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Abstract

Robust policy optimization acknowledges that risk-aversion plays a vital role in
real-world decision-making. When faced with uncertainty about the effects of ac-
tions, the policy that maximizes expected utility over the unknown parameters of
the system may also carry with it a risk of intolerably poor performance. One
might prefer to accept lower utility in expectation in order to avoid, or reduce
the likelihood of, unacceptable levels of utility under harmful parameter realiza-
tions. In this paper, we take a Bayesian approach to parameter uncertainty, but
unlike other methods avoid making any distributional assumptions about the form
of this uncertainty. Instead we focus on identifying optimization objectives for
which solutions can be efficiently approximated. We introduce percentile mea-
sures: a very general class of objectives for robust policy optimization, which
encompasses most existing approaches, including ones known to be intractable.
We then introduce a broad subclass of this family for which robust policies can
be approximated efficiently. Finally, we frame these objectives in the context of a
two-player, zero-sum, extensive-form game and employ a no-regret algorithm to
approximate an optimal policy, with computation only polynomial in the number
of states and actions of the MDP.

1 Introduction

Reinforcement learning is focused on learning optimal policies from trajectories of data. One com-
mon approach is to build a Markov decision process (MDP) with parameters (i.e., rewards and tran-
sition probabilities) learned from data, and then find an optimal policy: a sequence of actions that
would maximize expected cumulative reward in that MDP. However, optimal policies are sensitive
to the estimated reward and transition parameters. The optimal performance on the estimated MDP
is unlikely to be actually attained under the true, but unknown, parameter values. Furthermore, opti-
mizing for the estimated parameter realization may risk unacceptable performance under other less
likely parameter realizations. For example, consider a data-driven medical decision support setting:
given one-step trajectory data from a controlled trial, the goal is to identify an effective treatment
policy. The policy that maximizes expected utility under a single estimated model, or even averaged
over a distribution of models, may still result in poor outcomes for a substantial minority of patients.
What is called for is a policy that is more robust to the uncertainties of individual patients.

There are two main approaches for finding robust policies in MDPs with parameter uncertainty. The
first assumes rewards and transitions belong to a known and compact uncertainty set, which also
includes a single nominal parameter setting that is thought most likely to occur [19]. Robustness, in
this context, is a policy’s performance under worst-case parameter realizations from the set and is
something one must trade-off against how well a policy performs under the nominal parameters. In
many cases, the robust policies found are overly conservative because they do not take into account
how likely it is for an agent to encounter worst-case parameters. The second approach takes a
Bayesian perspective on parameter uncertainty, where a prior distribution over the parameter values
is assumed to be given, with a goal to optimize the performance for a particular percentile [4].
Unfortunately, the approach assumes specific distributions of parameter uncertainty in order to be
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tractable, e.g., rewards from Gaussians and transition probabilities from independent Dirichlets. In
fact, percentile optimization with general parameter uncertainty is NP-hard [3].

In this paper we focus on the Bayesian setting where a distribution over the parameters of the MDP
is given. Rather than restricting the form of the distribution in order to achieve tractable algorithms,
we consider general parameter uncertainty, and instead explore the space of possible objectives. We
introduce a generalization of percentile optimization with objectives defined by a measure over per-
centiles instead of a single percentile. This family of objectives subsumes tractable objectives such
as optimizing for expected value, worst-case, or Conditional Value-at-Risk; as well as intractable
objectives such as optimizing for a single specific percentile (percentile optimization or Value-at-
Risk). We then introduce a particular family of percentile measures, which can be efficiently ap-
proximated. We show this by framing the problem as a two-player, zero-sum, extensive-form game,
and then employing a form of counterfactual regret minimization to find near-optimal policies in
time polynomial in the number of states and actions in the MDP. We give a further generalization
of this family by proving a general, but sufficient, condition under which percentile measures admit
efficient optimization. Finally, we empirically demonstrate our algorithm on a synthetic uncertain
MDP setting inspired by finding robust policies for diabetes management.

2 Background

We begin with an overview of Markov decision processes and existing techniques for dealing with
uncertainty in the parameters of the underlying MDP. In section 3, we show that many of the objec-
tives described here are special cases of percentile measures.

2.1 Markov Decision Processes

A finite-horizon Markov decision process is a tupleM = �S, A,R, P, H�. S is a finite set of states,
A is a finite set of actions, and H is the horizon. The decision agent starts in an initial state s0, drawn
from an initial state distribution P (s0). System dynamics are defined by P (s, a, s�) = P(s�|s, a)
which indicates the probability of transitioning from one state s ∈ S to another state s� ∈ S after
taking action a ∈ A. The immediate reward for being in a state and taking an action is defined by the
reward function R : S×A �→ R. We will assume the rewards are bounded so that |R(s, a)| ≤ ∆/2.
We denote ΠHR as the set of all history-dependent randomized policies, i.e., those that map
sequences of state-action pairs and the current state to probability distribution over actions. We
denote ΠMR as the set of all Markov randomized policies, i.e., those that map only the current
state and timestep to a probability distribution over actions. For a fixed MDP M, the objective is to
compute a policy π that maximizes expected cumulative reward,

V π

M = E
�

H�

t=0

R(st, at)

�����M, s0 ∝ P (s0), π

�
(1)

For a fixed MDP, the set of Markov random policies (in fact, Markov deterministic policies) contains
a maximizing policy. This is called the optimal policy for the fixed MDP: π∗ = argmax

π∈ΠMR V π

M.
However, for MDPs with parameter uncertainty, Markov random policies may not be a sufficient
class. We will return to this issue again when discussing our own work.

2.2 MDPs with Parameter Uncertainty

In this paper, we are interested in the situation where the MDP parameters, R and P , are not known.
In general, we call this an uncertain MDP. The form of this uncertainty and associated optimization
objectives has been the topic of a number of papers.

Uncertainty Set Approach. One formulation for parameter uncertainty assumes that the parameters
are taken from uncertainty sets R ∈ R and P ∈ P [12]. In the robust MDP approach the desired
policy maximizes performance in the worst-case parameters of the uncertainty sets:

π∗ = argmax
π

min
R∈R,P∈P

V π

M (2)
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The robust MDP objective has been criticized for being overly-conservative as it focuses entirely on
the worst-case [19]. A further refinement is to assume that a nominal fixed MDP model is also given,
which is thought to be a good guess for the true model. A mixed optimization objective is then pro-
posed that trades-off between the nominal performance and robust (worst-case) performance [19].
However, neither the robust MDP objective nor the mixed objective consider a policy’s performance
in parameter realizations other than the nominal- and worst-cases, and neither considers the relative
likelihood of encountering these parameter realizations.

Xu and Mannor [20] propose a further alternative by placing parameter realizations into nested
uncertainty sets, each associated with a probability of drawing a parameter realization from the set.
They then propose a distributional robustness approach, which maximizes the expected performance
over the worst-case distribution of parameters that satisfies the probability bounds on uncertainty
sets. This approach is a step between the specification of uncertainty sets and a Bayesian approach
with a fully specified MDP parameter distribution.

Bayesian Uncertainty Approach. The alternative formulation to uncertainty sets, is to assume
that the true parameters of the MDP, R∗ and P ∗, are distributed according to a known distribution
P(R,P ). A worst-case analysis in such a formulation is non-sensical, except in the case of dis-
tributions with bounded support (i.e. Uniform distributions), in which case it offers nothing over
uncertainty sets. A natural alternative is to look at percentile optimization [4]. For a fixed η, the ob-
jective is to seek a policy that will maximize the performance on η percent of parameter realizations.
Formally, this results in the following optimization:

π∗ = argmax
π

max
y∈R

y

subject to PM[V π

M ≥ y] ≥ η
(3)

The optimal policy π∗ guarantees the optimal value y∗ is achieved with probability η given the
distribution over parameters P(R,P ). Delage and Mannor showed that for general reward and/or
transition uncertainty, percentile optimization is NP-hard (even for a small fixed horizon) [3]. They
did show that for Gaussian reward uncertainty, the optimization can be efficiently solved as a second
order cone program. They also showed that for transitions with independent Dirichlet distributions
that are sufficiently-peaked (e.g., given enough observations), optimizing an approximation of the
expected performance over the parameters approximately optimizes for percentile performance [4].

Objectives from Financial Economics. Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) are optimization objectives used to assess the risk of financial portfolios. Value-at-Risk
is equivalent to percentile optimization and is intractable for general forms of parameter uncertainty.
Additionally, it is not a coherent risk measure in that it does not follow subadditivity, a key coher-
ence property that states that the risk of a combined portfolio must be no larger than the sum of the
risks of its components. In contrast, Conditional Value-at-Risk at the η% level is defined as the “av-
erage of the η · 100 worst losses”[1]. It is both a coherent and a tractable objective [13]. In section 3
we show that CVaR is also encompassed by percentile measures.

Restrictions on Parameter Uncertainty. One commonality among previous approaches is that
they all make heavy restrictions on the form of parameter uncertainty in order to obtain efficient al-
gorithms. A common requirement, for example, is that the uncertainty between states is uncoupled
or independent; or that reward and transition uncertainty themselves are uncoupled or independent.
A very recent paper relaxes this coupling in the context of uncertainty sets, however the relaxation
still takes a very specific form allowing for a finite number of deviations [9]. Another common
assumption is that the uncertainty is non-stationary, i.e., a state’s parameter realization can vary in-
dependently with each visit. The Delage and Mannor work on percentile optimization [4] makes
the more natural assumption that the uncertain parameters are stationary, but in turn requires very
specific choices for the uncertainty distributions themselves. In this work, we avoid making as-
sumptions on the form of parameter uncertainty beyond the ability to sample from the distribution.
Instead, we focus on identifying the possible optimality criteria which admit efficient algorithms.

3 Percentile Measures

We take the Bayesian approach to uncertainty where the true MDP parameters are assumed to be
distributed according to a known distribution, i.e., the true MDP M∗ is distributed according to an
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Figure 1: Examples of percentile measures.

arbitrary distribution P(M). We begin by delineating a family of objectives for robust policy opti-
mization, which generalizes the concept of percentile optimization. While percentile optimization
is already known to be NP-hard, in section 4, we will restrict our focus to a subclass of our family
that does admit efficient algorithms. Rather than seeking to maximize one specific percentile of
MDPs, our family of objectives maximizes an integral of a policy’s performance over all percentiles
η ∈ [0, 1] of MDPs M as weighted by a percentile measure µ. Formally, given a measure µ over
the interval [0, 1] a µ-robust policy is the solution to the following optimization:

π∗ = argmax
π∈Π

sup
y∈F

�

η

y(η)dµ

subject to PM[V π

M ≥ y(η)] ≥ η ∀η ∈ [0, 1]
(4)

where F is the class of real-valued, bounded, µ-integrable functions on the interval [0, 1].

There are many possible ways to choose the measure µ, each of which corresponds to a different
robustness interpretation and degree. In fact, our distribution measures framework encompasses
optimization objectives for the expected, robust, and percentile MDP problems as well as for VaR
and CVaR. In particular, if µ is the Lebesgue measure (i.e., a uniform density over the unit interval),
all percentiles are equally weighted and the µ-robust policy will optimize the expected cumulative
reward over the distribution P(M). In other words, it maximizes EM [V π

M]. This objective was
explored by Mannor et al. [10], where they concluded that the common approach of computing an
optimal policy for the expected MDP, i.e., maximizing V π

E[M], results in a biased optimization of the
desired value expectation under general transition uncertainty. Alternatively, when µ = δ0.1, where
δη is the Dirac delta at η, the optimization problem becomes identical to the VaR and percentile
optimization problems where η = 0.1, the 10th percentile. The measures for the 10th, 25th, and
40th percentiles are shown in figure 1a. When µ = δ0, the optimization problem becomes the worst-
case robust MDP problem, over the support of the distribution P(M). Finally, if µ is a decreasing
step function at η, this corresponds to the CVaR objective at the η% level, with equal weighting for
the bottom η percentiles and zero weighting elsewhere.

4 k-of-N Measures

There is little reason to restrict ourselves to percentile measures that put uniform weight on all
percentiles, or Dirac deltas on the worst-case or specific percentiles. One can imagine creating
other density functions over percentiles, and not all of these percentile measures will necessarily
be intractable like percentile optimization. In this section we introduce a subclass of percentile
measures, called k-of-N measures, and go on to show that we can efficiently approximate µ-robust
policies for this entire subclass.

We start by imagining a sampling scheme for evaluating the robustness of a fixed policy π. Consider
sampling N = 1000 MDPs from the distribution P(M). For each MDP we can evaluate the policy
π and then rank the MDPs based on how much expected cumulative reward π attains on each. If
we choose to evaluate our policy based on the very worst of these MDPs, that is, the k = 1 of the
N = 1000 MDPs, then we get a loose estimate of the percentile value of π in the neighborhood of
the 1/1000th percentile for the distribution P(M). If we sample just N = 1 MDP, then we get an
estimate of π’s expected return over the distribution. Each choice of N results in a different density,
and corresponding measure, over the percentiles on the interval [0, 1]. Figure 1b depicts the shape of
the density when we hold k = 1 while increasing the number of MDPs we sample, N . We see that as
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N increases, the policy puts more weight on optimizing for lower percentiles of MDPs. Thus we can
smoothly transition from finding policies that perform well in expectation (no robustness) to policies
that care almost only about worst-case performance (overly conservative robustness). Alternatively,
after sampling N MDPs we could instead choose the expected cumulative reward of a random MDP
from the k ≥ 1 least-favorable MDPs for π. For every choice of k and N , this gives a different
density function and associated measure. Figure 1c shows the density function for N = 1000 while
increasing k. The densities themselves act as approximate step-functions whose weight falls off in
the neighborhood of the percentile η = k/N . Furthermore, as N increases, the shape of the density
more closely approximates a step-function, and thus more closely approximates the CVaR objective.
For a particular N and k, we call this measure the k-of-N measure, or µk-of-N .
Proposition 1. For any 1 ≤ k ≤ N , the density g of the measure µk-of-N is g(η) ∝ 1−Iη(k,N−k),
where Ix(α, β) = B(x;α, β)/B(α, β) is the regularized incomplete Beta function.

The proof can be found in the supplemental material.

4.1 k-of-N Game

Our sampling description of the k-of-N measure can be reframed as a two-player zero-sum
extensive-form game with imperfect information, as shown in Figure 2. Each node in the tree repre-
sents a game state or history labeled with the player whose turn it is to act, with each branch being
a possible action.
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Figure 2: k-of-N game tree

In our game formulation, chance, denoted as player c, first selects
N MDPs according to P(M). The adversary, denoted as player
2, has only one decision in the game which is to select a subset
of k MDPs out of the N , from which chance selects one MDP M
uniformly at random. At this point, the decision maker, denoted
as player 1, has no knowledge of the sampled MDPs, the choice
made by the adversary, or the final selected MDP. Hence, player 1
might be in any one of the circled nodes and can not distinguish one
from the other. Such histories are partitioned into one set, termed
an information set, and the player’s policy must be identical for all
histories in an information set. The decision maker now alternates
turns with chance, observing states sampled by chance according to

the chosen MDP’s transition function, but not ever observing the chosen MDP itself, i.e., histories
with the same sequence of sampled states and chosen actions belong to the same information set
for player 1. After the horizon has been reached, the utility of the leaf node is just the sum of the
immediate rewards of the decision maker’s actions according to the chosen MDP’s reward function.

The decision maker’s behavioral strategy in the game maps information sets of the game to a distri-
bution over actions. Since the only information is the observed state-action sequence, the strategy
can be viewed as a policy in ΠHR (or possibly ΠMR, as we will discuss below).

Because the k-of-N game is zero-sum, a Nash equilibrium policy in the game is one that maximizes
its expected utility against its best-response adversary. The best-response adversary for any policy
is the one that chooses the k least favorable MDPs for that policy. Thus a policy’s value against
its best-response is, in fact, its value under the measure µk-of-N . Hence, a Nash equilibrium policy
for the k-of-N game is a µk-of-N -robust policy. Furthermore, an �-Nash equilibrium policy is a 2�
approximation of a µk-of-N -robust policy.

4.2 Solving k-of-N Games

In the past five years there have been dramatic advances in solving large zero-sum extensive-form
games with imperfect information [21, 5, 8]. These algorithmic advancements have made it possi-
ble to solve games five orders of magnitude larger than previously possible. Counterfactual regret
minimization (CFR) is one such approach [21]. CFR is an efficient form of regret minimization
for extensive-form games. Its use in solving extensive-form games is based on the principle that
two no-regret learning algorithms in self-play will have their average strategies converge to a Nash
equilibrium. However, the k-of-N game presents a difficulty due to the imbalance in the size of the
two players’ strategies. While player one’s strategy is tractable (the size of a policy in the underly-
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ing MDP), player two’s strategy involves decisions at infinitely many information sets (one for each
sampled set of N MDPs).

A recent variant of CFR, called CFR-BR, specifically addresses the challenge of an adversary having
an intractably large strategy space [6]. It combines two ideas. First, it avoids representing the entirety
of the second player’s strategy space, by having the player always play according to a best-response
to the first player’s strategy. So, the repeated games now involve a CFR algorithm playing against
its own best-response. Note that best-response is also a regret-minimizing strategy, and so such
repeated play still converges to a Nash equilibrium. Second, it avoids having to compute or store
a complete best-response by employing sampling over chance outcomes to focus the best-response
and regret updates on a small subtree of the game on each iteration. The approach removes all
dependence on the size of the adversary’s strategy space in either computation time or memory.
Furthermore, it can be shown that the player’s current strategy is approaching almost-always a Nash
equilibrium strategy, and so there is no need to worry about strategy averaging. CFR-BR has the
following convergence guarantee.
Theorem 1 (Theorems 4 and 6 [6]). For any p ∈ (0, 1], after T ∗

iterations of chance-sampled

CFR-BR where T ∗
is chosen uniformly at random from {1, . . . , T}, with probability (1− p), player

1’s strategy on iteration T ∗
is part of an �-Nash equilibrium with

� =
�

1 +
2
√

p

�
2H∆|I1|

�
|A1|

p
√

T

where H∆ is the maximum difference in total reward over H steps, and |I1| is the number of

information sets for player 1.

The key property of this theorem is that the bound is decreasing with the number of iterations T and
there is no dependence on the size of the adversary’s strategy space. The random stopping time of
the algorithm is unusual and is needed for the high-probability guarantee. Johanson and colleagues
note, “In practice, our stopping time is dictated by convenience and availability of computational
resources, and so is expected to be sufficiently random.” [6]; we follow this practice.

The application of chance-sampled CFR-BR to k-of-N games is straightforward. The algorithm
is iterative. On each iteration, N MDPs are sampled from the uncertainty distribution. The best-
response for this subtree of the game involves simply evaluating the player’s current MDP policy on
the N MDPs and choosing the least-favorable k. Chance samples again, by choosing a single MDP
from the least-favorable k. The player’s regrets are then updated using the transitions and rewards
for the selected MDP, resulting in a new policy for the next iteration. See the supplemental material
for complete details.

Markovian Policies and Imperfect Recall. There still remains one important detail that we have
not discussed: the nature and size of player 1’s strategy space. In finite horizon MDPs with no pa-
rameter uncertainty, an optimal policy exists in the space of Markovian policies (ΠMR) — policies
that depend only on the number of timesteps remaining and the current state, but not on the history
of past states and actions. Under transition uncertainty, this is no longer true. The sequence of past
states and actions provide information about the uncertain transition parameters, which is informa-
tive for future transitions. For this case, optimal policies are not in general Markovian policies as
they will depend upon the entire history of states and actions (ΠHR). As a result, the number of in-
formation sets (i.e., decision points) in an optimal policy is |I1| = |S|((|S||A|)H −1)/(|S||A|−1),
and so polynomial in the number of states and actions for any fixed horizon, but exponential in the
horizon itself. While being exponential in the horizon may seem like a problem, there are many
interesting real-world problems with short time horizons. One such class of problems is Adap-

tive treatment strategies (ATS) for sequential medical treatment decisions [11, 15]. Many ATS
problems have time horizons of H ≤ 3, e.g., CATIE (H = 2) [16, 17] and STAR*D (H = 3) [14].

Under reward uncertainty (where rewards are not observed by the agent while acting), the sequence
of past states and actions is not informative, and so Markovian policies again suffice.1. In this case,
the number of information sets |I1| = |S|H , and so polynomial in both states and the horizon.
However, such an information-set structure for the player results in a game with imperfect recall,

1Markovian policies are also sufficient under a non-stationary uncertainty model, where the transition pa-
rameters are resampled independently on repeated visits to states (see the end of Section 2.2).
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where the player forgets information (past states and actions) it previously knew. Perfect recall is a
fundamental requirement for extensive-form game solvers. However, a recent result has presented
sufficient conditions under which the perfect recall assumption can be relaxed and CFR will still
minimize overall regret [7]. These conditions are exactly satisfied in the case of reward uncertainty:
the forgotten information (i) does not influence future rewards, (ii) does not influence future transi-
tion probabilities, (iii) is never known by the opponent, (iv) is not remembered later by the player.
Therefore, we can construct the extensive-form game with the player restricted to Markovian poli-
cies and still solve it with CFR-BR.

CFR-BR for k-of-N Games. We can now analyze the use of CFR-BR for computing approximate
µk-of-N -robust policies.

Theorem 2. For any � > 0 and p ∈ (0, 1], let,

T =
�

1 +
2
√

p

�2 16H2∆2|I1|2|A|
p2�2

.

With probability 1− p, when applying CFR-BR to the k-of-N game, its current strategy at iteration

T ∗
, chosen uniformly at random in the interval [1, T ], is an �-approximation to a µk-of-N -robust pol-

icy. The total time complexity is O
�
(H∆/�)2 |I1|3|A|3N log N

p3

�
, where |I1| ∈ O(|S|H) for arbitrary

reward uncertainty and |I1| ∈ O(|S|H+1|A|H) for arbitrary transition and reward uncertainty.

Proof. The proof follows almost directly from Theorem 1 and our connection between k-of-N
games and the µk-of-N measure. The choice of T by Theorem 1 guarantees the policy is an �/2-
Nash approximation, which in turn guarantees the policy is within � of optimal in the worst-case,
and so is an � approximation to a µk-of-N -robust policy. Each iteration requires N policy evaluations
each requiring O(|I1||A|) time; these are then sorted in O(N log N) time; and finally the regret
update in O(|I1||A|) time. Theorem 2 gives us our overall time bound.

5 Non-Increasing Measures

We have defined a family of percentile measures, µk-of-N , that represent optimization objectives that
differ in how much weight they place on different percentiles and can be solved efficiently. In this
section, we go beyond our family of measures and provide a very broad but still sufficient condition
for which a measure can be solved efficiently. We conjecture that a form of this condition is also
necessary, but leave that for future work.

Theorem 3. Let µ be an absolutely continuous measure with density function gµ, such that gµ is non-

increasing and piecewise Lipschitz continuous with m pieces and Lipschitz constant L. A µ-robust

policy can be approximated with high probability in time polynomial in {|A|, |S|,∆, L,m, 1
�
, 1

p
} for

(i) arbitrary reward uncertainty with time also polynomial in the horizon or (ii) arbitrary transition

and reward uncertainty with a fixed horizon.

The proof is in the supplemental material. Note that previously known measures with efficient
solutions (i.e., worst-case, expectation-maximization, and CVaR) satisfy the property that the weight
placed on a particular percentile is never smaller than a larger percentile. Our k-of-N measures also
have this property. Percentile measures (η > 0), though, do not: they place infinitely more weight
on the p percentile than any of the percentiles less than η. At the very least, we have captured the
condition that separates the currently known-to-be-easy measures from the currently known-to-be-
hard ones.

6 Experiments

We now explore our k-of-N approach in a simplified version of a diabetes management task. Our
results aim to demonstrate two things: first, that CFR-BR can find k-of-N policies for MDP prob-
lems with general uncertainty in rewards and transitions; and second, that optimizing for different
percentile measures creates policies that differ accordingly.
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Figure 3: Evaluation of k-of-N percentile measures on the diabetes management task.

Our simplified diabetes management MDP simulates the daily life of a diabetic patient distilled into
a small MDP with |S| = 9 states, |A| = 3 actions and a time horizon of H = 3. States are a com-
bination of blood glucose level and meal size. Three times daily, corresponding to meal times, the
patient injects themselves with a dose of insulin to bring down the rise in blood glucose that comes
with consuming carbohydrates at each meal. A good treatment policy keeps blood glucose in the
moderate range all day. The uncertain reward function is sampled from a independent multivariate
Normal distribution and transition probabilities are sampled from Dirichlet distributions, but both
could have been drawn from other distributions. The Dirichlet parameter vector is the product of a
fixed set of per-state parameters with an MDP-wide multiplicative factor q ∼ Unif[1, 5] to simulate
variation in patient sensitivity to insulin, and results in transition uncertainty between states that is
not independent. For full details on the problem set up, see the supplemental material.

We used CFR-BR to find optimal policies for the 1-of-1, 1-of-5, and 10-of-50 percentile measures.
The densities for these measures are shown in Figure 3(left). We also computed the policy that
optimizes V π

E(M), that is the optimal policy for the mean MDP. We evaluated the performance of
all of these policies empirically on over 10,000 sampled MDPs and show the empirical quantile
function (inverse CFR) in Figure 3(center). To highlight the differences between these policies,
we show the performance of the policies relative to the 1-of-1-robust policy over the full range of
percentiles in Figure 3(right). From the difference plot, we see that the optimal policy for the mean
MDP, although optimal for the mean MDP’s specific parameters, does not perform well over the
uncertainty distribution (as noted in [10]). All of the k-of-N policies are more robust, performing
better on the lower percentiles, while 1-of-1 is almost a uniform improvement. We also see that
1-of-5 and 10-of-50 policies perform quite differently despite having the same k/N ratio. Because
the 10-of-50 policy has a sharper drop-off in density at the 20th percentile compared to the 1-of-5
policy, we see that 10-of-50 policies give up more performance in higher percentile MDPs for a bit
more performance in the lowest 20 percentile MDPs compared to the 1-of-5 policy.

7 Conclusion

This is the first work we are aware of to do robust policy optimization with general parameter un-
certainty. We describe a broad family of robustness objectives that can be efficiently optimized,
and present an algorithm based on techniques for Nash approximation in imperfect information
extensive-form games. We believe this approach will be useful for adaptive treatment strategy op-
timization, where small sample sizes cause real parameter uncertainty and the short time horizons
make even transition uncertainty tractable. The next step in this direction is to extend these robust-
ness techniques to large, or continuous state-action spaces. Abstraction has proven useful for finding
good policies in other large extensive-form-games [2, 18], and so will likely prove effective here.
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