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Abstract

One efficient method for computing Nash equilib-
ria in large, zero-sum extensive games is coun-
terfactual regret minimization (CFR). In the do-
main of poker, CFR has proven effective, partic-
ularly when using a domain-specific augmentation
involving chance outcome sampling. In this paper
we introduce MCCFR, a Monte Carlo version of
the algorithm capable of applying equivalent up-
dates (in expectation) on sampled histories which
has bounded overall regret with high probability.
We show empirically that, although MCCFR re-
quires more iterations, its lower cost per iteration
results in overall faster convergence, particularly
as the game size increases.

1 Introduction
The past few years have seen dramatic algorithmic improve-
ments in finding approximate Nash equilibria, in two-player,
zero-sum extensive games [ZJBP08; GHPS07]. Counterfac-
tual regret minimization (CFR) is one recent technique that
exploits the fact that the time-averaged strategy profile of re-
gret minimizing algorithms converges to a Nash equilibrium;
it has been been successfully applied to Poker games which
have up to 1012 game states. The key insight is the fact that
minimizing per-information set counterfactual regret results
in minimizing overall regret.

The vanilla form presented by Zinkevich and colleagues
requires the entire game tree to be traversed on each iteration.
Fortunately, it is possible to avoid a full game-tree traversal.
In their accompanying technical report, Zinkevich and col-
leagues discuss a poker-specific CFR variant that samples
chance outcomes on each iteration [ZBJP07]. They claim
that the per-iteration cost reduction far exceeds the additional
number of iterations required, and all of their empirical stud-
ies focus on this variant. However, their chance-sampling
variant and its derived bound are limited to poker-like games.

An additional disadvantage of CFR is that it requires the
opponent’s policy to be known, which makes it unsuitable
for general regret minimization in an extensive game. Gen-
eral regret minimization in extensive games is possible using
online convex programming techniques, such as Lagrangian
Hedging [Gor07], but these techniques can require costly op-
timization routines at every time step.

In this paper, we present a general framework for sam-
pling in counterfactual regret minimization. We define a
family of CFR minimizing algorithms that differ in how they
sample the game tree on each iteration. Zinkevich’s vanilla
CFR and a generalization of their chance-sampled CFR are
both members of this family. We then introduce Monte Carlo
CFR (MCCFR) as the most extreme form of sampling in
this family: only a single playing of the game is sampled
on each iteration. We show that under a reasonable sampling
strategy, any member of this family minimizes overall regret,
and so can be used for equilibrium computation. In addition,
the MCCFR algorithm does not need knowledge of opponent
probabilities beyond samples of play from the strategy. This
makes MCCFR suitable for general regret minimization in
online extensive game settings.

2 Background
An extensive game is a general model of sequential decision-
making with imperfect information. As with perfect infor-
mation games (such as Chess or Checkers), extensive games
consist primarily of a game tree: each non-terminal node has
an associated player (possibly chance) that makes the deci-
sion at that node, and each terminal node has associated utili-
ties for the players. Additionally, game states are partitioned
into information sets, Ii ∈ Ii, where a player cannot distin-
guish between two states in the same information set. The
players, therefore, must choose actions with the same distri-
bution at each state in the same information set.

In this paper, we will only concern ourselves with two-
player, zero-sum extensive games. Furthermore, we will as-
sume perfect recall, a restriction on the information parti-
tions such that a player can always distinguish between game
states where they previously took a different action or were
previously in a different information set.

A history, h ∈ H , is a sequence of actions; a termi-
nal history or playout z ∈ Z is a history that leads to a leaf
in the game tree. Note that the perfect recall assumption im-
plies that every history can be expressed as the empty history
or a concatenation of a history and an action choice. A strat-
egy for player i, σi, is a function that assigns a probability
distribution over all actions at each information set belong-
ing to i and by convention the opponent’s strategy is denoted
σ−i. A strategy profile σ is a collection of strategies for
each player. A strategy profile is called a Nash equilibrium
if each player has no incentive to deviate unilaterally. Equiv-



alently, each strategy is not exploitable: any best response
strategy to σ−i will result in no gain in utility when played
against σ−i. An ε-equilibrium is one where, for each σi the
best response to σ−i may result in a gain of at most ε.

2.1 Counterfactual Regret Minimization
Regret is an online learning concept that has triggered a fam-
ily of powerful learning algorithms. To define this concept,
first consider repeatedly playing an extensive game. Let σti
be the strategy used by player i on round t. There is a well-
known connection between regret, average strategies σ̄, and
the Nash equilibrium solution concept.

Theorem 1 In a zero-sum game at time T , if both player’s
average overall regret RTi < ε then σ̄T is a 2ε equilibrium.

An algorithm for selecting σti for player i is regret minimiz-
ing if player i’s average overall regret (regardless of the se-
quence σt−i) goes to zero as t goes to infinity. As a result,
regret minimizing algorithms in self-play can be used as a
technique for computing an approximate Nash equilibrium.
Moreover, an algorithm’s bounds on the average overall re-
gret bounds the rate of convergence of the approximation.

Zinkevich and colleagues used the above approach in
their counterfactual regret algorithm (CFR) [ZJBP08]. The
basic idea of CFR is that overall regret can be bounded by
the sum of positive per-information-set immediate counter-
factual regret. Let I be an information set of player i. De-
fine σ(I→a) to be a strategy profile identical to σ except that
player i always chooses action a from information set I . De-
fine counterfactual value vi(σ, I) as,

vi(σ, I) =
∑

h∈I,z∈Z

πσ−i(h)πσ(h, z)ui(z). (1)

where πσ−i(h) and πσ(h, z) are product of probabilities of the
opponent’s strategy over h and of both player’s probabilities
from h to z, and ui(z) is the payoff to i for playout z. The
immediate counterfactual regret is then,

RTi,imm(I) = max
a∈A(I)

RTi,imm(I, a) (2)

RTi,imm(I, a) =
1
T

T∑
t=1

(
vi(σt(I→a), I)− vi(σt, I)

)
(3)

Let x+ = max(x, 0). The key insight of CFR is the follow-
ing result.

Theorem 2 [ZJBP08, Theorem 3]
RTi ≤

∑
I∈Ii

RT,+i,imm(I)

Using Blackwell’s algorithm for approachability [Bla56] the
positive per-information set immediate counterfactual regrets
can be driven to zero by simply normalizing the positive parts
of their accumulated values, thus driving average overall re-
gret to zero.

Theorem 3 [ZJBP08, Theorem 4] Using Blackwell’s algo-
rithm to minimize regret with respect to counterfactual value
at each information set leads to

RTi ≤ ∆u,i|Ii|
√
|Ai|/

√
T (4)

where |Ai| is the maximum number of actions i can take
at any of their information sets and ∆u,i = maxzui(z) −
minzui(z) is the payoff range for player i.

Theorem 3 can be directly turned into an algorithm for
computing an approximate Nash equilibrium, which we call
vanilla CFR. The idea is to traverse the game tree computing
counterfactual values using Equation 1. Given a strategy,
these values define regret terms for each player for each of
their information sets using Equation 3. These regret values
accumulate and determine the strategies at the next iteration
using Blackwell’s formula. Theorem 3 bounds both players’
average overall regret (bound decreasing with the number of
iterations), which from Theorem 1 means that the average
strategy profile σ̄t converges to a Nash Equilibrium.

3 Sample-Based CFR
The key to our approach is to avoid traversing the entire game
tree on each iteration while still having the immediate coun-
terfactual regrets be unchanged in expectation. In general,
we want to restrict the terminal histories we consider on each
iteration. Let Q = {Q1, . . . , Qr} be a partition of Z. On
each iteration we will sample one block of this partition and
only consider the terminal histories in that block. Let qj > 0
be the probability of considering block Qj for the current
iteration (where

∑r
j=1 qj = 1).

Let ZI be the subset of all terminal histories where a pre-
fix of the history is in the set I; for z ∈ ZI let z[I] be that
prefix. Since we are restricting ourselves to perfect recall
games z[I] is unique. The sampled counterfactual value
when updating block j is:

ṽi(σ, I|j) =
1
qj

∑
z∈Qj∩ZI

ui(z)πσ−i(z[I])πσ(z[I], z) (5)

Selecting a partition Q along with the sampling probabili-
ties defines a complete sample-based CFR algorithm. Rather
than doing full game tree traversals the algorithm samples
one of the blocks of the partition and examines terminal his-
tories in that block only. Note that we get vanilla CFR when
Q = {Z} and chance-sampled CFR when Q splits sets into
terminal histories by chance node outcomes.

Lemma 4 Sampled counterfactual value equals counterfac-
tual value in expectation. Formally,

Ej∼qj [ṽi(σ, I|j)] = vi(σ, I) (6)

Proof: Ej∼qj [ṽi(σ, I|j)]

=
∑
j

qj ṽi(σ, I|j) (7)

=
∑
j

∑
z∈Qj∩ZI

ui(z)πσ−i(z[I]), πσ(z[I], z) (8)

=
∑
z∈ZI

ui(z)πσ−i(z[I]), πσ(z[I], z) (9)

=
∑
z∈Z

∑
h∈I

ui(z)πσ−i(h)πσ(h, z) (10)

=vi(σ, I) (11)



Equation 9 follows from the fact that Q is a partition.
Equation 10 follows from the fact that πσ(h, z) is only non-
zero when h = z[I], so only the desired term in the sum
will be non-zero. Equation 11 follows from the definition of
counterfactual value.

Theorem 5 For any p ∈ (0, 1], if ∀j ∈ {1, . . . , r} qj ≥ δ >
0 at every timestep, then,

RTi ≤
(

1 + 2δ + 2
√
p

δ
√
p

)
∆u,i |Ii|

√
|Ai|/

√
T

holds with probability (1 − p). Hence, the average strat-
egy profile of two sample-based CFR algorithms in self-play
converges to a Nash equilibrium.

Proof: (Sketch) 1 We can use Chebyshev’s inequality to pro-
vide a probabilistic bound on the absolute difference between
the sampled counterfactual regret and the true counterfactual
regret on a per-information set basis. The bound on this dif-
ference contains one term bounding the mean and one term
bounding the standard deviation (which depends on δ). Then
we show a bound on the expected value of the squared dif-
ference between the true and sampled overall counterfactual
regret. Using this bound and the triangle inequality we can
then bound the sum of the positive counterfactual regret with
high probability. Bounding the sum of the positive counter-
factual regret in turn bounds the overall regret.

3.1 Monte Carlo CFR
We now examine the opposite extreme of vanilla CFR, which
we call Monte Carlo CFR. In Monte Carlo CFR we chooseQ
so that each block contains a single terminal history, i.e.,∀j ∈
{1, . . . , |Z|}, |Qj | = 1. On each iteration we sample one ter-
minal history, z, and only update each information set along
that history. The sampling probabilities, qj must specify a
distribution over terminal histories. We will specify this dis-
tribution using a sampling profile, σ′, so that qz = πσ

′
(z).

Note that any choice of sampling policy will induce a partic-
ular distribution over the block probabilities qz . As long as
σ′i(I, a) > ε, then there exists a δ > 0 such that qz > δ, thus
satisfying the conditions of Theorem 5.

This choice of partition results in a simple algorithm. On
each iteration, a complete history is sampled using σ′ to se-
lect actions at each information set, and the product of proba-
bilities of sampling this terminal history is saved. The single
history is then traversed forward (to compute each player’s
probability of playing to reach each prefix of the history,
πσi (h)) and backward (to compute each player’s probabil-
ity of playing the remaining actions of the history, πσi (h, z)).
During the backward traversal, the sampled counterfactual
value for each information set on the path is computed, and
the accumulated regret is updated. Finally, the average strat-
egy is updated, and each player’s strategy for the next time
step σti is computed from the regrets using Blackwell’s algo-
rithm. Since only the regret and policy on the sampled path
change, these updates also can be completed on the traversal
of the sampled history.

1The full proof will be available either as a technical report or
part of a future publication.

The choice of the sampling profile is left unspecified in
MCCFR. The regret bound suggests the sampling profile should
be chosen to make δ as large as possible, implying that uni-
form random action selection may be the best choice. In-
tuitively, guiding the sampling towards the outcomes most
likely to occur given the current profile also has merit. For
this paper we balance these two ideas using an ε-greedy ex-
ploration, where at each information set we follow the cur-
rent strategy profile σt with probability (1 − ε) and choose
a uniform random action with probability ε. We explore the
selection of ε in our empirical study.

There are two advantages to MCCFR. First, the cost per
iteration is far smaller than vanilla CFR. Vanilla CFR re-
quiresO(|Z|) time per iteration while MCCFR requiresO(`)
where ` is the length of the longest terminal history. While
MCCFR requires more iterations, in the next section we will
show empirically that MCCFR’s lower cost per iteration of-
ten makes up for the required increase in iterations, resulting
in faster convergence.

A second advantage is that MCCFR admits a formulation
for online regret minimization, where the opponent’s strat-
egy is not controlled nor known. If the terminal histories are
sampled such that σ′−i = σt−i then we can drop all references
to the opponent’s strategy σ−i because all the terms cancel
with the same terms in σ′−i. In order to minimize regret we
would need to choose our own actions so that σ′i ≈ σti , but
with some exploration to guarantee qj ≥ δ > 0. One ap-
proach to exploration is to sample a random action with some
fixed probability, where this probability is chosen to balance
the regret caused by these random actions with the regret
from δ being small in the bound. We can then maintain a
bound on the average overall regret as long as the number of
playings T is known in advance.

4 Experimental Results
Unlike the original CFR work which only was evaluated on
abstract poker games, we will examine a collection of games
with very different properties. We evaluate the performance
of MCCFR on three different games: One-Card Poker [Gor05],
a slightly modified version of Goofspiel [Ros71] where the
point card stack is fixed, and Latent Tic-Tac-Toe, a version
of the classic game where moves are only revealed after the
opponent chooses their move. Game sizes are (|H|, |I|) =
(9N(N − 1), 4N) for One-Card Poker where N is the deck
size, (98, 3.3) · 106 for modified Goofspiel, and (70, 8) · 106

for Latent Tic-Tac-Toe.
While all of these games have imperfect information,

they represent different types. For example, in One-Card
Poker a player’s uncertainty consists entirely in the unknown
chance outcome. On the other hand, Goofspiel involves no
chance. The player’s uncertainty is in the opponent’s current
choice of bid as well as their past bids, of which we only
have limited information. In both of these games the ratio
of |H| to |I| is large (particularly as the game gets larger),
meaning that the players have a high degree of uncertainty.
Latent Tic-Tac-Toe, like Goofspiel, has no chance nodes, but
the players almost have full information about the state, lack-
ing only their opponent’s previous move, a small but critical
piece of information. These three games offer diverse set-
tings for equilibria computation.



Our experiments consist of running MCCFR and CFR on
the same game and measuring their approximation quality as
a function of wall-clock time. Since the two algorithms take
radically different amounts of time per iteration, this com-
parison directly answers if MCCFR’s lower cost per iteration
outweighs the required increase in the number of iterations.
Furthermore, for any fixed game (and degree of confidence
that the bound holds), both algorithms’ average overall regret
is falling at the same rate,O(1/

√
T ), meaning that only their

short-term rather than asymptotic performance will differ.
Through experimentation we found that contrary to the

theoretical bound, an exploration rate ε near 1 does not pro-
vide the best rate of convergence. An intermediate value
of epsilon performs best for Goofspiel. Similar results with
similar best choices for epsilon were found in the other do-
mains. The effects of high and low values for epsilon on
Goofspiel are displayed in Figure 1; we cannot give a com-
prehensive analysis of the choice of ε here, but the trend is
similar in other games. We have also noticed similar trends
on the advantage of sampling in MCCFR as |H|/|I| grows
shown for One-Card Poker. Most importantly, MCCFR for
a reasonable choice of exploration is finding better approxi-
mate equilibria faster than vanilla CFR.

5 Conclusion

In this paper we defined a family of sample-based CFR al-
gorithms for computing approximate equilibria in extensive
games, which subsumes all previous CFR variants. We showed
that with a reasonable sampling policy, we can bound the av-
erage overall regret of any member of this family. We also
introduced a new member of this family, Monte Carlo CFR,
which samples only a single history for each iteration. We
showed that the vast reduction in cost per-iteration can out-
weigh the increase in the required number of iterations and
lead to faster convergence.
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