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Abstract. The problem of learning linear-discriminant concepts can be solved by various mistake-driven update
procedures, including theWinnowfamily of algorithms and the well-knownPerceptronalgorithm. In this paper
we define the general class of “quasi-additive” algorithms, which includes Perceptron and Winnow as special
cases. We give a single proof of convergence that covers a broad subset of algorithms in this class, including
both Perceptron and Winnow, but also many new algorithms. Our proof hinges on analyzing a genericmeasure
of progressconstruction that gives insight as to when and how such algorithms converge.

Our measure of progress construction also permits us to obtain good mistake bounds for individual algorithms.
We apply our unified analysis to new algorithms as well as existing algorithms. When applied to known algo-
rithms, our method “automatically” produces close variants of existing proofs (recovering similar bounds)—thus
showing that, in a certain sense, these seemingly diverse results are fundamentally isomorphic. However, we also
demonstrate that the unifying principles are more broadly applicable, and analyze a new class of algorithms that
smoothly interpolate between the additive-update behavior of Perceptron and the multiplicative-update behavior
of Winnow.
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1. Introduction

Many iterative mistake-driven algorithms have been proposed for learning linear-
discriminant concepts from examples, including the famousPerceptron algorithm
(Rosenblatt, 1962; Minsky & Papert, 1969; Duda & Hart, 1973) and Littlestone’sWinnow
family of algorithms (Littlestone, 1988, 1989, 1991; Kivinen, Warmuth & Auer, 1997).
This is an important, well-studied, collection of algorithms with interesting properties and
practical applications (Blum, 1997; Dagan, Karov & Roth, 1997; Golding & Roth, 1999;
Khardon, Roth & Valiant, 1999). In this paper we define a general class of algorithms and
provide a unified theoretical analysis which covers not only Perceptron and Winnow, but
also many new algorithms.

All of the algorithms we consider represent linear-discriminant concepts by maintaining
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a current weight vectorw∈ IRn and classifying instancesx∈ IRn into classes labeled±1
according to the rulex 7→ sign(w · x ).1 It is most natural to think of these algorithms as
working in an on-line setting where learning occurs in a sequence of trials. In triali an
instancexi is observed. The algorithm makes the prediction sign(w · xi ) and then observes
thelabel yi . (We speak of a pair(xi , yi ) as anexample.) The algorithms we consider update
the current weight vectorw if and only if they make a mistake (that is, if the prediction
does not match the label). The various known algorithms of this type differ in the specific
policies they use to update the weight vector. For example, Perceptron uses anadditive
update policy, whereas the Winnow algorithms usemultiplicativeupdates.

A striking fact about these algorithms is that theyconverge, that is, they make a finite num-
ber of mistakes when given a sequence of examples labeled by a target linear-discriminant
concept—provided there is a gap between the positive and negative examples (i.e., there ex-
ists two parallel separating hyper-planes such that no example in the sequence falls between
them). This is true even for infinite sequences of examples.

However, beyond mere convergence, the classical proofs of Perceptron convergence
(for instance (Minsky & Papert, 1969; Duda & Hart, 1973)) and Littlestone’s proofs for
members of the Winnow family (Littlestone, 1988, 1989) also provideboundson the number
of mistakes made before a perfect classifier is found for the sequence. In all cases, this
bound depends on the width of the gap and is independent of the number of examples in
the sequence. Interestingly, these proofs all have the same overall structure: one postulates
a function of the weight vector, which we call ameasure of progress, and proves that it
(eventually) makes progress towards a solution after each mistake. However, aside from
this broad similarity, the proofs seem quite distinct. Moreover, since the various measures
of progress seem to have been discovered on a case-by-case basis, these proofs do not seem
to help very much in identifying or analyzing new algorithms.

The first contribution of this paper, presented in Section 2, is a simple unifying framework
for expressing algorithms that includes both Perceptron and Winnow as special cases. We
accomplish this by expressing the Winnow algorithms in a simplequasi-additiveform that
makes clear how fundamentally similar they are to the Perceptron procedure. This leads
us to define a general class of algorithms which includes both Perceptron and Winnow as
special cases, but also includes new algorithms that have not been previously studied.

One of the central contributions of this paper is the introduction of a general approach
for understanding and constructing measures of progress for analyzing quasi-additive algo-
rithms. We outline the motivating ideas for our approach in Section 3. As will be apparent
there, our basic method can be completed using one of several slightly different elaborations.
A particularly straightforward version is used in Section 4 to prove a general convergence
theorem for a large class of quasi-additive algorithms. Specifically, we characterize a gen-
eral class of quasi-additive algorithms (including known ones) that converge under the stated
conditions. This result, however, has the drawback that it does not give strong bounds.

In Section 5 we discuss a second version of our basic strategy. This leads to more
refined measures of progress, usually capable of generating much tighter mistake bounds
for individual algorithms. Interestingly, for both Perceptron and Winnow our method gives
the same or very similar results to existing analyses, and our measure of progress reduces to
variants of the traditional measures (Section 6). For example, for Perceptron, our method
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yields the same measure of progress used in one of the most famous proofs of Perceptron
convergence (Papert, 1961; Minsky & Papert, 1969). When applied to the Winnow family,
our construction leads to almost exactly the same measures of progress used by Littlestone
in (1989). Thus, we show that, in a certain sense, the tacit principles by which these previous
measures of progress were developed are the same, and are well captured by our generic
method.

Then in Section 7 we apply our method to analyze a new family of quasi-additive learn-
ing algorithms that has not been previously investigated. We call these algorithmsp-norm
Perceptron algorithms. Their convergence is assured by the results in Section 4. In prov-
ing specific mistake bounds for this family we reveal two interesting facts. First, as the
parameterp is varied, one can “interpolate” between the additive Perceptron algorithm and
multiplicative Winnow algorithms in a flexible and principled fashion. Second, bounds for
these algorithms can be given that depend on particular products ofconjugate norms(see
Section 7) varying with the parameterp, offering the possibility that the new algorithms
may be superior to both Perceptron and Winnow in certain contexts.

Section 8 contains a short discussion of some other possible measures of progress and
how they relate to ours. We close, in Sections 9–11, with a discussion of other related work,
some speculation about future work, and our conclusions.

2. Quasi-additive algorithms

An on-line mistake-driven algorithm is determined by itsupdaterule; i.e., how it revises
w when it makes a mistake. Perceptron is very simple: it just adds some multiple, with a
suitable sign, of the vector on which a mistake was made.

Perceptron(w, (x, y)):
If sign(w · x) 6= y then

w :=w+ ayx

Here the parametera is a positive constant.
Littlestone has analyzed a number of other algorithms for learning linear-discriminant

concepts. These algorithms are closely related to one another; we refer to them collectively
as theWinnowfamily. On the surface, these might seem very different from Perceptron.
But as we now show, there is a fundamental similarity. Consider the balanced version of
Winnow described in Littlestone (1989, 1995). As it is normally presented, it maintains
two weight vectors,w+ andw−, and updates each separately:

BalancedWinnow(w+,w−, (x, y)):
If sign(w+ · x− w− · x) 6= y then

If y = +1 then, for alli ,
w+i :=β−xi w+i ; w−i :=βxi w−i

Else if y = −1 then, for alli ,
w+i :=βxi w+i ; w−i :=β−xi w−i

(Hereβ is a parameter between 0 and 1.) The key observation is that this is equivalent to a
procedure that simply keeps track of the scaled sum of the mistake vectors, as Perceptron
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does (with the scale factora = log(1/β)), but then computes the final weight vector as a
function of this sum:f (z) = ez−e−z (= 2 sinh(z)).2 Thus we can re-express the algorithm
as follows:

BalancedWinnow(w, z, (x, y)):
If sign(w · x) 6= y then

z := z+ (log 1
β
) y x

w := 2sinh(z) (i.e.,wi = 2 sinh(zi ) for all i )3

Thus, Balanced Winnow is just like Perceptron with the exception that it classifies examples
using a transformed version of the sum-of-mistakes vector, using the componentwise trans-
formation f (zi ) = 2 sinh(zi ). This motivates a natural class of “generalized” Perceptron
algorithms. The idea is to distinguish the cumulative sum of mistake vectorsz from the final
weight vectorw that we actually use to classify examples. The latter will be a transformed
version of the former, based on some transformation functionf applied componentwise to
z; different functionsf lead to different algorithms. We call this general family of algo-
rithmsquasi-additive, as they essentially involve an additive update (i.e., toz) at their core.
The quasi-additive algorithmQA〈 f 〉 constructed from functionf is:

QA〈 f 〉 (w, z, (x, y)):
If sign(w · x) 6= y then

z := z+ ayx
w := f(z) (i.e.,wi = f (zi ) for all i )

We assume the initial value ofz is 0 unless specified otherwise.
We can express the other algorithms in the Winnow family as members of the quasi-

additive family. For example, the algorithm calledWeighted Majorityin Littlestone &
Warmuth (1989) and Littlestone (1989) is equivalent4 to another quasi-additive procedure
defined by choosingf (z) = ez and settinga = 1

2 log 1
β

.
Finally, the Fixed Thresholdvariant of the Winnow algorithm (Littlestone, 1988;

Littlestone, 1989) can also be expressed in quasi-additive form, if we make one minor
extension. In general, we can consider quasi-additive functions that use a different function
fi for each component. The Fixed Threshold algorithm can be expressed usingfi (xi ) = exi

for all i ≤ n, but adding ann+ 1’st component such thatfn+1 is a constant function (es-
sentially, the negative of the threshold value). Nevertheless, in the current paper we are
primarily concerned with algorithms defined using a single functionf .

The family of quasi-additive learning algorithms extends well beyond the known algo-
rithms; in fact we obtainsomeprocedure for any choice off . Clearly we should not expect
every f to yield a reasonable algorithm. The only “reasonableness” condition we mention
now is that f be a continuous monotonically increasing function defined on all ofIR and
not everywhere negative. We assume this in the remainder of the paper. We show in the
Section 4 that a few simple additional (and broad) conditions onf suffice to guaranteecon-
vergencefor QA〈 f 〉. This raises the hope that we might be able to discover new algorithms
that actually perform better than Perceptron and Winnow in some cases. Before presenting
this convergence result, however, we first give an overview of our general technique for
analyzing quasi-additive algorithms.
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3. Measures of progress

The main contribution of this paper is to present a particular approach to analyzing quasi-
additive algorithms. In this section we present the key ideas, deferring various details and
examples to later sections.

Throughout this paper,S ⊆ IRn × {±1} denotes a fixed (but possibly infinite) set of
labeledtraining examples, which are presented to the learning algorithm in some order. By
assumption, the examples are linearly separable; letu∈ IRn be a fixedtarget vector, that is,
a vector such that for all(x, y)∈ Swe have sign(u · x) = y.

Mistake bounds for quasi-additive algorithms usually depend on a quantity we call the
gap. In this paper, we define the gap as a function of bothu andS:

δu,S = inf
(x,y)∈S

u · (yx).

(We sometimes omit the subscripts and write justδ if the context is clear.) Roughly
speaking, the gap bounds how close the examples are to the separating hyper-plane defined
by u. Generally, a (noise-free) convergence result, ormistake bound, for a quasi-additive
algorithm will assume there is some lower bound on the size of the gap over the training
setS.

Our central claim is that quasi-additive algorithms can be (and generally have been, even
if this was not explicit) analyzed by examining the relationship between the dot product
u · z and a specific functionG(z) defined below. We also introduce an important auxiliary
function Hu(z) that will be helpful in relating the two.

First, the significance ofu ·z is straightforward and indeed is largely conventional within
existing proofs. Consider howu · z changes when we make a single update toz by adding
a vectora yx for some example(x, y) ∈ S: We have

1u·z = u · znew− u · z
= u · (znew− z)

= u · (ayx)

≥ a δu,S

using the definition of the gap together with the positivity ofa. Thus,u · z grows steadily
with each update toz, and afterm updates we must haveu · z ≥ m aδu,S. The simplicity
of this argument is perhaps the key consequence of the additive nature of quasi-additive
algorithms.

The remainder of our general analysis strategy is to find some scalar functionHu(z) such
that for allu: Hu(z) ≥ u · z for all z; andHu(z) eventually grows more slowly thanu · z
(by an amount bounded away from zero) as we continue to make mistakes. Supposing we
can do this, we can then define a plausible measure of progress as

M(z) = H(z)− u · z
(We generally suppress the possible dependence ofH andM uponu in the notation.) On
one hand,M is non-negative by the first assumption. On the other hand, after sufficiently
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many mistakes the second term must increase faster than the first, showing thatM would
eventually become negative. This contradiction shows that there must be a finite limit to
the number of updates (mistakes) our algorithm can make.

The challenge, then, is to find a suitableH . We do so by introducing another (and in
some sense more fundamental) functionG as follows. Letf be the transformation function
defining our quasi-additive algorithm. Lett0 be that point such thatf (t0) = 0; let t0
be−∞ if no such point exists. (Recall thatf is monotonically increasing, sot0 is unique.)
We then defineg to be a particular integral function off :

g(x) =
∫ x

t0

f (s) ds

for all x. (All our later results will include sufficient restrictions to ensure thatg exists.)
Finally, we let

G(z) =
n∑

i=1

g(zi ). (1)

(Note thatG(z) ≥ 0 since, by construction,g is a positive function.) Now consider any
function H that is a monotonic rescaling ofG: i.e., such that there exists a monotonically
increasing scalar functionψ (possibly parameterized byu) such that

H(z) = ψ(G(z)).

We restrict attention to increasing differentiableψ that validate our first desired constraint
on H ; that is, we consider onlyψ that preserve the inequalityψ(G(z)) ≥ u · z for all z.
(As we show in later sections, there are various automatic rules for finding suchψ .)

We now propose that this construction ofH yields a plausible function to use in our
measure of progress. To see this, recall that the main issue is ensuring thatH(z) does not
grow too fast as we updatez. But consider how such anH would change as we updatez,
at a mistake, by addinga yx. To a first-order approximation we have

1H ≈ ∇H(z) · (znew− z)

= ψ ′(G(z))f(z) · (ayx)

= ayψ ′(G(z))w · x
≤ 0.

Here∇H(z) denotes the gradient ofH at z. The second step uses the chain rule, the
definition of g as an integral off (so g’s derivative is f ), and the fact thatz is updated
simply by addinga yx. The penultimate step uses the definition of the quasi-additive rule
QA〈 f 〉, i.e., thatf(z) is the current weight vectorw. The final step uses the assumption
thatψ is an increasing function (so its derivative is positive) and, most critically, the fact
thata yx is a vector on which amistakehas just been made. This impliesy (w · x) ≤ 0 (for
otherwise, the prediction usingw would not have been mistaken).
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Figure 1. A two dimensional depiction of the surfaceHz = {v : H(v) = H(z)} and its tangent plane atz.

Therefore, at least to a first-order approximation,H decreasesafter an update. This
motivates our interest in considering functionsH that depend onz only throughG in this
manner. It will also be the only use we ever make of the mistake-driven nature of the
algorithms.

A geometric intuition might be helpful to further understand this construction forH :
For anyz, consider the level surface passing throughz defined byHz={v : H(v)= H(z)},
which is depicted for a simple two dimensional case in figure 1. The functionG is convex
(since f is increasing and thusg is convex) andψ is increasing, thereforeH(z′) ≤ H(z)
for all z′ in the interior of the region bounded byHz. The key property ofH is that the
transformed weight vectorw= f(z) (componentwise) isnormalto the surfaceHz atz, and
hence determines the tangent plane toHz atz, {v : (v− z) ·w = 0}. When we move away
from z in the directionayx (whereayx is an example on which we make a mistake), we are
constrained to move on one side of this plane—in particular, the side corresponding to the
interior of the region bounded byHz. So, at least to a first-order approximation,H does
not increase.

In summary, we have (or will have, once we have shown how to chooseψ , as we do in
later sections) given a generic recipe for deriving measures of progress that can plausibly
lead to mistake bounds for quasi-additive algorithms. In the past, constructing measures of
progress has (apparently) required considerable ingenuity.

Constructing a measure of progress, however, is only half a mistake bound analysis; one
must also analyze the chosenH rigorously to see how fast it really does grow relative to
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u · z. The remaining issue is to account for the curvature ofH . To be complete, we will
have to analyze

1H = ∇H(z) · (znew− z)+ R(znew, z) (2)

whereR(znew, z)
4= H(znew)− H(z)−∇H(z) · (znew− z) is a residual term that accounts

for the high order change due to the curvature ofH . We will be required to prove that
this growth is (eventually) bounded by a sufficiently small quantity at every update. In this
paper we demonstrate a few standard techniques that help in doing this, notably analyses
which study thesecondderivative ofH more carefully. Beyond this, however, we do not
have any especially powerful or unifying theory to solve this second stage of the analysis,
and so considerable further work remains.

In the next section we give a concrete application of the ideas just discussed, showing
how they appear and are used in practice. Specifically, we show that these ideas lead
straightforwardly to a very broad convergence result for quasi-additive algorithms.

4. A general convergence theorem

In this section we focus on giving conditions under which algorithms make a bounded
number of mistakes, but we do not pay close attention to the size of the bound. The
particular notion of convergence we use, formalized in the following theorem, states that
the number of mistakes made on the training setS depends only on the gap (suitably
normalized by the size of the target vector), and on the size of the vectors inS. In particular,
when the theorem applies, the bound does not depend on the cardinality ofS.

Notation. Recall that, fork∈ IR+,‖x‖k denotes thek-norm ofx; i.e.,‖x‖k= (
∑n

i=1 |xi |k)1/k.
We also use‖x‖∞ = maxi |xi |, and let‖S‖k denote supx∈ S‖x‖k.

Theorem 4.1. Suppose f is monotonically increasing, has a continuous first derivative,
is odd(i.e., f (−z) = − f (z) for z ∈ IR), and

lim
z→∞ sup

0≤v<z

f ′(v)
f (z)

= c

for some finite c≥ 0.
Then there exist functions mδ,β,a < ∞ and aδ,β > 0 such thatQA〈 f 〉, when run with

parameter a= aδ,β , makes at most mδ,β,a mistakes when trained on any set of examples S
such that‖S‖∞ = β is finite andδu,S > 0 for someu.

If c = 0 then there is a mistake bound mδ,β,a for any value of the parameter a.

Theorem 4.2. The same result holds if we replace the oddness condition on f by the
condition thatlimz→−∞ z2 f (z) = 0, add the condition thatu ≥ 0, and redefine c as

c = lim
z→∞ sup

v<z

f ′(v)
f (z)

.
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Proof: We prove both results together, because the differences are minor. As shorthand,
we refer to the conditions of Theorems 4.1 and 4.2 respectively as Cases 1 and 2. The
proof follows the pattern of Section 3, and we continue to use the notation defined therein.
Throughout this proof, fix an arbitrary target vectoru.

First note that the condition limz→−∞ z2 f (z) = 0 from Case 2 can be used to establish
the existence of the functiong introduced in Section 3 (i.e., under these conditions one can
show that

∫ x
s=−∞ f (s)dsexists for allx). A second consequence of this condition, together

with the monotonicity off , is that in Case 2 we havef (x)>0 for all x. In Case 1,g is
always well defined (and in factg(x) = ∫ x

0 f (s)ds, becausef (0) = 0) and is an even
function. We letg(−1) denote the inverse function ofg; in Case 1, we take the inverse of
the restriction ofg to IR+ (i.e., the non-negative reals). It is easy to verify that, in both
cases,g(−1) is well defined onIR+, is increasing, and is continuously differentiable except
possibly at 0.

We consider the functionG(z) =∑n
i=1 g(zi )defined in Section 3. Consider the following

measure of progress, defined by taking

M f (z) = ‖u‖1g(−1)(G(z))− u · z. (3)

So hereH(z)
4= ‖u‖1g(−1)(G(z)).

As suggested in Section 3, the theorem will follow quickly if we prove three claims:

Claim 1. Mf is non-negative.

Claim 2. The quantityu · z increases by a fixed amount (in fact, by at leastaδu,S) at each
step.

Claim 3. After s steps, wheres does not depend on the particular sequence of examples,
H either decreases, or increases by at mostaδu,S/2.

Together these clearly suffice to yield a bound on the number of updates that can per-
formed, and therefore on the number of mistakes.

Proof of Claim 1. We wish to show thatH(z) ≥ u · z. Note first thatg(−1)(
∑n

i=1 g(zi )) ≥
g(−1)(g(zj )) for every j , using the positivity ofg and the monotonicity ofg(−1).

The rest of the argument differs slightly between the two cases. In Case 1,g is an
even function and thusg(−1)(g(zj )) = |zj |, so H ≥ ‖u‖1 maxn

i=1 |zj |. We clearly have
maxn

i=1 |zj | ≥ u · z/‖u‖1, so we are done.
In Case 2, we haveg(−1)(g(zj )) = zj , so thatH ≥ ‖u‖1 maxn

i=1 zj . However, since∑n
i=1 |ui | =

∑n
i=1 ui (using the assumed positivity ofu in this case), we see thatu ·z/‖u‖1

is some weighted average of the elements ofz, and is thus less than or equal to the largest
element ofz. That is,‖u‖1 maxn

i=1 zj ≥ u · z, so again we are done.

Proof of Claim 2. We have already shown in Section 3 thatu · z grows by at leasta δu,S

with each update.

Proof of Claim 3. Finally, and most interestingly, we consider howH changes after an
update. We express this change using a second-order Taylor-series expansion. Sincez
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changes byy ax, we are interested in1H = H(z+ y ax)− H(z). In particular, we need
to show that (eventually)1H must be small. By Taylor’s theorem there is some pointζ
betweenz andz+ y ax such that

1H = ya∇H(z) · x+ 1

2!

n∑
i=1

n∑
j=1

∂2H

∂zi ∂zj

∣∣∣∣
ζ

y2a2xi x j .

The notation indicates that the second-order term is evaluated atζ, but it is important for
the following to note that the first-order derivatives (to obtain the gradient) are evaluated
with respect to thecurrent(pre-update) value ofz.

Recall that in Section 3 we gave a very general argument showing that the first-order
term cannot be positive given that we are updating on a mistake vector (this followed from
our general construction ofH ). Therefore, to upper bound1H we need only consider the
second-order term. Analyzing this term comprises the remainder of the proof.

It is easy to show, by applying the chain rule to the definition ofH following (3) and the
definition ofG in (1), that

a2

2

n∑
i=1

n∑
j=1

∂2H

∂zi ∂zj

∣∣∣∣
ζ

xi x j = a2 ‖u‖1
2

g(−1)′(Gζ))
n∑

i=1

f ′(ζi )x
2
i

+ a2 ‖u‖1
2

g(−1)′′(G( ζ))
(

n∑
i=1

f (ζi )xi

)2

.

We can use the standard inverse-function differentiation rule to evaluate the derivatives
of g(−1), obtaining

g(−1)′(G(z)) = 1

f (g(−1)(G(z)))
,

g(−1)′′(G(z)) = − f ′(g(−1)(G(z)))
f (g(−1)(G(z)))3

.

Note that (using the assumption thatf is differentiable) all these derivatives exist, except
perhaps in Case 1 whenζ = 0 (becausef (0) = 0 and this is the only point where
g(−1)(G(ζ)) = 0). But an argument we give shortly will show that this possibility need not
concern us; we ignore it for now.

Given these observations, we can now write the second-derivative bound on the change
in H as

1H ≤ a2 ‖u‖1
2

1

f
(
g(−1)

(∑
i g(ζi )

)) n∑
i=1

f ′(ζi )x
2
i

− a2 ‖u‖1
2

f ′
(
g(−1)

(∑
i g(ζi )

))
f
(

g (−1)
(∑

i g(ζi )
))3
(

n∑
i=1

f (ζi )xi

)2

.
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The expressionf (g(−1)(G(z))) is never negative. (In Case 1,g(−1) is non-negative and
f is positive for positive arguments, while in Case 2,f is always positive anyway.) Also,
f ′ is non-negative. Thus, the second term above is always positive and so subtracting it
only helps decrease1H ; we can thus ignore it. Therefore,

1H ≤ a2‖u‖1
∑n

i=1 f ′(ζi )x2
i

2 f
(
g(−1)

(∑
i g(ζi )

)) 4= Q f . (4)

We denote this upper bound on1H by Q f .
We finish the proof first just for Case 1. First, observe

1H ≤ Q f

= a2 ‖u‖1
∑n

i=1 f ′(ζi )x2
i

2 f
(
g(−1)

(∑
i g(ζi )

))
≤ a2 ‖u‖1 n maxn

i=1 f ′(ζi )x2
i

2 f (‖ζ‖∞)

≤ a2 ‖u‖1 nβ2 sup|ζ |≤‖ζ‖∞ f ′(|ζ |)
2 f (‖ζ‖∞)

where the new denominator in the second step is justified using the same argument we
used in the proof of Claim 1 and by the monotonicity off . The third step simply uses
|ζi | ≤ ‖ζ‖∞ for all i , and the fact thatf ′ is even (sincef is odd). Also for the third step
recall thatβ = ‖S‖∞ = supx∈S‖x‖∞ by definition.

But now we can obtain a lower bound on‖ζ‖∞ as follows. Clearly, if we have madem
updates thenu · z will be at leasta δu,S m. We have already shown thatu · z ≤ ‖u‖1‖z‖∞
in the proof of Claim 1, so that afterm updates we have‖z‖∞ ≥ a δu,S m/‖u‖1. Sinceζ is
betweenz andz+ y ax, we know that‖ζ‖∞ ≥ ‖z‖∞ − a‖x‖∞ ≥ a δu,S m

‖u‖1 − aβ. (Note that
after the first(β + 1)‖u‖1/δu,S mistakes we must have‖ζ‖∞ > 0, implying that the earlier
concern we raised about the existence of the derivatives cannot arise after this point.)

We are now essentially done. Recall the condition in the theorem, that

lim
z→∞ sup

0≤z′<z

f ′(z′)
f (z)

= c ≥ 0.

In particular, ifc 6= 0 there is some fixed valuez2c > 0 such that for allz > z2c, we have
sup0≤z′<z

f ′(z′)
f (z) ≤ 2c. Suppose‖ζ‖∞ > z2c. Then, if we choose anya less than δu,S

2‖u‖1 nβ2 c ,
we haveQ f < a δu,S/2 as required. From our earlier bound, we also know that‖ζ‖∞ > z2c

will hold wheneverm>
‖u‖1(z2c+aβ)

a δu,S
, so we are done. In the case wherec = 0 we can make

sup0≤z′<z
f ′(z′)
f (z) arbitrarily small for all suitably largez. It follows that we can find a mistake

boundm (which now, however, may depend ona) for any value ofa > 0.
The closing argument in Case 2 is very similar, and we simply point out the differences.

By the argument used to prove Claim 1, we know thatu · z/‖u‖1 ≤ maxi zi , and thus asm
grows we know that the largestpositivecomponent ofz grows without bound. (In Case 1,
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we only knew this about‖z‖∞.) The rest of the argument is isomorphic, except that we
lower-boundf (g(−1)(

∑
i g(ζi ))) by f (maxn

i=1 ζi ) using the monotonicity off , and we use
the modified assumption that

c = lim
z→∞ sup

z′<z

f ′(z′)
f (z)

exists. (Note the difference from Case 1 is that here we must also considerz′< 0.) Other-
wise, we argue exactly as above. 2

Observe that Theorems 4.1 and 4.2 immediately apply to standard algorithms, and there-
fore provide a unified proof of their convergence. For example, the Perceptron algorithm,
which in the quasi-additive framework is defined by the identity transformationf (z) = z,
trivially satisfies the conditions of Theorem 4.1. Moreover, as pointed out in Section 2,
Balanced Winnow can also be defined as a quasi-additive algorithm under the transfor-
mation f (z) = 2 sinhz, and this too satisfies the conditions of Theorem 4.1. A slightly
different case is Weighted Majority, which is defined by the positive functionf (z) = ez,
but this satisfies the conditions of Theorem 4.2. So, in effect, we have given a single proof
of convergence that applies to all these existing cases.

Of course, this convergence result is more interesting because we can apply it to new
algorithms that correspond to other appropriate transformation functions. We investigate
one new family of such algorithms in Section 7.

The two theorems in this section only address (eventual) convergence. Although there are
mistake bounds implicit in the general proof, these bounds are not especially good (relative
to what is known from other proofs). In the next section we describe a technique for finding
“tighter” functionsH that potentially lead to better mistake bounds.

5. An optimized measure of progress

In Section 3 we deferred the question of finding a suitableψ (and henceH ) to define the
measure of progress, although we subsequently showed in Section 4 thatψ = ‖u‖1 g(−1)

is one possible such choice. In this section we give a different construction forH which is
potentially “tighter” than‖u‖1 g(−1)(G(z)).

Recall that we wish to chooseψ to be an increasing function that preserves the inequality
ψ(G(z)) ≥ u · z. Given the structure of the proofs, one might suspect there would be an
advantage in choosingψ to yield a “small” functionHψ(z)

4= ψ(G(z)). For example, if
H1(z) ≤ H2(z) everywhere, then, all else being equal, perhaps we should investigateH1

first. To explain this intuition, recall that a mistake bound analysis proceeds by bounding the
number of updates that can be made toz beforeM(z) < 0. Therefore, ifM1(z) < M2(z),
thenM1 can only reach zero at or beforeM2—which suggests that small aH (and hence a
small M) is desirable.

In fact, there often exists asmallestsuitable function; that is, a functionH ? such that for
any other suitableH we haveH ?(z) ≤ H(z) everywhere. In this section we show that such
anH ? can be characterized in a few different ways. In Section 6 we give concrete examples
of H ? applied to specific cases, and demonstrate the mistake bounds that it leads to.
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To defineH ? initially, consider any suitableH = ψ(G(z)) and consider the setGz =
{v : G(v) = G(z)} for a givenz. Trivially, H(z) = H(v) for all v ∈ Gz. However, by
assumptionH(v) ≥ u · v for all v, and specifically forv ∈ Gz. Therefore, we have not just
H(z) ≥ u · z, but more strongly

H(z) ≥ sup
v : G(v)=G(z)

u · v.

Now defineH ? to be the supremum

H ?(z) = sup
v : G(v)=G(z)

u · v.

It immediately follows thatH ?(z) is a lower envelope on all suitableH(z)—assuming the
supremum actually exists—and is hence the function we seek. Note that the above definition
of H ? is trivially equivalent to definingH ?(z) = ψ?(G(z)) whereψ? is defined by

ψ?(r ) = sup
v : G(v)=r

u · v.

Therefore,H ? is of the appropriate form for functionsH given in Section 3. Furthermore,
by construction we haveH ?(z) ≥ u · z for all z. The remaining requirement given in
Section 3 is thatψ? be monotonically increasing. This will follow from properties ofH ?

that we now develop.
The following proposition gives a somewhat more explicit characterization ofH ?.

Theorem 5.1. If f satisfies the conditions of Theorem4. 1, or if every component of
u is strictly positive and f satisfies the conditions of Theorem4. 2, then the supremum
supv∈Gz

u · v is attained at a vectorv? given byv? = f (−1)(αu), whereα is the unique
positive scalar that satisfies G( f (−1)(αu)) = G(z).

The results holds in general under the conditions of Theorem4. 2 (i.e., even if some
components ofu are0), so long as we allowv? to include components with value−∞ and
define f(−1)(0) = −∞, f (−∞) = g(−∞) = 0.

Proof: We first argue that the supremum not only exists, but is actually attained at some
point inGz. If G(v) =∑n

i=1 g(v) = G(z) then (by positivity ofg) we havevi ≤ g(−1)(G(z))
for each componentvi . In fact, under the assumptions of Theorem 4.1 (wheng is an even
function) we have|vi | < g(−1)(G(z)), showing that the setGz is entirely contained within
a bounded region ofIRn. Given this, and the continuity ofG, it follows thatGz is closed
and thus also compact. Hence, under the conditions of Theorem 4.1, the supremum value
of u · v not only exists but is actually attained at somev?. We now consider the conditions
of Theorem 4.2, but for the meantime restrict attention tou > 0. Gz is not necessarily
bounded below (recall thatg(x)→ 0 asx → −∞ in this case). However, we argue that
all v with any “sufficiently large” negative component must haveu · v bounded away the
supremum (indeed, bounded belowu · z), and hence to find the supremum we can restrict
attention to a closed and bounded subset ofGz; the argument based on compactness is



186 A. J. GROVE, N. LITTLESTONE, AND D. SCHUURMANS

then the same as before. Specifically, consider anyv having some coordinatevi such that
vi < (u · z− (n − 1) g(−1)(G(z)) maxn

i=1 ui )/minn
i=1 ui . Using the earlier bound on the

size of the other components ofv, and the fact that allui > 0 by assumption (including
minn

i=1 ui ), it is easy to see that for suchv we haveu·v < u·z. Thus, existence is established
for the two cases.

Now, to discover the point at which the supremum is attained in the case whereu > 0,
we use the technique of Lagrange multipliers. We wish to choosev to minimize the
objective−u · v subject to the constraintG(v) − G(z) = 0. The Lagrangian is given
by−u · v+ λ(G(v)− G(z)) and the first-order necessary conditions are

− ∂

∂vi
u · v+ λ ∂

∂vi
(G(v)− G(z)) = 0

for all i . This immediately gives−ui + λ f (vi )= 0 for all i , and thereforef (vi )= ui /λ.
Since f is monotonic and hence one-to-one, its inverse is well defined and sovi =
f (−1)(ui /λ); as long asλ is chosen so thatui /λ is in the range off for all i . Letting
α = 1/λ we can write the solution asv?= f (−1)(αu) (i.e., applying f (−1) componentwise
to αu). We must chooseα so thatG( f (−1)(αu)) = G(z). We restrict attention toα ≥ 0
(since it will become apparent that if we consideredα < 0 we would find the infimum ofu·v,
not the supremum). Using the properties off andg, it is easy to see thatG( f (−1)(αu)) is a
monotonically increasing function ofα for fixedu. It quickly follows that there is a unique
α ≥ 0 for which all components ofαui are in the range off and alsoG( f (−1)(αu)) = G(z).
In the following, we assume thatα has been chosen to be this value.

It remains to verify that theu ·v? is indeed a global maximum. We have already remarked
that, sinceg′ = f is increasing, the functiong is convex and thereforeG is also convex.
So the graph ofG lies on or above any tangent plane ofG. The gradient ofG at v? is just
f(v?)=αu. Thus, the plane tangent toG at v? is given byαu · (v − v?) + G(v?) (as a
function ofv). So forv ∈ Gz we haveG(v) ≥ αu · (v− v?)+G(v?). SinceG(v) = G(v?),
this implies thatαu · v? ≥ αu · v. Sinceα > 0 this gives the desired result.

We now consider the remaining case, i.e., under the conditions of Theorem 4.2 but
where some components ofu are zero. Since limz→−∞ g(z) = 0, g is an order preserving
bijection fromIR ∪ {−∞} to IR. Thus with the natural order topology onIR ∪ {−∞}, g is a
homeomorphism and hence continuous. From this, it is not hard to see that the setsGz are
compact in the spaceIR ∪ {−∞}. Furthermore, using earlier arguments about the upper
bounds onGz andu > 0, we see thatu · z is bounded overGz. Existence of the supremum,
and ofv?, follows.

It is also not hard to determinev? in this case. LetK = {i : ui > 0} ⊂ {1, . . . ,n}, and let
k = |K |. Under the conditions of Theorem 4.2,g is monotone increasing. The supremum
must be attained at a pointv? such thatv?i = −∞ for all i /∈ K , since ifvi > −∞ for
somei /∈ K , we can increaseu · v by decreasingvi and increasingv j for some j ∈ K in
a way that keeps the point inGz. Since f (−1)(αui ) = f (−1)(0) = −∞, we have shown
thatv?i has the desired value fori /∈ K . Let G ′z = {v ∈ IRk :

∑k
i=1 g(vi ) = G(z)}, and let

u′ ∈ IRk be obtained fromu by omitting the components that are 0. Sinceg(−∞) = 0, we
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Figure 2. A two dimensional depiction of the surfaceGz = {v : G(v) = G(z)}, showing thatw = f(z) is normal
to Gz at z, andu is normal to toGz at v? ∈ Gz. Herev? is given byv? = f(−1)(αu) whereα is defined such that
G(v?) = G(z); i.e.,α is chosen so thatv? lands on the surfaceGz.

have reduced the proof of the proposition to proving that supv∈G ′z u′ ·v is attained at a vector
v? ∈ G ′z satisfyingv?i = f (−1)(αu′i ) for i = 1, . . . , k, whereα is the unique positive scalar
that satisfies

∑k
i=1 g( f (−1)(αu′i )) = G(z). The result now follows from our argument for

the earlier (u > 0) case. 2

We can interpret the proposition as saying thatv? is just the pre-image of a suitably scaled
version ofu, αu, set to land on the surfaceGz (see figure 2). Thus, we achieve a simple
geometric observation that the classification vectorsw andu are normal to the surfaceGz

at their pre-transformed “cumulative sum” vectorsz andv? respectively. This proposition
now allows us to rewrite the standard measure of progress which usesH ? as

M?
f (z) = u · f (−1)(αu)− u · z

whereα is such thatG(f (−1)(αu)) = G(z). (5)

One immediate use of the proposition is to find an expression for the derivative ofH ?

with respect toG(z) (and hence also with respect tozi ), which we will need in later mistake
bound analyses. Recall that we choose the functionψ? so thatH ?(z) = ψ?(G(z)).
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Theorem 5.2. For f satisfying the conditions of Theorem4.1or 4.2, the scalar function
ψ? defined as

ψ?(r ) = u · f (−1)(αu) for α such that G( f (−1)(αu)) = r

has the first derivativedψ
?

dr = 1
α
. It follows that ∂H ?

∂zi
= f (zi )

α
for all i ; that is, ∇H ?(z) = w

α
.

Proof: Fix an arbitraryu. Sinceψ? depends onr via α, we can apply the chain rule to
obtain

dψ?

dr
= d

dα
u · f (−1)(αu)

dα

dr

=
n∑

i=1

u2
i f (−1)′(αui )

dα

dr
.

To computedα
dr , note thatr is given by the equationr = A(α)whereA(α) = G( f (−1)(αu)).

Therefore, we can writeα = A(−1)(r ). This is justified becauseA is invertible onα > 0
(by the definition of f andG) and becauseα > 0 for r > 0 (sinceG(f(−1)(0)) = 0). We
can then apply the rule for differentiating inverse functions,A(−1)′(r ) = 1/A′(α), to obtain

dα

dr
= 1

d
dαG( f (−1)(αu))

= 1∑n
i=1 αu2

i f (−1)′(αui )
.

Combining these calculations yieldsdψ?

dr = 1
α

as desired. 2

Recall that, although we have been assuming thatH ? is indeed a suitableH function
in the sense of Section 3, we have not yet shown that it is monotonically increasing as a
function ofG. We can now remedy this omission:

Corollary 5.3. The functionψ? is monotonically increasing on[0,∞].

Proof: This follows immediately from the fact that we haveα > 0 wheneverr > 0. 2

Now consider usingH ? = ψ?(G) to prove a mistake bound. We already know by
Theorem 5.2 that, to a first-order approximation,H ? will decrease when we updatez on
a mistake vectoryx. However, we will need to bound the actual growth rate ofH ?. The
only general strategy we can currently suggest at this point is to perform a second-order
Taylor-series analysis, as in Section 4.

To proceed with the analysis, recall that we are interested in obtaining a bound on
1H ? = H ?(z+ y ax) − H ?(z) when we updatez by y ax for an example on which a
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mistake is made. In particular, we need to show that (eventually)1H ? must be small. By
Taylor’s theorem there is some pointζ betweenz andz+ y ax such that

1H ? = y a∇H ?(z) · x+ 1

2!

n∑
i=1

n∑
j=1

∂2H ?

∂zi ∂zj

∣∣∣∣
ζ

y2 a2 xi x j .

However, we know that the first-order term is negative, and hence can be omitted. Therefore,
we can bound1H ? by

1H ? ≤ a2

2

n∑
i=1

n∑
j=1

∂2H ?

∂zi ∂zj

∣∣∣∣
ζ

xi x j .

Using the results of Theorem 5.2, we compute the second partial derivatives (noting thatα

is an implicit function ofz) as

∂2H ?

∂zi ∂zj
= − f (zi ) f (zj )

α3
∑n

i=1 f (−1)′(αui )u2
i

for i 6= j , and

∂2H ?

∂z2
i

= f ′(zi )

α
− f (zi )

2

α3
∑n

i=1 f (−1)′(αui )u2
i

.

Given these observations, we can now write the second-derivative bound on the change in
H ? as

1H ? ≤ a2

2

n∑
i=1

f ′(ζi )x2
i

α
− a2

2

1

α3
∑n

i=1 f (−1)′(αui )u2
i

(
n∑

i=1

f (ζi )xi

)2

.

We have already established thatα > 0 after the first update, andf (−1)′ > 0 by assump-
tion, therefore the second term above is always positive and subtracting it only reduces the
bound on1H ? ; so we ignore it. This yields the simpler bound

1H ? ≤ a2∑n
i=1 f ′(ζi )x2

i

2α
4= Q f . (6)

We again denote this upper bound on1H ? by Q f .
Unfortunately, the analysis stops paralleling Section 4 here. At this point we have a

bound on the growth ofH ? which is analogous to (4). However, an apparent paradox has
arisen: The bound (6) on the growth ofH ? is no longer guaranteed to be smaller than the
bound (4) on the growth of the oldH function—even thoughH ? guaranteed to be smaller
than the previousH .

The reason for this failure is not with the measure of progress itself, but with the strategy
used to analyze it (i.e., second-order Taylor-series analysis). A functionM2 can be strictly
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smaller thanM1 and yet still have larger second-order derivatives (periodically but infinitely
often) over the domain. Given the very weak conditions onf imposed by Theorems 4.1
and 4.2, this situation cannot be ruled out, and thus the second-order bound is not capable of
exploiting the full power of this new measure of progress. In particular, we ourselves have
not yet been able to prove Theorems 4.1 and 4.2 in their full strength usingH ? directly.

However,H ? and the boundQ f obtained in (6) still prove to be very valuable. When
we consider particular quasi-additive learning algorithms such as Perceptron and Winnow
(corresponding to particular choices off ) we find that weautomaticallyrecover measures
of progress nearly identical to those used in the most famous mistake bound analyses of
these algorithms. Furthermore,Q f turns out to be very effective in analyzingH ? in these
particular cases.

The incompleteness of this situation emphasizes the main limitation of this paper’s central
contribution. We systematize the discovery of measures of progress and rationalize this
phase of earlier analyses. But the second part of a mistake-bound proof, the actual algebraic
analysis, remains mostly an art and (as we illustrate again in Section 7) there remains plenty
of scope for unsystematic tricks and clever insights in this phase.

6. Deriving mistake bounds

The new measure of progress derived in Section 5 can be used to prove better mistake bounds
than those implicit in the proof from Section 4, while using a similar style of argument. As
in Section 4, we will first want to show that after some number of mistakesm1 we have
Q f <

a δu,S

2 . It should then be clear that after the firstm1 mistakes the actual value ofM is
monotonically decreasing. Once this has been achieved, the next step is to find some upper
boundB on the value ofM . Given this, we know we can only make at most

m2 = 2B

a δu,S

additional mistakes (otherwise the measure of progress would become negative). Thus, the
totalm1+m2 gives our mistake bound. Much of our general approach to proving mistake
bounds (e.g., the definition ofM?

f ) is fairly automatic. The rest of the details, notably the
analysis ofQ f , tends to be specific to the particular functionf . To illustrate the technique,
we work through two examples.

Weighted Majority. First, we consider the Weighted Majority algorithm. Recall that this is
a quasi-additive algorithm with the transformationf (z) = ez. Here we obtain the functions
g(z) = ez and f (−1)(z) = logz. (Note that we assumeu ≥ 0 in this case.) To determine
the instantiation of the optimized measure of progress (5) for this algorithm we need only
solve for the scalarα that gives

n∑
i=1

elog(αui ) =
n∑

i=1

ezi .
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This is easily determined to beα = 1
‖u‖1

∑n
i=1 ezi (usingu ≥ 0), and so we automatically

obtain the measure of progress

M?
WM(z) = ‖u‖1 log

(
n∑

i=1

ezi

)
+

n∑
i=1

(
ui log

ui

‖u‖1

)
− u · z.

Our analysis then proceeds by obtaining theQ f bound, which is obtained by simply sub-
stituting into (6)

QWM = a2 ‖u‖1
∑n

i=1 eζi x2
i

2
∑n

i=1 eζi

≤ a2 ‖u‖1 ‖S‖2∞
2

.

This follows becauseQWM is simply a2‖u‖1
2 times a weighted average of thex2

i terms (that
is, weighted with positive weights eζi∑n

i=1 eζi
that sum to 1). Hence ifa ≤ δ

‖u‖1 ‖S‖2∞ then

QWM ≤ aδ
2 . Assuminga satisfies this constraint, we can takem1 = 0. Now suppose we

start atz = 0. Then the original value ofM?
WM is clearly‖u‖1 logn +∑n

i=1 ui log ui
‖u‖1 .

Putting these facts together, and usingM?
WM ≥ 0, we see that if we choosea as above then

Weighted Majority cannot possibly make more than

m≤
2‖u‖21 ‖S‖2∞

(
logn+∑n

i=1
ui
‖u‖1 log ui

‖u‖1
)

δ2
u,S

mistakes. Thus in a few lines we have obtained a bound that is identical to Littlestone’s.5

In fact, this should not be surprising, sinceM?
WM is essentially the same as Littlestone’s

measure of progress. We can also apply the technique to derive mistake bounds for Bal-
anced Winnow (i.e.,f (z) = 2 sinhz), which again achieves bounds that are comparable to
Littlestone’s (1989) in an equally short argument.

Perceptron. Next, we consider the Perceptron Algorithm. Heref (z) = z, the identity
function, and sog(z)= z2/2 and f (−1)(z)= z. Again we can determine the explicit instan-
tiation of the optimized measure of progress merely by solving forα in

n∑
i=1

α2u2
i

2
=

n∑
i=1

z2
i

2
.

This givesα = ‖z‖2‖u‖2 , which plugging into (5) immediately yields

M?
Percept(z) = ‖u‖2 ‖z‖2− u · z.
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(The appearance of the 2-norm here rather than the 1-norm leads to tighter bounds than
we would have obtained if we had used the measure of progress proposed in Section 4.)
Proceeding to analyze theQ f bound, and using the fact thatf ′(z) = 1 in this case, we are
left with

QPercept= a2 ‖u‖2
∑n

i=1 x2
i

2‖ζ‖2
≤ a2 ‖u‖2‖S‖22

2‖ζ‖2 .

We just sketch the remaining analysis, which is straightforward but somewhat messy. Let
t = a ‖u‖2 ‖S‖22

δ
. Clearly, if‖ζ‖2 > t thenQPercept≤ a δ

2 . The argument in Section 4 can also
be used to show that‖ζ‖2 > a δm

‖u‖2 − a‖S‖2. (In Section 4, we considered the∞-norm, but
the argument still holds for the 2-norm.) Thus, it suffices to takem1 = ‖u‖2(t+a ‖S‖2)

a δ . Now,
for a bound onB for M?

Percept, note that the largest possible value of the measure of progress
must be attained at a point satisfying‖z‖2 ≤ t + 2a ‖S‖2. For suppose‖z‖2 > t + 2a ‖S‖2.
Then, by the triangle inequality,z′ (denoting the vector on the preceding step) will satisfy
‖z′‖2 > t+a ‖S‖2, and hence (using triangle again), the corresponding vectorζ ′ will satisfy
‖ζ ′‖2 > t . But as we have just seen, this implies thatM?

Perceptdecreases as we update from
z′ to z. Hence, suchz cannot maximizeM?

Percept. It follows that‖u‖2(t + 2a ‖S‖2) is a
suitableB. Definingm2 as discussed at the beginning of this section, we thus get

m1+m2 = ‖u‖2(t + a ‖S‖2)
a δ

+ 2‖u‖2(t + 2a ‖S‖2)
a δ

= 3‖u‖22‖S‖22+ 5δ‖u‖2‖S‖2
δ2

= O

(‖u‖22‖S‖22
δ2

u,S

)
where we use the fact that by the Cauchy-Schwarz inequality,δ ≤ ‖u‖2‖S‖2.

Up to a constant factor, this is just the classic result (see Papert, 1961; Block, 1962;
Nilsson, 1965; Minsky & Papert, 1969; Duda & Hart, 1973). The similarity is even deeper:
our measure of progress is in fact very closely related to that used in Papert (1961), Minsky
& Papert (1969). The main technical difference is inessential: in effect they used the
quotient rather than the difference of the two terms defining our measure of progress. (We
return to the issue of equivalence between measures of progress in Section 8.)

Although in the cases just discussed our proof essentially reduces to known analyses
(at least insofar as the measure of progress is defined), the real significance is that we
find our measure of progress “automatically” by instantiating a far more general argument.
Furthermore, much of our proof (excluding the final analysis ofQ) is common to all of
them. We believe that it deepens our understanding of the older results to see that, although
they appear quite diverse, they are in fact largely isomorphic. This suggests that in some
sense the “reasons” why the different algorithms work are, at heart, the same.
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7. A new family of algorithms

In this section we introduce a newfamily of quasi-additive algorithms which, for reasons
explained below, we call thep-norm Perceptronalgorithms. As will be seen, one can
apply Theorem 4.1 to immediately conclude that these algorithms converge. However the
main result of this section is Theorem 7.1, which states mistake bounds for this family. This
theorem is inherently interesting, but also has several important consequences. In the second
half of this section we show that for small values ofp, the family has characteristics similar
to Perceptron (and indeed,is Perceptron whenp = 2). On the other hand, as the parameter
p increases, the family tends to look more and more like a “Winnow” algorithm. This
“interpolating” property is potentially significant because it is known, from both experiment
and theory (e.g. Kivinen, Warmuth & Auer (1997)), that Perceptron and Winnow-like
algorithms can perform very differently on various types of problem. It might therefore be
useful if we could trade-off their relative strengths in a flexible and principled way. Thus,
this family could be significant from a practical point of view.

The p-norm Perceptronalgorithms are quasi-additive algorithms which are defined by
the transformation functionsf p(z) = sign(z)p|z|p−1 for 2≤ p <∞. This form of f p

is easier to appreciate once we observe that this yieldsg(z) = |z|p, and henceG(z) =∑n
i=1 |z|p = ‖z‖p

p, for 2≤ p <∞.
In the following, we will useq to denote the conjugate exponent ofp, that is, the value

q such that1p + 1
q = 1 (henceq = p/(p− 1)). An interesting and important property of

conjugate exponents isHölder’s inequality, which says thatu · v ≤ ‖u‖p‖v‖q wheneverp
andq are conjugates. (The inequality also holds for the pair‖ ·‖1 and‖ ·‖∞, which are also
considered conjugate.) H¨older’s inequality generalizes, for instance, the Cauchy-Schwarz
inequality (which is the case wherep = q = 2.) As we now show, products of conjugate
norms also appear in the bounds for these algorithms.

The first step in our analysis of the class ofp-norm Perceptron algorithms is to determine
H ?. By Theorem 5.1, we need to solve for the scalarα that gives

n∑
i=1

∣∣∣∣ sign(αui )

( |αui |
p

) 1
p−1
∣∣∣∣p = n∑

i=1

|zi |p.

The left hand side immediately simplifies to( αp)
q
∑n

i=1 |ui |q and it is easily verified that

the equality is satisfied whenα = p‖z‖
p−1
p

‖u‖q . Thus, we obtain:

H ?(z) =
n∑

i=1

ui sign(αui )

( |αui |
p

) 1
p−1

=
n∑

i=1

(
α

p

) 1
p−1

|ui |
1

p−1+1

=
n∑

i=1

‖z‖p

‖u‖1/(p−1)
q

|ui |q

= ‖z‖p‖u‖q
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and the final measure of progress is readily determined to be

M?
p(z) = ‖z‖p ‖u‖q − u · z.

Note that this measure automatically incorporates the conjugatep andq norms and bears
an interestingly close relationship to H¨older’s inequality.

The following theorem, proved by analyzingM?
p, gives mistake bounds for thep-norm

Perceptron family. In addition to the dependence on conjugate norms, note that we have
explicitly included the influence of the initial vectorz0 (whereas in previous sections we
always assumed that thez0 was the zero vector). As explained after the theorem, the ini-
tial vector can have a surprisingly important effect on mistake bounds for this family of
algorithms.

Theorem 7.1. Let2≤ p <∞, andu be a target vector for some set of examples S.

(a) The p-norm Perceptron algorithm, when trained on S and usingz0 = 0, has a mistake
bound of

(p− 1)‖u‖2q‖S‖2p
δ2

u,S

for any update coefficient a> 0.

(b) If the algorithm uses anyz0 satisfyingu ·z0 > 0,and a= δu,S‖z0‖2p
(p−1)u·z0‖S‖2p , then the number

of mistakes made by the algorithm is at most

(p− 1)‖u‖2q‖S‖2p
δ2

u,S

(
1−

(
u · z0

‖u‖q‖z0‖p

)2)
.

Proof: To obtain a mistake bound, we must obtain an upper bound onH ?(z) = ‖z‖p ‖u‖q
as a function ofz0 andm, the number of mistakes that have been made. It turns out to be
easier to obtain a useful bound if we analyze‖z‖2p instead of‖z‖p. (Note that given a bound
on ‖z‖2p we can just take a square root to obtain the desired bound on‖z‖p, and hence on
H ?(z).) In the following, letξ(z) = ‖z‖2p. We also useβp as shorthand for‖S‖p.

Note thatξ still has the general form of anH function in the sense of Section 3, in
that it can be written asξ(z) = ψ(G(z)) for a monotonically increasing wrapper function
ψ(r ) = r 2/p. Therefore, just as in Section 3 we can ignore the first-order Taylor term
and concentrate on the second-order terms. As we see shortly, squaringH ? allows us to
simplify the second-order bound considerably. The second derivatives ofξ are

∂2ξ(z)
∂zi ∂zj

= 2

p

(
2

p
− 1

)
‖z‖2−2p

p f (zi ) f (zj )
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for i 6= j , and

∂2ξ(z)

∂z2
i

= 2

p

(
2

p
− 1

)
‖z‖2−2p

p f (zi )
2+ 2(p− 1)‖z‖2−p

p |zi |p−2.

Using Taylor’s theorem and some algebraic simplification we obtain

1ξ(z) ≤ a2

p

(
2

p
− 1

)
‖ζ‖2−2p

p

(
n∑

i=1

f (ζi )xi

)2

+a2(p− 1)‖ζ‖2−p
p

n∑
i=1

|ζi |p−2x2
i

≤ a2(p− 1)
∑n

i=1 |ζi |p−2x2
i

‖ζ‖p−2
p

for someζ betweenz andz+ ayx. The second step follows because the first term is never
greater than zero (since2p − 1≤ 0 for p ≥ 2) and the remaining factors are positive.

The sum in the numerator can be viewed as a dot product between vectors whose com-
ponents are|ζi |p−2 andx2

i respectively. If we use H¨older’s inequality on this sum (using
the conjugate pair p

p−2 and p
2 ) then we obtain the following upper bound

1ξ ≤
a2(p− 1)‖ζ‖p−2

p ‖x‖2p
‖ζ‖p−2

p

= a2(p− 1)‖x‖2p.

Note that the dependence onζ has vanished completely. Sinceζwas unknown, and moreover
could have been any size, avoiding this dependence is an important simplification. In
fact, this is the major advantage of usingξ (i.e., squaringH ?).6 Thus, afterm mistakes,
ξ(z) ≤ ξ(z0)+m(p− 1)a2β2

p, and so

‖z‖p ≤
√
‖z0‖2p +m(p− 1)a2β2

p.

As we saw in Section 3, we also know that afterm mistakes we haveu ·z≥ u ·z0+m aδ.
Hence, afterm mistakes the measure of progressM?

p is at most

M?
p ≤ ‖u‖q

√
‖z0‖2p +m(p− 1)a2β2

p − u · z0−maδ.

Thus, the greatestm at which this quantity is non-negative is a bound on the number of
mistakes we can make. (Note that by H¨older’s inequality, it is non-negative atm= 0.) The
greatest suchm will occur at a point where

‖u‖q
√
‖z0‖2p +m(p− 1)a2β2

p = u · z0−maδ.
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Squaring both sides, we see that the bound we seek must be a root of the quadratic equation(
u · z0+maδ

‖u‖q

)2

− ‖z0‖2p −m(p− 1)a2β2
p = 0,

and clearly the larger root will be a bound on the number of mistakes that can be made.
Solving the equation is straightforward, but is simplified using the abbreviationsU =

u·z0
‖u‖qβp

, Z= ‖z0‖p

βp
, D= δ

‖u‖qβp
, andγ = D

a(p−1) . Using these definitions, one can then show
that

m = p− 1

2D2

(
1− 2Uγ +

√
(1− 2Uγ )2+ 4(Z2−U2)γ 2

)
= p− 1

2D2

(
1− 2Uγ +

√
1− 4Uγ + 4Z2γ 2

)
.

This bound depends, throughγ , on the update coefficienta. So the next phase of the
proof is to find the optimal value of this coefficient. The derivative of the bound with respect
to γ is proportional to (and of the same sign as)

−2U + −2U + 4γ Z2√
1− 4Uγ + 4Z2γ 2

.

This can only be 0, indicating a possible minimum, ifγ = U/Z2 or Z2 = U2. We now
examine various cases. Note thatZ ≥ 0 and also, by H¨older’s inequality, thatU2 ≤ Z2.
Our bound on the measure of progress depends ona being non-negative, and thus we require
γ ≥ 0. First note that ifU = Z = 0, (that is, ifz0 = 0), then the bound ism = (p−1)

D2

independent ofγ . This proves part (a) of the theorem.
For part (b) we assume thatU > 0, so we do not need to consider the caseU < 0. If

U = Z > 0, the two roots of the quadratic equation are 0 andm= (p−1)(1−2Uγ )
D2 . It can be

seen that for large enoughγ , 0 is the larger of these roots, implying that the algorithm makes
no mistakes. In fact, wheneverU = Z, we haveu · z0 = ‖z0‖p‖u‖q, and the measure of
progress is initially 0. When in addition we haveU 6= 0, the initial weight vector of the
algorithm is simply a scalar multiple of the target vectoru.

The remaining case is whereZ2 > U2 andU ≥ 0. Examining the derivative, we see
that it is positive for sufficiently largeγ and negative when−γ is sufficiently large. Thus
in this case, the best bound is obtained whenγ = U/Z2. Our bound becomes

m = (p− 1)

D2

(
1− U2

Z2

)
= (p− 1)‖u‖2qβ2

p

δ2

(
1−

(
u · z0

‖u‖q‖z0‖p

)2)
.

The choice we have made ofγ corresponds toa = Z2D
U (p−1) =

δ‖z0‖2p
(p−1)u·z0β2

p
, as stated in the

result. 2
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The bounds in Theorem 7.1 depend onp and therefore one might think that they would
necessarily become worse asp increases. This is indeed a problem whenz0 = 0. However,
things can change if we choose different initial vectorsz0. Consider, in particular, the case
wherez0 = (1, 1, 1, . . . ,1) (which we denote by1). As we now show, the bounds above
can have a finite limit even asp→∞.

Corollary 7.2. Fix z0 = 1, and suppose that all components ofu 6= 0 are non-negative.
Let p go to infinity. With the update coefficient, a, set as specified in part(b)of Theorem7.1,
the bounds stated in that theorem converge to

m= 2‖S‖2∞‖u‖21
δ2

u,S

(
logn+

n∑
i=1

ui

‖u‖1 log
ui

‖u‖1

)
.

Proof: We can write the bound from Theorem 7.1 as

(p− 1)‖S‖2p
δ2‖z0‖2p

(‖u‖2q‖z0‖2p − (u · z0)
2
)

whereq is conjugate top. Sinceu ·z0 = ‖u‖1 (it is here we use the requirement thatu ≥ 0)
and‖z0‖p = n1/p, this is

(p− 1)‖S‖2p
δ2n2/p

(
n2/p‖u‖2q − ‖u‖21

)
.

Thus we consider the limit of(p−1)(n2/p‖u‖2q−‖u‖21) asp goes to infinity andq remains
conjugate (i.e., so thatq→ 1). Note that

(p− 1)
(
n2/p‖u‖2q − ‖u‖21

)
= p

(
n2/p‖u‖2q − ‖u‖21

)− (n2/p‖u‖2q − ‖u‖21
)

and that the limit asq goes to 1 of the second term is 0. The limit of the first term
is lim

q→1

(n2−2/q‖u‖2q−‖u‖21)
1−(1/q) . Both the numerator and denominator go to 0, so we can apply

l’H ôpital’s rule. (Note that in the followingduq
i

dq = (logui )u
q
i where this is taken to be 0 if

ui = 0.)

dn2−2/q‖u‖2q
dq

= 2

q2
(logn)n2−2/q‖u‖2q + n2−2/q

d log‖u‖2q
dq

‖u‖2q

= ‖u‖2q
(

2

q2
(logn)n2−2/q+ n2−2/q

[
−2

q2
log

(
n∑

i=1

uq
i

)

+ 2

q

∑n
1(logui )u

q
i∑n

1 uq
i

])
.
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Thus the limit is just(
2 logn− 2 log

n∑
i=1

ui + 2

∑n
i=1 ui logui

‖u‖1

)
‖u‖21

which leads to the stated result. 2

Note that bounds from this corollary are exactly the same as those derived in Section 6 for
the Weighted Majority algorithm. Of course this is not a coincidence, as we now explain.
The p-norm Perceptron rule with initial vectorz0 = 1 is clearly equivalent to using a quasi-
additive rule defined byf (z) = p sign( 1 + z)|1 + z|p−1 and beginning withz0 = 0.
Comparing thep-norm Perceptron rule with Weighted Majority, we next note that they use
different values of the update coefficienta, but in the limit asp → ∞ the former uses a
coefficient 1/(p−1) times smaller than the latter. Thus in thep-norm Perceptron we could
use Weighted Majority’s coefficient, so long as we compensate by considering instead the
function f (z) = p sign( 1 + z

p−1)|1+ z
p−1|p−1. Finally we note that asp→∞ this tends

to a function proportional toez. In other words, the behavior of this algorithm tends to that
of Weighted Majority, exactly as suggested by the bounds in the theorem.

Note that to keep the limiting bound finite asp goes to infinity, we required that the
components of the target weight vector be non-negative. Of course, since Weighted Majority
can only learn non-negative separators, it is not surprising that this restriction becomes
necessary.

It is also possible to construct families that interpolate between Perceptron andBalanced
Winnow, and thus do not lose the ability to learn targets with negative components. One
such family is defined by transformation functionsfk of the form

fk(z) =
(

1+ z

k

)k

−
(

1− z

k

)k

for integralk > 1. Note that fork = 1 this is equivalent to Perceptron, and ask→∞ this
tends to 2 sinh(z), i.e., the Balanced Winnow algorithm. The earlier results in this section
can actually be invoked to prove mistake bounds for this family as well. The basic idea
is to note that we can double the number of attributes, then run thep-norm Perceptron
algorithm giving it both then original attributes andn additional attributes formed by
negating each of the original attributes. There are now two weights associated with each
of the original attributes, and by making the appropriate one larger in the target vector, we
can handle target vectors with negative as well as positive weights while keeping all of the
components of the extendedu non-negative. However, we omit details of the rest of this
(fairly straightforward) analysis.

We have performed some simple experiments which suggest that the new interpolating
algorithms suggested in this section can indeed sometimes blend the empirical performance
of Perceptron and Winnow in a useful way. In some of these experiments, when one algo-
rithm was significantly stronger than the other we found that the mistake performance of an
interpolating strategy (e.g., usingfk for k = 5) was roughly average between the two. But
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other early experiments suggest there can also be “intermediate” problem conditions where
the interpolating algorithm does slightly better than both Perceptron and Winnow. However,
we emphasize that these results are very preliminary, and more thorough experiments are
important future work.

8. Other measure of progress constructions

In our proofs we have always considered the measure of progress to be constructed as
ψ(G(z))−u ·z≥ 0, but clearly this specific form is not essential. To prove this point rather
trivially, note that the same ends could be achieved in principle by analyzing theratio of
ψ(G(z)) to u · z (as is in fact done in Papert (1961) and Minsky and Papert (1969)).

What, then,is a measure of progress? When are two measures of progress only superfi-
cially different, and when is the difference truly significant? Are some measures objectively
better than others in any sense? In this section we do two things. First, we sketch a frame-
work for answering such questions. We then present a different family of constructions
for measures of progress, and appeal to our framework to discuss how these constructions
relate to the preceding sections. Since the material in this section is less central to the main
results of this paper, we omit various details and proofs where appropriate.

We begin by taking a rather abstract view of the structure of our mistake-bound proofs.
Recall that in each proof we showed that, afterm mistakes,H(z) (= ψ(G(z))) has some
upper boundb(m). We also show thatu · z ≥ aδm for somea andδ. So in effect, we
show that the pair(G(z), u · z) is in the regionRm = {(x, y) : x ≤ c(m) andy ≥ aδm} for
c(m) = ψ(−1)(b(m)). However, one can imagine other proofs with the same structure but
which find the bounding functionc(m) in quite different ways.

A second element of our proofs uses the key inequalityH(z) − u · z ≥ 0. An abstract
view of this is that the inequality defines a open regionE in IR2 with the property that
there is noz ∈ IRn such that(G(z), u · z) ∈ E. (It may not necessarily be the smallest such
region.) We say that the measure of progressM = ψ(G(z))−u · zdetermines theexclusion
region E= {(x, y) : ψ(x)−y < 0 or x is not in the range ofG}. In these abstract terms, a
convergence proof following our canonical recipe is completed by observing that ifRm ⊆ E
for somem, then fewer thanm mistakes must be made. It should also be clear that there
are other ways of defining an appropriate exclusion region without using an assertion of
the particular formH(z) − u · z ≥ 0. In the following, we generalize the term “measure
of progress” to include any algebraic inequality determining an open exclusion region for
(G(z), u · z).

With respect to proofs that fit the above abstract framework, it is now natural to call a
measure of progressoptimal if no other measure of progress of this type can lead to better
mistake bounds. A simple sufficient condition for optimality is that its exclusion regionE
contains all of the exclusion regions of other measures of progress in the family. A weaker
condition that also suffices is that for all regionsRm of the above form, wheneverRm is
not a subset ofE then it is not a subset of the exclusion region of any other measure of
progress in the collection. It should not be surprising to learn that under weak conditions
of continuity and monotonicity off (such as the conditions of Theorems 4.1 or 4.2) the
measure of progressM? defined in Section 5 is indeed optimal.
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Proposition 8.1. Let E? = {(x, y) : supv : G(v)=x u · v< y} be the exclusion region corre-
sponding to M?. Let E be any other plausible exclusion region, i.e., an open set such that
for all z we have(G(z), u · z) /∈ E. Let R= {(x, y) : x ≤ c and y≥ d} for some c in the
range of G. Then if R⊆ E we must also have R⊆ E?.

Proof: We want to show that for all(x, y) such thatx ≤ c andy ≥ d, eitherx is not in
the range ofG or supv : G(v)=x u · v < y. SinceE is open, there is an open ballB ⊆ E
around(x, y). Thus, for someε > 0 we have{(x, y′) : y′ > y− ε} ⊆ E. Therefore, for
all v such thatG(v) = x we haveu · v ≤ y− ε (for otherwise there would be av such that
G(v) = x andu · v> y− ε, which implies that(G(v), u · v) would be inE—contradicting
the assumption that no suchv exists). This gives supv : G(v)=x u · v ≤ y− ε < y, as desired.

2

In the remainder of this section we discuss another family of constructions for measures
of progress. It turns out that these are of no greater power than those already discussed,
and indeed are often equivalent (although the surface form might appear quite different).
Although these constructions are in a certain sense redundant with our earlier results, there
are several reasons for discussing them briefly. First, theoretical equivalence (even where it
exists) is not necessarily the same as practical tractability, and it is useful to have different
forms of the same underlying idea especially when the correspondence is non-obvious.
Second, it may become easier to see how certain other known proofs—and especially a
second famous proof of Perceptron convergence that appears in Duda and Hart (1973)—are
instances of the same underlying ideas that we have been discussing. But most importantly,
the ideas that these constructions appeal to—tangency arguments, Bregman distances, and
Legendre transforms—are current in related literature, notably work on general theories of
on-line regression learning (as opposed to classification learning, which we are considering
here) (Kivinen & Warmuth, 1998; Azoury & Warmuth, 1999). We say somewhat more
about this in Section 9.

For these alternative constructions, we start with some candidate functionH(z)=
ψ(G(z)), whereψ is a monotonically increasing function such thatH is convex. (Note
that this is always the case whenψ is the identity and henceH =G.) A useful geo-
metric intuition about convexity is gained by thinking about the graph ofH , i.e., the set
{(z, y) : y = H(z)} in IRn+1. Given convexity, the tangent plane to this graph considered
at some pointv will lie entirely below the graph. The tangent at a pointv is defined by

{(z, y) : y = H(v)+∇H(v) · (z− v)}.
It follows, then, that

DH (z, v)
4= H(z)− H(v)−∇H(v) · (z− v)

≥ 0 (7)

for anypoint v. Now suppose we choose someη > 0 and choosev so thatf(v) = ηu. We
have∇H(v) = ψ ′(G(v))f(v) = ψ ′(G(v))ηu. We can then rewrite the above as

H(z)− ψ ′(G(v))ηu · z− (H(v)− ψ ′(G(v))ηu · v)
= H(z)− q(η, u) u · z− r (η, u) (8)
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where we introduce the two functionsq andr for convenience. Note also thatq > 0 since
η > 0 andψ must have positive first derivative.

Since (8) relatesG(z) to u · z in an appropriate fashion, and is always nonnegative,
it is potentially useful as a measure of progress. The form ofDH —namely, the differ-
ence between a convex function and the tangent plane at a chosen point—is often called
a Bregman distance7 (Bregman, 1967; Censor & Zenios, 1997). Thus we call this the
Bregman constructionfor measures of progress.

The Bregman construction depends on a parameterη; in general, we get different mea-
sures of progress for different choices ofη, and thus obtain a whole family of measures of
progress. There are a variety of ways of treating the choice ofη.

First, note thatη need not be a fixed number: it can in fact be chosen as a function of
z. In this case, it is natural to choose theη which, for eachz, minimizes the value of (8).
(However, once we letη depend onz we no longer have a Bregman distanceper se.) It can
be shown that this optimalη depends onz only throughu · z. Furthermore, it can be shown
that (given our standard regularity conditions) when we optimizeη in this way, the measure
of progress isoptimal in the sense above. (The proof is nontrivial, but we omit it.) Thus,
this gives us an alternative to theH ? construction.

A very different strategy for choosingη is to just select one fixed value. It should be
clear that this does not necessarily lead to an optimal measure of progress or a good mistake
bound. However, there are two interesting cases where it does, and both appear in the
literature.

First, it sometimes turns out that the choice ofη is simply irrelevant. To see how this
can occur, note thatq = ψ ′(G(v))η, andv depends implicitly onη. If ψ ′(G(v)) happens
to have a1

η
dependence there will be no genuineη dependence inq.8 In the earlier version

of this paper (Grove, Littlestone & Schuurmans, 1997), we followed the Bregman distance
approach (although we did not call it this), beginning withH = g(−1)(G(z)) and in effect
simply stipulated thatη = 1. Yet, surprisingly, for all the examples in Section 6 and 7 we
obtained the same measure of progress (up to a constant multiple) as theH ? construction
from the current paper. How did choosing a constantη lead to an optimal measure of
progress? The answer is that, as it turns out, no matter whatη we had used we would have
achieved the same measure of progress (as in Footnote 8). As noted previously, ifη is chosen
optimally (as a function ofz) we get an optimal measure of progress. It follows immediately
that when there is noη dependence at all, the measure of progress is also optimal.

A second approach to choosingη is to leave it as a fixed but “unknown” parameter and
analyze the measure of progress to find a bound in terms ofη. We can then optimizeη for
the best bound. We now show how the second approach works with our familiar example:
Perceptron. The simplest choice forψ is just the identity, so thatH = G =∑n

i=1 z2
i /2 for

the Perceptron. What areq andr ? Sinceq = ψ ′(G(v))η in general, andψ ′ = 1 in this
case, we getq = η. Similarly, we can evaluate thatr = η2‖u‖22/2−η2‖u‖22 = −η2‖u‖22/2.
Thus,

M = ‖z‖
2
2

2
− ηu · z+ η

2‖u‖22
2

= ‖z− ηu‖22
2

.
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Instead of giving a second-order Taylor analysis, one can more directly argue that

‖(z+ ayx)− ηu‖22 = ‖z− ηu‖22+ 2(z− ηu) · (ayx)+ a2‖x‖22
≤ ‖z− ηu‖22− 2ηu · (ayx)+ a2‖x‖22
≤ ‖z0− ηu‖22−m

(
2ηaδ − a2 sup

x∈S
‖x‖22

)
= η2‖u‖22−m

(
2ηaδ − a2 sup

x∈S
‖x‖22

)
where in the second step we use the fact thatz made an incorrect prediction onx, and in
the final step we assumez0 = 0. Since the measure of progress can never fall below zero,
we get a mistake bound of

m≤ η2‖u‖22
2ηaδ − a2 supx∈S‖x‖22

.

This mistake bound holds for anyη. It is minimized by choosingη = a ‖x‖22
δ

, giving

m≤ ‖u‖
2
2 supx∈S‖x‖22

δ2

which is the classic Perceptron bound. We have just duplicated the proof of Perceptron
convergence given in Duda and Hart (1973) except, of course, that we arrived at the measure
of progress in a very principled way.

Interestingly, the strategy of optimizingη after the fact can be shown to give the same
bounds as an optimal measure of progress would, under certain conditions and assuming
proofs are restricted to those of the type discussed earlier. This is in spite of the fact that the
measure of progress for any particularη is not necessarily optimalper se. As we discuss
in Section 9, the possibility of “after the fact” optimization is also important in finding a
connection to perhaps the closest piece of related work, Gentile and Warmuth’s (1999).

We close by simply mentioning one further measure-of-progress construction related
to the Bregman approach. Our presentation so far has made a number of regularity as-
sumptions, notably differentiability. This is not so innocuous: for instance, even‖z‖2
is not differentiable atz = 0. The theory and language ofLegendre-Fenchel transforms
(Ellis, 1985) (also called conjugate functions in convex analysis (Rockafellar, 1970)) can
simplify such issues. Briefly, the Legendre-Fenchel transform ofH(z) is the function
H∗(u) equal to the smallest value such thatH(z) − u · z+ H∗(u) is non-negative for all
z. In particular, this is exactly the correction we need to obtain a non-negative measure
of progress (or more generally,H(z) − ηu · z+ H∗(ηu) ≥ 0). This definition may seem
somewhat empty, but in fact there is a rich theory of these transformations and the associated
duality relationship. This theory can be used to give an alternative, and somewhat cleaner
and more general, formulation of the preceding ideas. We omit further details, but refer the
interested reader to Ellis (1985) and Rockafellar (1970).
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9. Related work

We are aware of two other explicitly proposed schemes to unify additive (Perceptron-like)
algorithms with multiplicative algorithms such as Winnow. Littlestone (1997) has shown
that they can be viewed asapobayesianalgorithms. Roughly speaking, this is an algorithm
that has the formal structure of Bayesian probabilistic reasoning, in that it maintains a
distribution over models and updates this distribution by conditionalization, but with the
difference that it only updates on examples for which a mistaken prediction has been made.
Perhaps surprisingly, such an algorithm can still converge on separable data, although this
depends on the space of models and the prior distribution being used. This insight has not
yet lead to a common proof of convergence for Perceptron and Winnow, but it does suggest a
particular style of proof that can be used in either case. Many other apobayesian algorithms
can be defined but no general condition is known under which such an algorithm converges.
The apobayesian approach has not, so far, suggested any natural way to interpolate between
the Perceptron algorithm and Winnow family algorithms. In fact, the approach seems very
different in spirit from the framework we discuss in this paper, and we suspect that the two
are largely unrelated to each other.

There appears to be a much closer connection with the work of Warmuth and others,
developed in Kivinen and Warmuth (1997) and several subsequent papers (Kivinen &
Warmuth, 1998; Azoury & Warmuth, 1999; Warmuth & Jagota, 1998). In an extensive
ongoing body of research, they apply related techniques to a variety of tasks. Their algo-
rithms, like ours, base predictions onw · x for some weight vectorw and instancex, but
typically their predictions can be some continuous functionφ of w · x and the loss can be
a continuous functionL of the true labely andφ(w · x). (The choice of these functions
is discussed in Helmbold, Kivinen and Warmuth (1999).) This is sometimes referred to
as aregressionproblem, as compared to theclassificationproblem type we consider. For
example, a typical case is to chooseφ to be the identity and the loss to be the square loss
(y − w · x)2. Around the time we first presented our quasi-additive algorithms (Grove,
Littlestone & Schuurmans, 1997), Kivinen and Warmuth were independently studying an
analogous family for the regression case that they term thegeneral additive algorithms
(Kivinen & Warmuth, 1998). They make additive updates to aθ parameter that corre-
sponds to ourz parameter. (The regression case also involves components that have no
immediate counterpart in the classification case, notably techniques for dealing with a va-
riety of loss functions.) Azoury and Warmuth (1999) give some general discussion of
Bregman distances and of the duality that arises between the weight vectors on the one
hand and thez vectors (theirθ vectors) on the other. Jagota and Warmuth (1998) also use
closely related techniques.

So the key features common to these works and our own include a parameter (i.e.,
θ, z) that is modified with additive updates during learning, the appearance of Bregman
distances in the analysis, and the use of a second-order Taylor analysis to bound the progress.
A particularly interesting technical difference is that although some of our work can be
formulated using the terminology of Bregman distances, as discussed in Section 8, we do
not necessarily get good mistake bounds this way without an extra optimization step (i.e.,
optimizing the choice ofη, as discussed briefly in Section 8). This extra optimization
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step is an inherent feature of the zero-threshold classification task that we consider, which
is actually related to the fact that the prediction is unaffected by rescaling the weights.
This is why the “optimal measure of progress” we present (either as theH ? of Section 5,
or alternatively the “optimized-η” construction of Section 8) is in fact not necessarily a
Bregman distance itself.

The natural question suggested by this other work is whether the classification problem
can be treated as a special case of the regression problem. One might consider the clas-
sification problem as simply a regression problem with the functionφ mentioned above
chosen to be the functionφ(x) = sign(x). If one then chooses the loss to be1

2|y−φ(w ·x)|
one obtains the classification setting. However, this form of theφ function does not fit the
assumptions made in the regression work and, as it turns out, does not lead to any straight-
forward way to analyze the classification problem using the usual regression machinery.
However, very recent work in Gentile and Warmuth (1999) describes another way to see
the relationship between classification and regression problems, and with this we can draw
some very tight connections. They introduce a continuous loss function that they call the
hinge loss. It is 0 if sign(w · x) = sign(y) and otherwise equals|y−w ·x|. They show how
to construct regression algorithms for learning with respect to the hinge loss that exactly
match classification algorithms such as we consider here, making exactly the same form of
mistake-driven updates. In fact the measures of progress they use to analyze the regression
algorithms are essentially equivalent to the measures of progress that we discuss in our
work (in their Bregman distance forms). One cannot, however, complete the analysis for
the classification setting by just carrying the analysis of the matching regression algorithm
through to its completion. Gentile and Warmuth identify where the analyses diverge, and
discuss what needs to be done to complete the analysis for the classification setting. In-
deed, though their analysis starts from the regression point of view, it ends up being quite
close to our analysis of Grove, Littlestone and Schuurmans (1997) and hence to one of the
Bregman-style techniques of Section 8.

For readers interested in understanding this connection to Gentile and Warmuth (1999)
on a technical level, we now give an abbreviated discussion of the issues. The key is the
central Theorem 3 in Gentile and Warmuth (1999), giving their results for classification
algorithms. That theorem says that ifM is the set of trials in which a mistake is made, then

a
∑
i∈M

yi (u · xi − w̃i · xi ) ≤ D(u, w̃1)+
∑
i∈M

D(w̃i , w̃i+1) (9)

whereD is a Bregman distance,D(u, w̃) = P(u)− P(w̃)−∇P(w̃) · (u− w̃), for some
function P. (The tildes over the weight vectors reflect the fact that that they use a different
normalization in their notation for weights than we do; their normalization is more conve-
nient than ours for the purpose of this comparison.) The functionP, like our functionH ,
depends on the particular algorithm being analyzed. Specific mistake bounds are obtained
from this theorem by instantiatingP and bounding the resultingD. As we discussed in
Section 8, in general in this style of analysis, one needs to allowu to be scaled by an
arbitraryη, and then optimizeη at the end of the analysis. Because of this “after the fact”
optimization we do not worry about getting the scaling ofu to match that of previous
sections.
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To compare this to our analysis, recall that in our case we can write the change inH at an
update (2) as1H = ∇H(z) ·(znew−z)+R(znew, z), whereR(znew, z) = H(znew)−H(z)−
∇H(z) · (znew− z). This form for R in fact corresponds to the definition of a Bregman
distance (7) we gave in Section 8 (where the distanceDH is applied toz andznew). R is the
quantity that we bound in our second order analyses.9 Ralso has a second role; if we choose
v so thatu = ∇H(v), thenR(z, v) is in fact the Bregman form of the measure of progress
for a target vectoru. Combining these observations, together with the non-negativity of the
measure of progress at the end of a sequence of trials, leads directly to the inequality

a
∑
i∈M

yi (u · xi − w̃i · xi ) ≤ R(z1, v)+
∑
i∈M

R(zi+1, zi ). (10)

wherew̃i = ∇H(zi ) is proportional to our usual weight vectorwi , andv is chosen so that
u = ∇H(v).

It turns out that in the substantial area of overlap between our two analyses, Gentile and
Warmuth’s inequality (9) is equivalent to our inequality (10). Just as in our analysis, the
choice ofH fixes the algorithm through the mappingw̃ = ∇H(z), in their analysis the
choice ofP fixes the algorithm through the inverse mappingz = ∇P(w̃). By choosing
P to be the Legendre transform ofH one obtains the same algorithm, andw̃i and zi

correspond to each other in the Legendre duality. TheirD and ourR are just Bregman
distances for the dual functionsP andH . By a general property of such Bregman distances
we haveD(w̃i , w̃i+1) = R(zi+1, zi ) (the reversal of the arguments is intended); similarly
D(u, w̃1) = R(z1, v). This implies that the right-hand sides of the two inequalities are
in fact equal. This shows, in some sense, that our analysis already captures the essence
of these recent developments, although the connections are technically non-trivial to draw
and there is still significant value in the alternative viewpoint (particularly with respect to
relating the classification and regression frameworks).

Since the original version of this paper (Grove, Littlestone & Schuurmans, 1997) intro-
duced thep-norm Perceptron algorithms, a family of variants of thep-norm algorithms has
been constructed for the regression setting by Gentile and Littlestone (1999). In the setting
of that paper the prediction, instead of being the sign of the dot product of the weight vector
and the instance vector, is the actual value of the dot product. As in our analysis here,
the weight vector of the algorithm is the gradient of the functionG, or more generally the
gradient ofH , whereH is some monotone function ofG. It is easy to see that the particular
function of G that one chooses to getH affects only how the gradient is normalized, not
its direction. In our setting, the choice of normalization does not affect the sign of the
dot product, and thus it can be ignored. However, in the regression setting it does make a
difference. The main insight needed to derive the regression version of thep-norm algo-
rithms is that, for an analysis in the present style to go through (at least in a straightforward
way) one needs to choose the normalization to be the one obtained by choosingH to be
the square of thep-norm ofz. Once this is done, bounds for the algorithms follow directly
from a combination of results from this paper and from previous work of Warmuth, et al.
Gentile and Littlestone also consider the classification version of thep-norm algorithms
that we consider here, extending the analysis to include noise. (Comparing the regression
and classification analyses in that paper is another way to see how analyses for the two
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settings relate.) Finally, that paper makes the interesting observation that if one choosesp
to be logarithmic inn, then we can obtain bounds for thep-norm algorithms (classification
and regression) that are logarithmic inn without needing to carefully choose the update
rate as for the Winnow family of algorithms.

Another relevant observation about Kivinen and Warmuth’s work is that they had al-
ready (in the earlier conference (STOC) version of Kivinen and Warmuth (1997)) observed
products of dual norms (overu andS, just as in Section 7), albeit in the regression case.
Specifically, they prove a lower bound involving such norms and conjectured that there
exist algorithms with upper bounds corresponding to any dual pair. Our results concerning
the existence of thep-norm family do not directly answer this conjecture, firstly because
these are classification and not regression algorithms, and second because the conjecture
also addresses particular constants that appear in their lower bounds. However, our results
are surely very relevant and a step in the direction of an answer.

Aside from the regression case, another different but seemingly related learning model
is the so-calledexpertcase (e.g., Littlestone & Warmuth, 1989; Vovk, 1990; Cesa-Bianchi
et al., 1997; Cesa-Bianchi, Helmbold & Panizza, 1996), where there is only a single rel-
evant attribute (that is, perfect classification can be accomplished by a discriminant with
a single non-zero weight). Algorithms for learning general linear discriminants can be of
course still be applied in this case, so it would be interesting to see if our analysis adds any
additional insight.

The final subject we consider in this section revolves around a conceptually simple
refinement one might make the analyses, specifically the linear growth ofu · z as mistakes
are made. Another lower bound onu · z is clearlyu · z1 + a|M|γ , wherez1 is the initial
value ofz,M is the set of trials in which mistakes are made, andγ = 1

|M|
∑

i∈M yi (u · xi ),
that is, theaveragevalue ofyi u · xi in trials where mistakes are made. We can then express
mistake bounds in terms ofγ instead ofδ. The idea of doing this is suggested in Gentile
and Warmuth (1999), whereγ is called theaverage margin. The problem, of course, is
that the size of the average margin is not a well-defined property of the input sequenceper
se, since it is an average over trialson which a mistake is made. Thus it depends on the
algorithm itself, and furthermore the mistakes might turn out to be concentrated on trials
with small margins. The simplest thing one can say about the average margin,a priori,
i.e., that it is at leastδ, of course leads to the standard formulation of mistake-bound results
(in particular, as we have given them in this paper.) However, as one attempts to gain a
more detailed understanding of the behavior of the algorithms, it is potentially useful to
realize that the average margin is indeed the quantity that mattersex post. For example,
using the average margin one can see that the algorithms and analysis do not break down
when there are occasional noisy trials in whichyi u · xi < 0, if there is still a positive gapδ
that applies to the non-noisy trials. The key to success here is to assume that there are few
enough noisy trials that even if mistakes are made on all of them this cannot bring down the
overall average margin too much in the long run. (This use of the average margin applies,
for example, to ourp-norm Perceptron analysis. It does not apply directly to the form of
our analysis used in Section 4, since there we use the fact thatyi u · xi ≥ δ at mistakes for
a second purpose, to show that the norm ofz grows. It appears that it should not be hard
to modify that style of argument, perhaps with some mild additional assumption, to also
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apply when there are noisy trials.) For another example, if we retain our usual assumption
about the existence of a positive gap of sizeδ for all trials, and if at early mistakes the value
of u · xi is frequently substantially greater thanδ, then this can translate into a substantial
advantage in the progress made. This advantage must persist, since at each subsequent
mistakeu · xi will still be at leastδ.

10. Future work

A number of directions for further research stand out. Potentially the most significant of
these is the search for useful new algorithms suggested by our analysis, complementing
theoretical analysis (in the style of Section 7) with appropriate empirical work. Thep-norm
Perceptron algorithm raises the intriguing possibility of choosing within a continuous range
the particular conjugate pair of norms that the mistake bound depends on, thus blending the
behavior of Perceptron and Winnow. It would be interesting to see if there are circumstances
in which this leads to a practical advantage.

There are also open theoretical questions. We have already noted some of the extensions
to the basic model that interest us. We would like to better understandfixed threshold
algorithms (where, roughly speaking, instead of comparingw ·z with 0 we compare the dot
product against some fixed valueθ ). We have noted that these algorithms are quasi-additive
so long asfi is allowed to vary withi . Furthermore, the key functionG can still be defined
appropriately. Note that in generalizing the current paper, the important issue forG is
clearly not the particular form we have given, but rather the property thatG’s gradient must
be the prediction vector.

11. Conclusion

We have introduced a new general class of linear discriminant learning algorithms which
we call quasi-additive. This new class generalizes several existing algorithms, such as
Perceptron and members of the Winnow family, and brings them under a simple unifying
framework that makes clear their similarities to one another. The main contribution of
this paper is the introduction of a general approach for constructing measures of progress
that can be used to analyze the convergence and mistake bound properties of these quasi-
additive algorithms. Using this general construction, we have provided a single proof of
convergence that applies to a wide range of algorithms in this class, including several known
algorithms like Perceptron and Winnow, but also covering interesting new algorithms that
had not been previously studied.

Our basic technique can also be used to derive reasonable mistake bounds for these
algorithms in a fairly systematic way. This is the second main contribution of our paper.
In the case of known algorithms, the results from our technique are the same as or very
similar to those from existing analyses, and our measures of progress reduce to variants of
the traditional measures.

Perhaps the most important aspect of our approach in general is that we can also analyze
severalnew algorithms in a straightforward and mostly programmatic fashion. In fact,
we were able to achieve not only convergence results, but also specific mistake bounds



208 A. J. GROVE, N. LITTLESTONE, AND D. SCHUURMANS

for these algorithms. We illustrated this for a new family of quasi-additive algorithms
that interpolate between known algorithms in an interesting way. In particular, one family
which we analyzed in detail interpolates between the Perceptron algorithm and Weighted
Majority.

In summary, we feel that the general framework we have is valuable because it suggests
new algorithms for linear discriminant learning algorithms and brings some insight into
how and why these algorithms converge. Our framework also provides a uniform way
of generating results for known algorithms, so perhaps helps us better understand these
existing algorithms and the significant similarities between them.
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Notes

1. We will define sign(x) to be−1 if x < 0 and to be 1 ifx ≥ 0. The value chosen atx = 0 is not important.
Note that often the class of linear-discriminant concepts are taken to be those defined by a vectoru ∈ IRn and
a thresholdθ ∈ IR, with the label being+1 if and only if x · u ≥ θ . However our assumption, thatθ = 0, is
not restrictive. To cope withθ 6= 0 one can add ann + 1’st attribute to all training examples which has the
constant value 1. We can imagine similarly extendingu, by adding ann+ 1’st attribute with value−θ . This
“equivalent” concept has threshold 0 as we require.

2. Recall that the hyperbolic sine function sinh is defined by sinhx = ex−e−x

2 .
3. Throughout this paper we adopt the convention of writing a componentwise transformationwi = f (zi ) as

w = f(z)—i.e., writing the function name in bold to highlight the fact that its value is a vector.
4. To show this equivalence, it is necessary to transform the samples as well. Littlestone assumes thatxi ∈ [0, 1].

In this setting, the quasi-additive procedure is equivalent only after a transformationx′i := 2xi − 1 to each
component. Since the transformation is linear, it does not affect the class of concepts that can be learned.

5. The comparison is complicated slightly since Littlestone uses a slightly different definition ofδ, but the bounds
turn out to be equivalent, even having the same constant.

6. It also suggests that a similar strategy be tried in other complicated proofs: i.e., find some function ofH ? that
simplifies the bounds, and particularly one that can be used to avoid explicitζ dependence in the second-order
Taylor bound. Although we do not expand this notion further in this paper, we believe that this technique might
have the potential to lead to a way of systematizing some of the second (algebraic) part of the analysis.

7. Since this is not symmetric in its two variables, some authors prefer to avoid calling it a distance, calling it, for
example, aBregman divergence. We also note that many definitions require additional conditions that we do
not, for instance requiringH to be strictly convex. Bregman distances for non-strictly convexH functions are
useful in our application; for example, the optimal measure of progress for thep-norm Perceptron algorithm
is a Bregman distance forH(z) = ‖u‖q‖z‖p, which is not strictly convex.

8. For example, this occurs when there is only one possible value for the gradient ofH in the direction of any given
u. To illustrate the point concretely, consider the definitionH(z) = ‖z‖2 and notice that∇H(v) = v/‖v‖2 is
a vector of unit length (measured by the 2-norm) in the direction ofv. Here, for anyη andu we can indeed
choose av such thatf(v) = ηu: in fact we just choosev = (η/2)u, sincef(v) = 2v. But the gradient ofH in
this case will beu/‖u‖2, independent ofη.

9. An attentive reader might notice that this description does not accurately cover our analysis of thep-norm
Perceptron algorithm given in Section 7. In that case, the second-order analysis is not based on theH of our
measure of progress, but onξ = H2; it boundsDξ instead ofDH . To perform an analysis that fits the pattern
we mention here more precisely, one could work with a Bregman measure of progress that is based onξ . As
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mentioned in Section 8 one can show that, as long as one optimizesη at the end, one will obtain the same
bounds with this measure of progress.
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