avoid over-
fitting. The last architectures illustrates our proposed framework. Features are
learned one stage at a time using patch-based learning at multiple scales. Since
the model does not require joint learning, features can be learned efficiently and
quickly. Our framework is the first to utilize the “encoding versus training” prin-
ciple of [17] in the context of image segmentation. The emphasis of this work
is the importance of the feature encoding as opposed to the filter learning al-
gorithm itself. Due to this, we suggest that more expensive convolutional filter
learning is unnecessary, so long as a proper encoding is performed after learning.

Experimentally we demonstrate that the same algorithm can be used to ob-
tain strong performance on two completely different medical segmentation tasks.
We report superior results on the vessel segmentation of the lung (VESSEL12)
challenge data and competitive performance on multimodal brain tumor seg-
mentation (BRATS2012) data. Furthermore, our system is able to learn features
in under ten minutes on both challenges. Code for our approach will be released
upon publication.
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2 Method

We assume we are given m volumes with s modalities {{V (j)}sj=1}mi=1, where

each V
(j)
i ∈ RnV ×nH×n. nV × nH is the spatial dimension of a slice and n

is the number of slices. For simplicity, we assume that each volume V
(j)
i has

dimensionality nV × nH × n although this is not needed. As a specific example,
brain tumor segmentation tasks can use s = 4 modalites consisting of FLAIR,
T1, T2 and post-Gadolinium T1. The general outline of our feature learning
framework is as follows:

– Extract multimodal patches at multiple scales using a Gaussian pyramid.
– Learn a filter bank using orthogonal matching pursuit.
– Convolutionally extract feature maps using the learned filters as kernels.
– Repeat the above steps, using the computed features maps as input to an-

other layer. The number of feature maps (next layer modalities) corresponds
to the number of filters.

In each of the following subsections, we describe the above operations in detail.

Fig. 1: Visualization of our feature learning approach. Each volume slice is scaled using
a Gaussian pyramid. Patches are extracted at each scale to learn a dictionary D using
OMP. Convolution is performed over all scales with the dictionary filters, resulting in
Γk feature maps. After training the first layer, the feature maps can then be used as
input to a second layer.

2.1 Pre-processing and dictionary learning

Given a volume V , a Gaussian pyramid with Γ scales is applied to each modality
of each slice. Let {p(1), . . . , p(mP )} denote a set ofmP patches randomly extracted
from the scaled volumes. Each patch p(l) is of spatial dimension r× c× s where
r × c is the receptive field size. These patches are then flattened into column
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vectors. Per patch contrast normalization and patch-wise mean subtraction is
performed. For dictionary learning we use orthogonal matching pursuit (OMP).
OMP aims to solve the following optimization problem:

minimize
D,x(i)

mP∑
i=1

||Dx(i) − p(i)||22

subject to ||D(l)||22 = 1,∀l
||x(i)||0 ≤ q,∀i

(1)

where D ∈ RnP×k and D(l) is the l-th column of D. Optimization is done using
alternation over the dictionary D and codes x. For all our experiments we set
q = 1, which reduces to a form of gain-shape vector quantization. In particular,
given a dictionary D, an index κ is chosen as

κ = argmax
l
|D(l)T

p(i)| (2)

for which the κ-th index of x(i) is set as x(i)
κ = D(κ)T

p(i) with all other indices
left as zero in order to satisfy the constraint ‖x(i)‖0 ≤ 1 for all i. Given the one-
hot codes X, the dictionary is easily updated by first solving the unconstrained
problem, followed by re-normalization to satisfy the constraint ‖D(l)‖22 = 1 for
all l.

2.2 Convolutional feature extraction

Let T γj denote a volume slice of modality j and scale γ. Each r × c × s patch
in T γj is pre-processed by contrast normalization and mean subtraction. Let

D
(l)
j ∈ Rr×c denote the l-th basis for modality j of D. We will define the feature

encoding for basis l as:

fγl =
s∑
j=1

T γj ∗D
(l)
j (3)

where * denotes convolution. The resulting feature maps {fγl }kl=1 are of the same
spatial dimensions as T γj . The feature maps are finally upsampled to the original
nV × nH spatial dimension. Figure 1 illustrates our approach.

2.3 Stacking multiple layers

Our described setup for feature learning has involved scaling, dictionary learning
and convolutional extraction. Just as the volumes slices were inputs to a first
layer with s modalities, the upsampled output feature maps {{fγl }Γγ=1}kl=1 may
be seen as inputs to a second layer but with Γk modalities. The same described
operations are applied a second time resulting in additional second layer output
feature maps. These groups of feature maps can be concatenated together result-
ing in a total number of Γ1k1 +Γ2k2 feature maps, where Γ1, k1 are the number



Stacked Multiscale Feature Learning 5

of first layer scales and filters while Γ2, k2 are the number of second layer scales
and filters. Thus each pixel in a volume slice can be represented as a Γ1k1 +Γ2k2

dimensional feature vector.

Fig. 2: Visualizing the importance of scale and depth for vessel segmentation.

3 Experiments

We perform experimental evaluation using data from two MICCAI grad chal-
lenges: vessel segmentation of the lung 1 and multimodal brain tumor segmen-
tation 2.

3.1 Vessel segmentation

The vessel segmentation challenge consists of 20 volumes of CT scans to segment
with 3 additional volumes that include 882 labeled pixels based on the agreement
of at least 3 experts. Each slice is of size 512× 512 with each volume containing
a few hundred slices. We performed feature learning with 2 depths, 6 scales, a
receptive field size of 5×5, 32 first layer filters and 64 second layer filters. The final
feature vector is thus of size 6×(32+64) = 576. In order to perform segmentation,
we extracted features for the existing labeled pixels and trained a L2-regularized
logistic regression classifier, using 10-fold cross validation in order to tune the
L2 hyperparameter. Each pixel of a new slice is then classified, resulting in a
probability of whether or not the pixel is a vessel. For our submission to the
challenge, the probabilities are scaled and rounded to unsigned 8-bit integers as
requested.

Figure 2 illustrates the importance of adding depth and scale to segmentation.
The first image is the original CT scan. The second image shows segmentation
when neither depth nor scale is added while the third image shows segmentation
with added depth and scale. Without scale, larger vessels are less likely to be
segmented while without depth, segmentation is much more scattered and less
contiguous. For visualization purposes, a pixel is labeled as being a vessel if the
probability of a vessel given the pixel features is greater than 0.5.
1 http://vessel12.grand-challenge.org/
2 http://www2.imm.dtu.dk/projects/BRATS2012/
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Table 2: The top 5 results from the VESSEL12 challenge leaderboard.

Team Method type score

our method feature learning + classification 0.986
LKEBChina Krissian-inspired vesselness 0.984
FME LungVessels Frangi vesselness + region growing 0.984
LKEBChina Krissian-inspired vesselness with bi-Gaussian kernel 0.981
FME LungVessels Frangi vesselness + region growing (raw) 0.981

Fig. 3: Sample vessel segmentation results.

Table 2 shows the top 5 performing methods on the VESSEL12 challenge. Our
proposed method tops all existing approaches. The top performing methods in
the competition are largely based on the use of Frangi [4] and Krissian vesselness
[18] all of which derive structural properties from the eigenvalues of the Hessian.

3.2 Brain tumor segmentation

To emphasize that the proposed method is domain independent, we evaluated it
on the BRATS2012 multimodal brain tumor segmentation challenge, a dataset
that has totally different properties and segmentation task than the vessel data.
Due to BRATS2012 site maintenance, the test volume labels were unavailable at
the time we did our experiments. Instead we perform evaluation using leave-one-
out cross validation on the training set. Two types of tumour data are evaluated:
high-grade and low-grade. Each volume voxel is labeled as being one of three
classes: tumor, edema and other. We utilized our approach with one scale and
two depths, with 16 bases in each depth for a total of 32 features. A 2 hidden
layer network with dropout [19] is used to make predictions. Within each training
fold, 10-fold cross validation is used to select the dropout parameters.

Table 3 shows our results in comparison to the top 2 methods in the com-
petition. We note again that out comparison is not on the same held-out data.
None the less, our results are competitive with the top performing methods.
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Fig. 4: Sample brain tumor segmentation results.

Table 3: Comparison against the top two performers in the BRATS2012 competition.
HG and LG stand for high-grade and low-grade, respectively.

Team region mean dice coeff. region mean dice coeff.

our method HG edema 0.485 LG edema 0.250
Bauer et al. HG edema 0.536 LG edema 0.179
Zikic et al. HG edema 0.598 LG edema 0.324

our method HG tumor 0.470 LG tumor 0.406
Bauer et al. HG tumor 0.512 LG tumor 0.332
Zikic et al. HG tumor 0.476 LG tumor 0.339

our method HG GTV 0.720 LG GTV 0.494

4 Conclusion

In this paper we proposed a domain independent approach for segmenting medi-
cal images. Our approaches involves learning feature representations at multiple
scales and depths which are compatible with existing classification and energy-
based segmentation methods. We obtain the best performing result on the VES-
SEL12 challenge and competitive results on the BRATS2012 multimodal brain
tumor segmentation challenge. For future work we intend to further evaluate
our approach on additional grand challenge problems. We also intend to study
various transfer learning scenarios between domains and modalities.
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