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Abstract

We present a Monte Carlo integration method,
antithetic Markov chain sampling (AMCS), that
incorporates local Markov transitions in an un-
derlying importance sampler. Like sequential
Monte Carlo sampling, the proposed method
uses a sequence of Markov transitions to guide
the sampling toward influential regions of the in-
tegrand (modes). However, AMCS differs in the
type of transitions that may be used, the num-
ber of Markov chains, and the method of chain
termination. In particular, from each point sam-
pled from an initial proposal, AMCS collects a
sequence of points by simulating two indepen-
dent, but antithetic Markov chains, which are
terminated by a sample-dependent stopping rule.
Such an approach provides greater flexibility for
targeting influential areas while eliminating the
need to fix the length of the Markov chain a pri-
ori. We show that the resulting estimator is un-
biased and can reduce variance on peaked multi-
modal integrands that challenge current methods.

1 Introduction

We consider Monte Carlo algorithms for approximating in-
tegrals of the form

I .

=

Z
h(x)⇡(x)dx, (1)

where h : Rd ! R is a bounded measurable function, ⇡
is a probability density, and both h and ⇡ are efficiently
evaluable at any point x in the domain. We assume the
standard measure space (Rd

,B, dx) where B is the Borel
�-algebra and dx the Lebesgue measure.

In practical settings, ⇡ is often only evaluable up to an un-
known constant Z

⇡̂

, in which case we assume access to
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an unnormalized function ⇡̂ such that ⇡̂(x)

.

= ⇡(x)Z
⇡̂

,
hence Z

⇡̂

=

R
⇡̂(x)dx. In such cases, approximations of

the normalizing constant Z
⇡̂

are also of interest, either to
aid in approximating Eq. (1) or to conduct separate tasks
such as Bayesian model comparison [13].

A straightforward approach for approximating I and Z
⇡̂

is importance sampling, where an i.i.d. sample {X(1), ...,
X

(N)} is first simulated from a fixed proposal distribution,
⇡0, then the following estimator computed

IN

IS

.

= N

�1
NX

i=1

w(X

(i)
)h(X

(i)
). (2)

Here w(X

(i)
)

.

= ⇡(X

(i)
)/⇡0(X

(i)
) is referred to as the

importance weight. By ensuring supp(⇡) ✓ supp(⇡0)

and that the variance is bounded, V (h(X)w(X)) < 1,
the resulting estimate Eq. (2) is unbiased, E

⇥
IN

IS

⇤
=

I, consistent, and has a mean square error (MSE) of
V (w(X)h(X)) /N .

Additionally, when only ⇡̂ is known, one can approximate
the normalizing constant Z

⇡̂

using the unbiased estimator

ZN

IS

.

= N

�1
NX

i=1

w(X

(i)
), (3)

where ⇡̂ is used in place of ⇡ in the importance weight.
This estimator can also aid in approximating I via the con-
sistent weighted importance sampling estimator1

IN

WIS

.

= N

�1
NX

i=1

h(X

(i)
)w(X

(i)
)/ZN

IS

. (4)

The primary limitation of importance sampling is that the
proposal density ⇡0 must be specified a priori, yet the
quality of the estimator depends critically on how well
it matches the integrand. In particular, V(IN

IS

) is mini-
mized by using ⇡0(x) / |h(x)|⇡(x), and V(ZN

IS

) when
⇡0(x) / ⇡̂(x). In practice, effective proposal densities
are notoriously difficult to construct since the locations of
the high-magnitude (important) regions are unknown. In
this paper, we develop an approach for overcoming a weak

1 This estimator can still be used with ⇡, often resulting in
lower variance. Although such an estimator is biased, it is consis-
tent with bias decreasing at a rate of O(1/N) [12].
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proposal density in scenarios where the integrand is multi-
modal and peaked so that the majority of the integral is
concentrated in modes that cover a small proportion of the
domain; e.g., as illustrated in Fig. 1.

One popular approach to tackling these problems is to ex-
ploit local structure in the integrand by augmenting the pro-
posal with a series of local transitions, such as Markov
chain Monte Carlo (MCMC) moves. For instance, the
method of annealed importance sampling (AIS) [7], or
more generally sequential Monte Carlo sampling (SMCS)
[3], attempts to direct the sampler toward more influential
areas of the integrand (modes) using such a strategy. An
important limitation of these methods, however, is that the
Markov chains must be defined by the same fixed-length
move sequence regardless of the starting point or inte-
grand values. Consequently, when modes are separated by
plateaus, simulating local Markov chains often provide no
discernible benefit to the sampler. This difficulty can some-
times be mitigated through the use of resampling, which
allows computation to be reallocated toward samples with
larger importance weights, or through adaptive parameter
tuning, but such extensions are often unsuitable for parallel
processing or for use with limited memory [4, 1].

In this work we present a related but novel approach, An-
tithetic Markov Chain Sampling (AMCS), that augments a
fixed proposal density by simulating two (independent) an-
tithetic Markov chains from each proposal point. A key ad-
vantage of this approach is the ability to terminate chains
using predefined stopping conditions; for example, when
the integrand values are unchanging (plateau). This allows
the sampler to reallocate computation toward more influ-
ential regions without requiring a large sample population.
We show that returning the average of the integrand eval-
uated at each point yields an unbiased estimate, often with
a significant reduction in variance. The utility of the pro-
posed method is demonstrated on a Bayesian k-means pos-
terior and a robot localization task where highly accurate
relational sensors (i.e., LIDAR) are known to create sharply
peaked posterior distributions [15].

Notation We use upper case letters to denote random
variables and lower case to denote non-random counter-
parts in the same domain. We will use E

⇡

[X], V
⇡

(X)

and P
⇡

(Q(X)) to denote the expectation and variance of
X ⇠ ⇡ and the probability of event Q(X) respectively,
omitting the subscript when the distribution is clear from
context. Also, I{p} will denote the indicator function that
returns 1 if the predicate p is true and 0 otherwise, and
x

i:j
.

= (x

i

, x

i+1, ..., xj

) will denote a sequence.

Additionally, throughout this paper we make use of Markov
transition kernels; formally, on the measurable space
(X ,B) we define a kernel as a mapping K : X ⇥ B !
[0, 1]. Following standard practice in the Monte Carlo lit-
erature, we also let K(x, x

0
) denote the conditional den-

Figure 1: Log-likelihood function of position given sensor
readings in a Bayesian robot localization problem (Sec. 4)

sity of the transition K(x, ·); that is, P(X 2 A|x) =R
A

K(x, x

0
)dx

0.

2 Background and Related Work

We begin by detailing the popular and closely related
sequential Monte Carlo sampling (SMCS) approach [3].
SMCS is an extension of importance sampling that aug-
ments the proposal by simulating a Markov chain of
fixed length (n) specified by forward transition kernels
{F1, ..., Fn

}. To reduce variance, SMCS also exploits a
sequence of backward kernels {B1, ..., Bn

}, where it is as-
sumed that all F

i

and B

i

can be efficiently evaluated point-
wise and that all F

i

are simulable. Additionally, SMCS em-
ploys a sequence of (potentially un-normalized) intermedi-
ate distributions {⇡1, ...,⇡n

} that (ideally) blend smoothly
between the proposal distribution (⇡0) and ⇡

n

.

= ⇡. Com-
mon choices for these intermediate distributions include
the homogeneous sequence ⇡

j

= ⇡ for j > 0, or the
tempered version ⇡

j

= ⇡

(1��j)
⇡

�j

0 for a fixed schedule
1 = �0 > · · · > �

n

= 0. From these components, one
defines a step-wise importance weighting function

R

j

(x

j�1, xj

)

.

=

⇡

j

(x

j

)B

j

(x

j

, x

j�1)

⇡

j�1(xj�1)Fj

(x

j�1, xj

)

, (5)

which can be used to define a sequence importance weights

w

j

(x0:j) = R

j

(x

j�1, xj

)w

j�1(x0:j�1)

recursively, starting from w0(x0) = 1. This weighting is
used to cancel any bias that would otherwise be introduced
by simulating the forward Markov chain. The full SMCS
procedure is given in Algorithm 1.

The key advantage of Algorithm 1 is that it only requires
sampling from ⇡0(·) and F

j

(x

j�1, ·), not from ⇡

n

(·) which
might be intractable. For simplicity, the pseudocode omits
the optional resampling step that has been extensively de-
veloped in the literature [6, 4, 3]. It is also worth noting that
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Algorithm 1 SMCS Procedure
1: for i 2 {1, ..., N}
2: Sample X

(i)
0 ⇠ ⇡0(·); set w(i)

0 = 1

3: end for

4: for i 2 {1, ..., N}
5: for j 2 {1, ..., n}
6: Sample X

(i)
j

⇠ F

j

(X

(i)
j�1, ·);

7: Set w
j

(X

(i)
0:j) = w

j�1(X
(i)
0:j�1)Rj

(X

(i)
j�1, X

(i)
j

);
8: end for

9: Let X(i)
= X

(i)
n

10: end for

11: return estimates from Eq. (2) or Eq. (3) (alternatively
Eq. (6) or Eq. (7)) using {X(i)} and {w

n

(X

(i)
0:n)}

in the case where homogenous intermediate distributions
are used the following unbiased estimators are available

IN

SMCS

.

= N

�1
NX

i=1

n

�1
nX

j=1

w

(i)
j

h(X

(i)
j

), (6)

ZN

SMCS

.

= N

�1
NX

i=1

n

�1
nX

j=1

w

(i)
j

. (7)

Despite its generality, the most commonly deployed form
of SMCS is the pre-dated annealed importance sampling
method (AIS) [7], where one defines the forward kernel
using any MCMC transition to ensure F

j

(x, x

0
)⇡

j

(x) =

F

j

(x

0
, x)⇡

j

(x

0
). The backward kernel is similarly defined

as B
j

(x, x

0
) = F

j

(x

0
, x)⇡

j

(x

0
)/⇡

j

(x). These choices lead
to convenient cancellations, since the weights in Eq. (5)
then become R

j

(x

j�1, xj

) = ⇡

j

(x

j�1)/⇡j�1(xj�1).

Note, despite its use of MCMC moves, AIS does not re-
quire its local chain to approach stationarity to ensure unbi-
asedness. It does, however, require the chain to mix rapidly
to yield worthwhile variance reduction. Naturally, in multi-
modal problems, like that illustrated in Fig. 1, MCMC ker-
nels achieving rapid mixing are difficult to formulate and
AIS may exhibit poor performance.

3 Antithetic Markov Chain Sampling

As an alternative we propose the antithetic Markov chain
sampling (AMCS) approach that, like SMCS, extends im-
portance sampling through the use of local Markov transi-
tions. Roughly speaking, the algorithm first draws a single
sample from the proposal ⇡0, simulates two independent
Markov chains to produce a set of points, evaluates the tar-
get function on each, then returns the resulting average.

More precisely, the local Markov chains are simulated us-
ing two Markov transition kernels, a positive kernel, K+,
and a negative kernel K�. Additionally, these chains are
terminated by probabilistic stopping rules, referred to as
(positive and negative) acceptance functions, A+ and A�,

Algorithm 2 AMCS Procedure
1: for i 2 {1, ..., N}
2: Sample X

(i)
0 ⇠ ⇡0(·);

3: for j = 1, 2, ...

4: Sample X

(i)
j

⇠ K+(X
(i)
j�1, ·);

5: With probability 1�A+(X
(i)
j�1, X

(i)
j

) break loop

and set M (i)
+ = j;

6: end for

7: for j = �1,�2, ...

8: Sample X

(i)
j

⇠ K�(X
(i)
j+1, ·);

9: With probability 1�A�(X
(i)
j+1, X

(i)
j

) break loop

and set M (i)
� = j;

10: end for

11: end for

12: return estimates from Eq. (8) or Eq. (9)

that specify the probability of accepting each move in the
respective directions. The kernels must be efficiently evalu-
able, simulable, and must also satisfy a joint symmetry
property together with the acceptance functions.

Definition 1. The Markov kernels and acceptance func-
tions (K+, A+) and (K�, A�) are said to be jointly sym-
metric if for any x, x

0 2 Rd the following holds

K+(x, x
0
)A+(x, x

0
) = K�(x

0
, x)A�(x

0
, x).

Given these components, we formulate the AMCS proce-
dure given in Algorithm 2. The procedure first draws N

samples from ⇡0, then for each sample the algorithm sim-
ulates a positive chain until termination (lines 3-6), then
simulates a negative chain (lines 7-10) before returning the
trajectory. To ensure that the algorithm terminates we also
require the following assumption.

Assumption 1. The acceptance functions A+ and A� are
assumed to terminate any chain within a finite number of
transitions; i.e. M+ < 1 and M� > �1 almost surely.

After using AMCS to produce N trajectories and indices,��
X

(1)

M

(1)
�

, ..., X

(1)

M

(1)
+

�
, ...,

�
X

(N)

M

(N)
�

, ..., X

(N)

M

(N)
+

� 
we ap-

proximate the desired quantity with the estimators

IN

AMCS

.

= N

�1
NX

i=1

1

¯

M

(i)

M

(i)
+ �1X

j=M

(i)
� +1

h

�
X

(i)
j

�
⇡

�
X

(i)
j

�

⇡0

�
X

(i)
0

� , (8)

ZN

AMCS

.

= N

�1
NX

i=1

1

¯

M

(i)

M

(i)
+ �1X

j=M

(i)
� +1

⇡̂

�
X

(i)
j

�

⇡0

�
X

(i)
0

� , (9)

where ¯

M

(i) .

= M

(i)
+ �M

(i)
� �1. Note that the two endpoints

X

M� and X

M+ are not used in the estimate, we refer to all
other points (X

M�+1, ..., XM+�1) as the accepted points.
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3.1 Unbiasedness

We will now establish the unbiasedness of the estima-
tors given in Eq. (8) and Eq. (9). In doing so we will
need to consider the joint density over the random vari-
ables (M�,M+, XM� , ..., XM+); however, to avoid the
burdensome notation resulting from negative indices we
simplify the subsequent notation by remapping indices to
(M,M0, X0, ..., XM

) such that M

.

= M+ � M� and
M0

.

= �M�, ¯

M = M � 1.

Since the proof of unbiasedness for either estimator fol-
lows the same progression, we will only consider the es-
timator Eq. (8). We begin by simplifying the inner sum-
mation by through the definition of a new random variable
J

(i) ⇠ Uniform({1, ...,M (i) � 1}) and observe that

E
⇥
IN

AMCS

⇤
= E

"
1

N

NX

i=1

h

�
X

(i)
Ji

�
⇡

�
X

(i)
Ji

�

⇡0

�
X

(i)
M0

�

#

= E
"
h

�
X

J

�
⇡

�
X

J

�

⇡0

�
X

M0

�
#
. (10)

That is, the inner summation and the coefficient 1
M̄

in
Eq. (8) can be interpreted as an expectation with respect to
the uniform distribution, and the last equality follows from
the independence between trajectories. To make use of the
important symmetry properties relating X and X

J

we will
need the following lemma.

Lemma 1. Suppose X ⇠ ⇡0(·) and X

0 ⇠ K(X, ·) for
symmetric Markov kernel K, that is K(x, x

0
) = K(x

0
, x).

It follows that

E

h(X

0
)⇡(X

0
)

⇡0(X)

�
= I.

(The lemma follows from the measure theoretic properties
of Markov kernels; the full proof is given in Appendix A.)

Consequently, it remains only to show only that the process
of generating a AMCS trajectory, then selecting a point uni-
formly at random, can be expressed as a symmetric Markov
kernel. With this objective in mind we proceed by showing
that the likelihood of generating a trajectory is independent
of the point initiating the two chains. Specifically, we can
write the density for (M,M0, X0, ..., XM

) as

�(m,m0,x0, ..., xm

)

.

=

(1�A�(x1, x0))K�(x1, x0)

⇥
m0Y

j=2

A�(xj

, x

j�1)K�(xj

, x

j�1)

⇥
m�1Y

j=m0

A+(xj

, x

j+1)K+(xj

, x

j+1)

⇥ (1�A+(xm�1, xm

))K+(xm�1, xm

). (11)

This density function meets an important symmetry condi-
tion formalized in the following lemma.

Lemma 2. For the density � defined in Eq. (11), given
any jointly symmetric (K+, A+) and (K�, A�), sequence
(x0, ..., xm

), and integers m, m0 and m

0
0 such that m > 1,

0 < m0 < m and 0 < m

0
0 < m, it follows that

�(m,m0, x0, ..., xm

) = �(m,m

0
0, x0, ..., xm

)

(The equality follows from the definition of joint symmetry;
the full proof is given in Appendix C.)

Using the density function for a point chosen uniformly
at random from a larger set of random values, given in
Lemma 4 (Appendix B), we can describe the process of
generating a trajectory with AMCS (X

M� , ..., XM+) then
uniformly drawing a point X 2 (X

M�+1, ..., XM+�1) as
sampling from a forward transition kernel given by

K(x, x

0
) =

1X

m=2

m�1X

m0=1

1

m� 1

m�1X

j=1,j 6=m0

�

j

(m,m0, x, x
0
), (12)

where �

j

(m,m0, x, x
0
) is the density function � (Eq. (11))

with x

0 in the jth position and the remaining x-variables
excluding x and x

0 marginalized out. More precisely, if we
let x̄(m0=x,j=x

0) denote (x0, ..., xm

) with x in position m0

and x

0 in position j, and let x̄\{m0,j} denote (x0, ..., xm

) \
{x

j

, x

m0} then the marginal density can be expressed by

�

j

(m,m0, x, x
0
)

.

=

Z
�(m,m0, x̄

(m0=x,j=x

0)
)dx̄

\{m0,j}
.

We now establish the symmetry of the above forward den-
sity function through the following lemma.

Lemma 3. If the density � satisfies the conditions in
Lemma 2 the forward transition kernel in Eq. (12) satisfies

K(x, x

0
) = K(x

0
, x).

(The lemma follows from reordering sums in � and deploy-
ing Lemma 2; the full proof is given in Appendix D.)

From these three lemmas we can now establish the unbi-
asedness of AMCS.

Theorem 1. Provided the transition kernels and accep-
tance functions satisfy the conditions of Lemma 2 and
Lemma 3, for any N > 0 the AMCS procedure achieves

E
⇥
IN

AMCS

⇤
= I

E
⇥
ZN

AMCS

⇤
= Z

⇡̂

.

(The theorem follows directly from the symmetry of the for-
ward transition kernel shown in Lemma 3, in conjunction
with Lemma 1 and Eq. (10).)
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3.2 Variance Analysis

Since the AMCS estimator is unbiased for any choice
of jointly symmetric K+/� and A+/� we can now con-
sider how these choices affect its variance. In the follow-
ing development we reuse the definition of uniformly dis-
tributed index J , and additionally to save space we define
f(x, x

0
)

.

=

h(x)⇡(x)
⇡0(x0) . Observe that

v

AMCS

.

= V

0

@
M�1X

j=1

1

¯

M

f(X

j

, X

M0)

1

A

= V (E [f(X

J

, X

M0)|X0, ..., XM

]) ,

where the inner expectation is take w.r.t. J . Now con-
sider the discrepancy between the above variance expres-
sion and that of vanilla importance sampling given by
v

IS

.

= V (f(X,X)) for X ⇠ ⇡0(·). To relate these quanti-
ties we make the simplifying assumption that ⇡0 is locally
uniform: that is, for all x 2 supp(⇡0) and all x0 2 K(x, ·)
we assume ⇡0(x) = ⇡0(x

0
), where K is the Markov kernel

given in Eq. (12). This assumption allows us to essentially
ignore the effects of ⇡0, which are expected to be negligi-
ble in practice. From this assumption and the symmetry
and measurability of K (Lemma 3) it follows that

V (f(X

J

, X

M0))=

ZZ
f(x

0
, x)

2
K(x, x

0
)⇡0(x)dx

0
dx�µ

2

=

Z
f(x

0
, x

0
)

2
⇡0(x

0
)dx

0
Z

K(x

0
, x)dx�µ

2

= V (f(X,X)) = v

IS

.

That is, if one were to actually use a uniformly drawn sam-
ple from each trajectory the variance of the resulting esti-
mator would be unchanged. Furthermore, using the law of
total variance we also have that

v

IS

= E [V (f(X

J

, X

M0)|X0, ..., XM

)]

+ V (E [f(X

J

, X

M0)|X0, ..., XM

])

= E [V (f(X

J

, X

M0)|X0, ..., XM

)] + v

AMCS

.

From this we can now define the variance capture identity

v

AMCS

= v

IS

�E [V (f(X

J

, X

M0)|X0, ..., XM

)] . (13)

This identify shows that the variance of the AMCS esti-
mator cannot be higher than a vanilla importance sampling
estimator given the same number of samples. Additionally,
the variance reduction is due entirely to the expected vari-
ance of the points inside a given trajectory under the uni-
form distribution. These intuitions motivate the use of so-
called antithetic Markov chains, whose transition kernels
K+/� are configured to explore the integrand in opposite
directions in the hopes of capturing greater variance.

However, before proposing specific choices for K+/� and
A+/� the additional computational costs for simulating the
Markov chains must also be considered. For instance, if

one considers a basic Monte Carlo estimator taking the
empirical average of an arbitrary sequence of i.i.d. ran-
dom variables, say X

(1)
, ..., X

(N), the variance is given
by V(X)

N

. Alternatively, consider a procedure that has a
stochastic cost associated with each sample, denoted by
the random variables D

(1)
, ..., D

(N) such that � .

= E [D],
where it is assumed D

(i) ?? X

(i). By fixing a compu-
tational budget C >> �, standard arguments for renewal
reward processes indicate that the resulting estimator will
have a variance of approximately V(X)

C/�

=

�V(X)
C

. Simply
put, if technique A requires, on average, a factor of � more
computation per sample than technique B, then it must have
a reduced variance by a factor of at least 1/� to be worth-
while. Substituting this forumla into Eq. (13) shows that
AMCS will offer a variance reduction whenever

E [V (f(X

J

, X

M0)|X0, ..., XM

)] >

� � 1

�

v

IS

,

where � = E [M ] gives the expected computational cost in
terms of the number of evaluations of ⇡ and h. It is clear
from this expression that the potential for savings drops of
quickly as the computational costs increase. In the next
section we explore ways in which the acceptance functions
can be used to help keep these costs in check.

3.3 Parameterization

We now provide some specific parameterizations for K+/�
and A+/� which the goal of exploiting the structure of
multi-modal, peaked integrands. Perhaps the most useful
observation one can make in this setting is that if the inte-
grand is near zero at some point, it is not likely to have large
values in the vicinity, hence continuing a local Markov
chain simulation is not likely to be worthwhile. Conversely,
if the integrand value has non-negligible magnitude it has
a much higher chance of being near a mode. This observa-
tion motivates the threshold acceptance function

A+/�(x, x
0
) =

(
1, if |f(x)| > " and |f(x0

)| > "

0, otherwise,

where " > 0 and f(x) is some function of interest (e.g. the
integrand). An important side-benefit of this acceptance
function is that if the first point sampled from ⇡0 is below
the threshold, the AMCS procedure can immediately return
without evaluating the integrand at any neighboring points,
hence avoiding additional computational cost.

Keeping in mind the objective of “capturing” variability
through the use of antithetic chains, a natural first choice
for Markov kernels are the linear kernel densities, given by

K+(x, ·) = N (x+ v,�

2
I),

K�(x, ·) = N (x� v,�

2
I),

where N (µ,⌃) denotes a multivariate normal distribution
with mean µ and covariance ⌃, v 2 Rd is some fixed
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vector, and �

2 a fixed variance parameter. For any con-
figuration with �

2
<< ||v||2 one can expect the resulting

Markov chain to make consistent progress in one direction
and hence experience more function variability than, say, a
normal random walk given the same number of steps.

For continuously differentiable integrands one can use the
gradient to set the direction vector, which results in the
Langevin Markov kernels

K+(x, ·) = N (x+ "rf(x),�

2
I),

K�(x, ·) = N (x� "rf(x),�

2
I),

where " > 0 is a step size parameter. Since the gradient
points in the direction of steepest ascent this choice seems
ideal for capturing variability within a trajectory. However,
a potential concern is that the Langevin kernel is not ex-
actly symmetric for nonlinear functions. While this issue
can be partially addressed by ensuring the gradient vector
is normalized to length 1, exact joint symmetry (Defini-
tion 1) can be attained through the use of the symmetrizing
acceptance functions

A+(x, x
0
) = min

✓
K�(x

0
, x)

K+(x
0
, x)

, 1

◆
,

A�(x, x
0
) = min

✓
K+(x

0
, x)

K�(x0
, x)

, 1

◆
.

Note that multiple acceptance functions can be combined
into a single function by taking their product.

Finally, when following gradient steps in either direction
one can expect to eventually settle around a local mode or
plateau. Since continuing the chain is not likely to capture
any additional function variation, it is beneficial to termi-
nate the chain in these cases, which can be accomplished
through the use of the monotonic acceptance functions

A+(x, x
0
) =

(
1, if f(x) + " < f(x

0
)

0, otherwise,

A�(x, x
0
) =

(
1, if f(x)� " > f(x

0
)

0, otherwise,

where " � 0 is some fixed threshold. This acceptance func-
tion ensures the chains make monotonic progress.

4 Experimental Evaluation

In this section we evaluate the performance of the AMCS
procedure and contrast it with that of related existing
techniques, namely, vanilla importance sampling (IS), an-
nealed importance sampling (AIS), and greedy importance
sampling (GIS) [14]. The previously unmentioned GIS
approach uses a sequence of deterministic, axis-aligned,
steepest ascent moves to augment a fixed proposal. Note,
this method does not use continuous gradient information

and instead computes the steepest descent direction by
checking all neighboring points at a fixed step-size. An im-
portant consideration is that these approaches each require
a different level of computational effort to produce a single
sample. In order to account for these additional costs we
account for the expected number of integrand evaluations
per sample (�

M

) by considering the cost-adjusted variance
for a given estimator IN

M

, defined as v̄
M

.

= �

M

NV
�
IN

M

�
.

Additionally, to ensure a meaningful comparison across ex-
periments, we normalize this value by taking its ratio be-
tween the variance of the vanilla importance sampling ap-
proach to give the relative cost-adjusted variance given by
v̄

M

/v̄

IS

. Here, a value of 0.5 indicates a 2x reduction in
the number of integrand evaluations needed to attain the
same error as an importance sampling estimate.2

For our comparisons we considered two different integra-
tion tasks, first a Bayesian k-means posterior, and finally a
Bayesian posterior for a robot localization task.

4.1 Bayesian k-mixture Model

Consider the task of approximating the normalization con-
stant (Z), or model evidence, for a Bayesian k-mixture
model. Specifically, we define the a generative model with
k uniformly weighted multivariate normal distributions in
Rd with fixed diagonal covariance matrices ⌃

i

=

i

20I for
i = {1, ..., k}. The unobserved latent variables for this
model are the means for each component µ

i

2 Rd which
are assumed to be drawn from a multivariate normal prior
with mean zero and identity covariance. Given n samples,
y1, ..., yn, from the underlying model, the model evidence
is given by integrating the un-normalized posterior

Z =

Z
nY

i=1

L(µ1, ..., µk

|y
i

)p(µ1, ..., µk

)dµ1...dµk

,

where the likelihood function is given by
L(µ1, ..., µk

|y
i

) =

P
k

j=1
1
k

N (y

i

;µ

j

,⌃

j

) and the
prior density the standard normal p(µ1, ..., µk

) =

N ([µ1, ..., µk

]; 0, I), where [µ1, ..., µk

] denotes a dk-
dimensional vector of “stacked” µ

i

vectors. Using
the same notation as previous sections we may write
⇡̂(x) =

Q
n

i=1 L(x|yi)p(x), where x = [µ1, ..., µk

].

For the AIS approach we used 150 annealing distributions
set using the “power of 4” heuristic suggested by [5], i.e.
�

i

= ((150 � i)/150)

4. Each annealing stage used 3
MCMC transitions, here we experimented with both slice
sampling [8] and Hamiltonian transitions [9]. The Hamil-
tonian moves were tuned to achieve a accept/reject rate of
about 80% which resulted in a step-size parameter of 0.003

2Note that in our analysis we do not apply additional costs for
gradient evaluations since, in most settings, computations of h(x)
and rh(x) typically share the same sub-computations which can
be cached and reused.
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Figure 2: Cost-adjusted variance (log scale) for the different approaches on the Bayesian k-means task. Missing data
points are due to the fact that trials where the final estimate (empirical mean) is incorrect by a factor of 2 or greater are
automatically removed. From left to right the three plots indicate performance on the same problem but with an increasing
number of observed training samples 15, 35, and 70 respectively.

and 5 leapfrog steps. Additionally, for AIS and the re-
maining methods we use the prior as the proposal density,
⇡0 = p, and the posterior as the target.

For AMCS we used Langevin local moves with monotonic,
symmetrizing, and threshold acceptance functions. For the
Langevin moves we used a step-size parameter " = 0.015

and �

2
= 3E

�5. The threshold acceptance functions were
configured using a preliminary sampling approach. In par-
ticular, we let f = ⇡̂ and set the threshold parameter to
a value that accepted roughly 1.5% of the data points on
a small sub-sample (2000 points). These points were not
used in the final estimate but in practice they can be incor-
porated without adverse effects. For the GIS approach we
used step-size parameter " = 0.015, also, we experimented
with a modified version (GIS-A) by incorporating an ac-
ceptance function borrowed from the AMCS approach.

The results for this problem are shown in Fig. 2 as the num-
ber of “training” points (n), the dimensionality of these
points (d), and number of mixture components (k) are al-
tered. For each of these different settings the parameters for
the sampling approaches remain fixed. Simulations were
run for a period of 8 hours for each method and each set-
ting of d, n, and k giving a total running time of 106 CPU
days running on a cluster with 2.66GHz processors. How-
ever, even in this time many of the methods were not able to
return a meaningful estimate after execution, these results
are therefore omitted from the figure.

It is clear from these simulations that GIS (both variants)
and AIS with Hamiltonian moves (AIS-HAM) are simply
not effective for this task. While the AIS approach with
slice sampling moves (AIS-SS) and the AMCS approach
had more varied performance. In particular, the experi-
ments indicate that AIS-SS can offer tremendous savings
over both IS and AMCS for higher dimensional problems
and problems with more training samples. However, this
advantage comes at a price as the method performed up
to 10-20x worse than even simple importance sampling in
cases where the proposal was remotely close to the target.
AMCS, on the other hand, was considerably more robust to

changes in the target since for each setting it performed at
least as good as vanilla importance sampling while offering
a considerable advantage in more challenging settings.

To summarize, depending on the problem at hand, and the
practitioner’s appetite for risk, the most appropriate ap-
proach for this problem is likely either AMCS or AIS-SS.
However, in many cases the practitioner may be interested
in a large set of potential problem settings where it is too
labor intensive to determine which method, and parameter
settings, are most appropriate for each case. In such scenar-
ios it may be worthwhile to consider an adaptive approach
to select approaches automatically. In particular, recent
work has shown that the task of allocating computation to
a fixed set of Monte Carlo estimators with the goal of min-
imizing the variance reduces to the well known stochastic
multi-armed bandit setting for which many effective adap-
tation schemes exist [10, 2]. Adaptive approaches of this
form highlight the advantages of having a diverse suite of
Monte Carlo integration approaches.

4.2 Problem 2: Robot Localization

We next consider approximating the normalization constant
of a Bayesian posterior for the (simulated) kidnapped robot
problem [16] where an autonomous robot is placed at an
unknown location and must recover its position using rela-
tive sensors, such as a laser range finder, and a known map.
This posterior distribution is notoriously difficult to work
with when the sensors are highly accurate which creates
a highly peaked distribution; a phenomenon referred to as
the curse of accurate sensors. Here, we assume the prior
distribution over the robot’s (x,y) position and orientation,
denoted x 2 R3, is a uniform distribution.

In our simulations the robot’s observations are given by
a laser range finder which returns distance measurements
at n positions spaced evenly in a 360

� field of view (see
Fig. 3). The sensor model for each individual sensor,
that is, the likelihood of observing a measurement y given
the true ray-traced distance from position x: d(x), is
given by the mixture L(y|d(x)) = 0.95N (y; d(x),�

2
) +
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A

Figure 3: Left, the map used for the robot simulator with
6 different robot poses and corresponding laser measure-
ments (for n = 12). Right, a 2d image where %blue is pro-
portional to the log-likelihood function using the observa-
tions shown at position ’A’, here pixel locations correspond
to robot (x, y) position while the orientation remains fixed.

0.05U(y; 0,M), where �

2
= 4cm and the maximum ray

length M = 25m.3 This sensor model is used commonly
in the literature (see [16]) and is meant to capture the
noise inherent in laser measurements (normal distribution)
as well as moving obstacles or failed measurements (uni-
form distribution). Given a set of observed measurements
y1, ..., yn then, we have the un-normalized posterior distri-
bution ⇡̂(x) =

Q
n

i=1 L(yi|di(x))p(x), where p denotes the
density of the uniform prior.

The log-posterior distribution for a fixed observation and
orientation is shown in the right of Fig. 3 and a similar 3d
plot in Fig. 1. This distribution poses challenges for Monte
Carlo integration approaches because it is highly multi-
modal and individual integrand values require an expen-
sive ray-tracing procedure to compute, which underscores
the importance of efficient sampling approaches. Addition-
ally, due to the sharp map edges and properties of the ob-
servation model, the posterior distribution is highly non-
continuous and non-differentiable. This prevents the use
of gradient-based local moves (for AMCS and AIS) and
severely limits the effectiveness of annealing.

For this problem we experimented with AIS using 100 an-
nealing distributions each featuring 3 Metropolis-Hastings
MCMC steps with proposal q(x, ·) = N (x,�

2
I) with

�

2
= 4cm. For AMCS we used the prior as a proposal

density, linear Markov kernels with v = [2cm, 2cm, 0.2cm]

and �

2
= 2E

�3cm and threshold acceptance function with
threshold set to be larger than 4% of points on a 2000 pont
sub-sample. For GIS we used the same proposal, step-sizes
(v), and (optionally) the same threshold acceptance func-
tion as AMCS. IS used the prior for a proposal.

The error rates for the different sampling approaches for
6 different positions (see Fig. 3) and 3 different laser con-
figurations, n = 12, 18, 24, are shown in Fig. 4. Unlike
the previous task the results here are fairly straightforward

3Measurements assume that the map (Fig. 3) is 10x10 meters.
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Figure 4: Relative cost-adjusted variance for the different
approaches on the robot localization task for 6 different po-
sitions (p) and 3 different laser configurations (n = #laser
readings).

and indicate that AMCS consistently offers an 8 to 10 times
improvement over vanilla importance sampling. The cost-
adjusted variance of the GIS approach can be significantly
improved through the use of threshold acceptance func-
tions but only marginally better than IS. Also, it is clear
that AIS is simply not an effective approach for this task as
it is roughly 10 times less efficient than simple IS and 100
times less efficient than AMCS. This is primarily due to the
fact that the unmodified proposal density has some reason-
able chance of landing near a region of some likelihood.
Consequently, taking a large number of MCMC transitions
is not a cost-effective way to improve the proposal, this de-
tail exacerbated by landscape of the posterior distribution
which inhibits efficient MCMC mixing.

5 Conclusion

We have introduced an alternative importance sampling ap-
proach that, like sequential Monte Carlo sampling, aug-
ments a fixed proposal density through the addition of lo-
cal Markov chains. The approach differs from existing
SMCS techniques in two fundamental ways: first, through
the inclusion of fixed stopping rules for the Markov chains,
and second, through the simulation of two antithetic chains
from each point. The resulting estimator is unbiased and
can be shown to have reduced variance through a straight-
forward analysis stemming from the law of total variance.
The same analysis provides insight into the use of antithetic
Markov transitions that lead to large changes in the value
of the integrand, such as gradient ascent/descent moves.

We evaluated the performance of the proposed approach on
two real-world machine learning tasks, where significant
improvements over the state of the art could be observed
under common conditions. This work provides a useful
alternative to existing Monte Carlo integration approaches
that exhibits complementary strengths.
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Appendix

A Proof of Lemma 1

E

h(X

0
)⇡(X

0
)

⇡(X)

�
=

Z Z
h(x

0
)⇡(x

0
)

⇡0(x)
K(x, x

0
)⇡0(x)dx

0
dx

=

Z Z
h(x

0
)⇡(x

0
)K(x, x

0
)dxdx

0 (by Fubini’s theorem)

=

Z
h(x

0
)⇡(x

0
)

Z
K(x

0
, x)dxdx

0 (by symmetry of K)

=

Z
h(x

0
)⇡(x

0
)dx

0
.

Here Fubini’s theorem makes use of the facts that, since K is a Markov kernel, 8A 2 B, K(·, A) is measurable and
8x 2 X ,K(x, ·) is a probability measure (thus measurable). See Theorem 6.4.2, [11] for details.

B Lemma 4

We now consider the p.d.f. for a random element chosen uniformly from a set of random variables (i.e. X(i)
J

(i) ).

Lemma 4. Given random variables (X0, ..., Xn

) distributed according to a joint density g, and a random variable
J 2 {0, ..., n} such that P {J = j} = 1/(n � 1) 8

j2{1,...,n�1} and P {J = 0} = P {J = n} = 0, the variable
Y =

P
n

j=0 I{J = j}X
j

has p.d.f. p(y) =

1
n�1

P
n�1
j=1 g

j

(y) where g

j

is the j

th marginal density of g.

Proof. For any bounded measurable function f we have

E [f(Y )] = E [E [f(Y )|J ]] =
nX

j=0

P {J = j}E [f(X

j

)] =

n�1X

j=1

1

n� 1

E [f(X

j

)] =

1

n� 1

n�1X

j=1

Z
f(x)g

j

(x)dx =

Z
f(x)p(x)dx,

where p(x) =

1
n�1

P
n�1
j=1 g

j

(x).

C Proof of Lemma 2

Letting m

0
= m0 � k for any integer offset k such that 0 < k +m0 < m, observe that

�(m,m0, x0, ..., xm

) = (1�A�(x1, x0))K�(x1, x0)

m0Y

j=2

A�(xj

, x

j�1)K�(xj

, x

j�1)

(1�A+(xm�1, xm

))K+(xm�1, xm

)

m�1Y

j=m0

A+(xj

, x

j+1)K+(xj

, x

j+1)

= (1�A�(x1, x0))K�(x1, x0)

m0�kY

j=2

A�(xj

, x

j�1)K�(xj

, x

j�1)

(1�A+(xm�1, xm

))K+(xm�1, xm

)

m�1Y

j=m0�k

A+(xj

, x

j+1)K+(xj

, x

j+1)

= �(m

,

m0 � k, x0, ..., xm

),

where the second equality follows from the fact that (K+, A+) and (K�, A�) are jointly symmetric.
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D Proof of Lemma 3

To prove the theorem we make use of Lemma 2, which asserts that for any fixed sequence of points one can shift the
“starting index” m0 without altering the value of probability density �. The proof then amounts to a straightforward
reindexing of the summations in K. Observe that

K(x, x

0
) =

1X

m=2

1

m� 1

m�1X

m0=1

m�1X

j=1,j 6=m0

�

j

(m,m0, x, x
0
)

=

1X

m=2

1

m� 1

m�1X

m0=1

m�1X

j=1,j 6=m0

Z
�(m,m0, x̄

(m0=x,j=x

0)
)dx̄

\{m0,j}

=

1X

m=2

1

m� 1

m�1X

j=1

m�1X

m0=1,m0 6=j

Z
�(m,m0, x̄

(m0=x,j=x

0)
)dx̄

\{m0,j}

=

1X

m=2

1

m� 1

m�1X

m0=1

m�1X

j=1,j 6=m0

Z
�(m, j, x̄

(m0=x

0
,j=x)

)dx̄

\{m0,j} (by renaming j and m0, i.e. swapping them)

=

1X

m=2

1

m� 1

m�1X

m0=1

m�1X

j=1,j 6=m0

Z
�(m,m0, x̄

(m0=x

0
,j=x)

)dx̄

\{m0,j} (by Lemma 2 where k = j �m0)

=

1X

m=2

1

m� 1

m�1X

m0=1

m�1X

j=1,j 6=m0

�

j

(m,m0, x
0
, x)

= K(x

0
, x),

which establishes the result.


