
Apprenticeship Learning Using Linear Programming

Umar Syed USYED@CS.PRINCETON.EDU

Princeton University, Department of Computer Science, 35 Olden Street, Princeton, NJ 08540

Michael Bowling BOWLING@CS.UALBERTA .CA

University of Alberta, Department of Computing Science, Edmonton, Alberta, T6G 2E8 Canada

Robert E. Schapire SCHAPIRE@CS.PRINCETON.EDU

Princeton University, Department of Computer Science, 35 Olden Street, Princeton, NJ 08540

Abstract
In apprenticeship learning, the goal is to learn
a policy in a Markov decision process that is at
least as good as a policy demonstrated by an ex-
pert. The difficulty arises in that the MDP’s true
reward function is assumed to be unknown. We
show how to frame apprenticeship learning as a
linear programming problem, and show that us-
ing an off-the-shelf LP solver to solve this prob-
lem results in a substantial improvement in run-
ning time over existing methods — up to two or-
ders of magnitude faster in our experiments. Ad-
ditionally, our approach produces stationary poli-
cies, while all existing methods for apprentice-
ship learning output policies that are “mixed”,
i.e. randomized combinations of stationary poli-
cies. The technique used is general enough to
convert any mixed policy to a stationary policy.

1. Introduction

In apprenticeship learning, as with policy learning for
Markov decision processes (MDPs), the objective is to find
a good policy for an autonomous agent, called the “appren-
tice”, in a stochastic environment. While the setup of an ap-
prenticeship learning problem is almost identical to that of
policy learning in an MDP, there are a few key differences.
In apprenticeship learning the true reward function is un-
known to the apprentice, but is assumed to be a weighted
combination of several known functions. The apprentice
is also assumed to have access to demonstrations from an-
other agent, called the “expert”, executing a policy in the
same environment. The goal of the apprentice is to find a
policy that is at least as good as the expert’s policy with
respect to the true reward function. This is distinct from
policy learning, where the goal is to find an optimal policy
with respect to the true reward function (which cannot be

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

done in this case because it is unknown).

The apprenticeship learning framework, introduced by
Abbeel & Ng (2004), is motivated by a couple of observa-
tions about real applications. The first is that reward func-
tions are often difficult to describe exactly, and yet at the
same time it is usually easy to specify what the rewards
must depend on. A typical example, investigated by Abbeel
& Ng (2004), is driving a car. When a person drives a
car, it is plausible that her behavior can be viewed as maxi-
mizing some reward function, and that this reward function
depends on just a few key properties of each environment
state: the speed of the car, the position of other cars, the
terrain, etc. The second observation is that demonstrations
of good policies by experts are often plentiful. This is cer-
tainly true in the car driving example, as it is in many other
applications.

Abbeel & Ng (2004) assumed that the true reward func-
tion could be written as a linear combination ofk known
functions, and described an iterative algorithm that, given
a small set of demonstrations of the expert policy, output
an apprentice policy withinO(k log k) iterations that was
nearly as good as the expert’s policy. Syed & Schapire
(2008) gave an algorithm that achieved the same guarantee
in O(log k) iterations. They also showed that by assum-
ing that the linear combination is also a convex one, their
algorithm can sometimes find an apprentice policy that is
substantially better than the expert’s policy. Essentially, the
assumption of positive weights implies that the apprentice
has some prior knowledge about which policies are better
than others, and their algorithm leverages this knowledge.

Existing algorithms for apprenticeship learning share a
couple of properties. One is that they each use an algorithm
for finding an MDP’s optimal policy (e.g. value iteration or
policy iteration) as a subroutine. Another is that they out-
put apprentice policies that are “mixtures”, i.e. randomized
combinations of stationary policies. A stationary policy is
a function of just the current environment state.

Our first contribution in this paper is to show that, if
one uses the linear programming approach for finding an

Apprenticeship Learning Using Linear Programming

MDP’s optimal policy (Puterman, 1994) as a subroutine,
then one can modify Syed & Schapire’s (2008) algorithm
so that it outputs a stationary policy instead of a mixed pol-
icy. Stationary policies are desirable for a number of rea-
sons, e.g. they are simpler to describe, and are more natural
and intuitive in terms of the behavior that they prescribe.
Moreover, this technique can be straightforwardly applied
to any mixed policy, such as the ones output by Abbeel &
Ng’s (2004) algorithms, to convert it to a stationary policy
that earns the same expected cumulative reward.

Our technique leads naturally to the second contribution of
this paper, which is the formulation of the apprenticeship
learning problem as a linear program. We prove that the
solution to this LP corresponds to an apprentice policy that
has the same performance guarantees as those produced by
existing algorithms, and that the efficiency of modern LP
solvers results in a very substantial improvement in running
time compared to Syed & Schapire’s (2008) algorithm —
up to two orders of magnitude in our experiments.

In work closely related to apprenticeship learning, Ratliff,
Bagnell & Zinkevich (2006) described an algorithm for
learning the true reward function by assuming that the ex-
pert’s policy is not very different from the optimal policy.
They took this approach because they wanted to learn poli-
cies that were similar to the expert’s policy. In apprentice-
ship learning, by contrast, the learned apprentice policy can
be very different from the expert’s policy.

2. Preliminaries

Formally, an apprenticeship learning problem(
S,A, θ, α, γ,R1 . . . Rk,D

)
closely resembles a Markov

decision process. At each time stept, an autonomous agent
occupies a statest from a finite setS, and can take an
actionat from a finite setA. When the agent is in states,
taking actiona leads to states′ with transition probability
θsas′ , Pr(st+1 = s′ | st = s, at = a). Initial state
probabilities are given byαs , Pr(s0 = s). The agent
decides which actions to take based on its policyπ, where
πsa , Pr(at = a | st = s). The value of a policyπ is
given by

V (π) , E

[
∞∑

t=0

γtRstat

∣∣∣ α, π, θ

]

whereRsa ∈ [−1, 1] is the reward associated with the
state-action pair(s, a), andγ ∈ [0, 1) is a discount fac-
tor. An optimal policy π∗ is one that satisfiesπ∗ =
arg maxπ V (π). We say a policyπ is ε-optimalif V (π∗)−
V (π) ≤ ε.

A policy π hasoccupancy measurexπ if

xπ
sa = E

[
∞∑

t=0

γt
1(st=s∧at=a)

∣∣∣ α, π, θ

]
(1)

for all s, a. In other words,xπ
sa is the expected (discounted)

number of visits to state-action pair(s, a) when following
policy π.

Unlike an MDP, in apprenticeship learning the true reward
function R is unknown. Instead, we are givenbasis re-
ward functions1 R1 . . . Rk, whereRi

sa is the reward of
state-action pair(s, a) with respect to theith basis reward
function. We assume that the true reward functionR is an
unknown convex combinationw∗ of the basis reward func-
tions, i.e., for alls, a

Rsa =
∑

i

w∗
i Ri

sa

where the unknown weights satisfyw∗
i ≥ 0 and

∑
i w∗

i =
1. Each basis reward functionRi has a correspondingbasis
value functionV i(π) given by

V i(π) , E

[
∞∑

t=0

γtRi
stat

∣∣∣ α, π, θ

]
.

Given the assumption of positive weights, the value ofk
can be viewed as a measure of how much the apprentice
knows about the true reward function. Ifk = 1, the (only)
basis value of a policy is equal to its true value, and the sit-
uation reduces to a traditional MDP. At the other extreme,
if the ith basis reward function is just an indicator function
for the ith state-action pair, thenk = |SA|, and the ba-
sis values of a policy are equal to its occupancy measure.
In this situation, the apprentice knows essentially nothing
about which policies are better than others.

The positive weight assumption also implies that if for
state-action pairs(s, a) and(s′, a′) we haveRi

sa ≥ Ri
s′a′

for all i, thenRsa ≥ Rs′a′ . So the basis rewards them-
selves can encode prior knowledge about the true rewards.
If we wish not to assert any such prior knowledge, we can
simply add the negative of each basis reward function to the
original set, thereby at most doubling the number of basis
reward functions.

We also assume that we are given a data setD of M
i.i.d. sample trajectories from anexpert policyπE exe-
cuting in the environment, where themth trajectory is a
sequence of state-action pairs visited by the expert, i.e.,
(sm

0 , am
0 , sm

1 , am
1 , . . . , sm

H , am
H). For simplicity, we assume

that all sample trajectories are truncated to the same length
H.

The goal of apprenticeship learning (Abbeel & Ng, 2004)
is to find anapprentice policyπA such that

V (πA) ≥ V (πE) (2)
even though the true value functionV (π) is unknown
(since the true reward function is unknown).

2.1. A More Refined Goal

By our assumptions about the reward functions (and the
linearity of expectation), we have

V (π) =
∑

i

w∗
i V i(π).

1In (Abbeel & Ng, 2004) and (Syed & Schapire, 2008) these
functions were calledfeatures, but we believe that the present ter-
minology is better suited for conveying these functions’ role.

Apprenticeship Learning Using Linear Programming

Consequently, for any policyπ, the smallest possible differ-
ence betweenV (π) andV (πE) is mini V i(π) − V i(πE),
because in the worst-case,w∗

i = 1 for the minimizingi.
Based on this observation, Syed & Schapire (2008) pro-
posed finding an apprentice policyπA that solves the max-
imin objective

v∗ = max
π

min
i

V i(π) − V i(πE). (3)

Note that ifπA is a solution to (3), thenV (πA) ≥ V (πE)+
v∗ (becausev∗ = mini V i(πA) − V i(πE) ≤ V (πA) −
V (πE)). We also havev∗ ≥ 0 (becauseπ = πE is avail-
able in (3)). ThereforeπA satisfies the goal of apprentice-
ship learning given in (2).

Syed & Schapire (2008) showed that in some cases where
V (πE) is small,v∗ is large, and so addingv∗ to the lower
bound in (2) serves as a kind of insurance against bad ex-
perts. Our algorithms also produce apprentice policies that
achieve this more refined goal.

2.2. Estimating the Expert Policy’s Values

Our algorithms require knowledge of the basis values of
the expert’s policy. From the expert’s sample trajectories
D, we can form an estimatêV i,E of V i(πE) as follows:

V i(πE) ≈
1

M

M∑

m=1

H∑

t=0

γtRi
sm

t am
t

, V̂ i,E .

Clearly, as the number of sample trajectoriesM and the
truncation lengthH increase, the error of this estimate will
decrease. Thus the issue of accurately estimatingV i(πE)
is related tosamplecomplexity, while in this work we are
primarily concerned withcomputationalcomplexity. To
make our presentation cleaner, we will assume thatD is
large enough to yield an estimatêV i,E of V i(πE) such that
|V̂ i,E − V i(πE)| ≤ ε, for all i. We call such an estimate
ε-good. The sample complexity of apprenticeship learning
is treated in (Syed & Schapire, 2008).

2.3. Policy Types

Unless otherwise noted, a policyπ is presumed to be sta-
tionary, i.e.,πsa is the probability of taking actiona in state
s. One exception is amixed policy. A mixed policyπ̃ is de-
fined by a set of ordered pairs{(πj , λj)}N

j=1. The policyπ̃
is followed by choosing at time0 one of the stationary poli-
ciesπj , each with probabilityλj , and then following that
policy exclusively thereafter. The value of a mixed policy
is the expected value of the stationary policies it comprises,
i.e.,

V (π̃) = E
[
V (πj)

]
=

N∑

j=1

λjV (πj), and

V i(π̃) = E
[
V i(πj)

]
=

N∑

j=1

λjV i(πj).

3. Multiplicative Weights Algorithm for
Apprenticeship Learning

Syed & Schapire (2008) observed that solving the objec-
tive in (3) is equivalent to finding an optimal strategy in
a certain two-player zero-sum game. Because the size of
this game’s matrix is exponential in the number of states
|S|, they adapted a multiplicative weights method for solv-
ing extremely large games. The resulting MWAL (Mul-
tiplicative Weights Apprenticeship Learning) algorithm is
described in Algorithm 1 below.

Algorithm 1 MWAL algorithm

1: Given: S,A, θ, α, γ,R1 . . . Rk,D.
2: Using the expert’s sample trajectoriesD, compute an

ε-good estimatêV i,E of V i(πE), for all i.

3: Let β =

(
1 +

√
2 log k

T

)−1

∈ (0, 1].

4: Initialize w1
i = 1

k
, for i = 1 . . . k.

5: for t = 1 . . . T do
6: Computeε-optimal policy πt for reward function

Rsa =
∑

i wt
iR

i
sa.

7: Computeε-good estimatêV i,t of V i(πt), for i =
1 . . . k.

8: Let wt+1
i = wt

iβ
bV i,t−bV i,E

, for i = 1 . . . k.
9: Renormalizew.

10: end for
11: Return: Let apprentice policyπA be the mixed policy

defined by{(πt, 1
T

)}T
t=1.

In each iteration of the MWAL algorithm, an optimal pol-
icy πt is computed with respect to the current weight vec-
tor wt. Then the weights are updated so thatwi is in-
creased/decreased ifπt is a bad/good policy (relative to
πE) with respect to theith basis reward function.

The next theorem bounds the number of iterationsT re-
quired for the MWAL algorithm to produce a good appren-
tice policy. The computational complexity of each iteration
is discussed in Section 3.1.

Theorem 1 (Syed & Schapire (2008)).Let πA be the
mixed policy returned by the MWAL algorithm. If

T ≥ O

(
log k

(ε(1 − γ))2

)

then
V (πA) ≥ V (πE) + v∗ − O(ε)

wherev∗ = maxπ mini V i(π) − V i(πE).

3.1. MWAL-VI and MWAL-PI

The specification of the MWAL algorithm is somewhat
open-ended. Step 6 requires finding anε-optimal policy in
an MDP, and Step 7 requires computingε-good estimates of
the basis values of that policy. There are several procedures
available for accomplishing each of these steps, with each
option leading to a different variant of the basic algorithm.

Apprenticeship Learning Using Linear Programming

We briefly describe some natural options, and remark on
their implications for the overall computational complexity
of the MWAL algorithm.

In Step 6, we can find the optimal policy using value it-
eration (Puterman, 1994), which has a worst-case running
time of O

(
logγ (1/ε(1 − γ)) |S|2|A|

)
. We can also use

value iteration to compute thek basis values in Step 7 (this
is sometimes called “policy evaluation”), which implies a
worst-case running time ofO

(
k logγ (1/ε(1 − γ)) |S|2

)
.

We call this variant the MWAL-VI algorithm.

Another choice for Step 6 is to find the optimal policy us-
ing policy iteration (Puterman, 1994). No polynomial time
bound for policy iteration is known; however, in practice
it has often been observed to be faster than value iteration.
We call this variant the MWAL-PI algorithm. In Section 8,
we present experiments comparing these algorithms to the
ones described later in the paper.

4. Dual Methods for MDPs

As we previously observed, the MWAL algorithm must re-
peatedly find the optimal policy in an MDP, and this task is
usually accomplished via classic iterative techniques such
as value iteration and policy iteration. However, there are
other techniques available for solving MDPs, and in this
work we show that they can lead to better algorithms for
apprenticeship learning. Consider the following linear pro-
gram:

max
x

∑

s,a

Rsaxsa (4)

such that
∑

a

xsa = αs + γ
∑

s′,a

xs′aθs′as (5)

xsa ≥ 0 (6)

It is well-known (Puterman, 1994) that ifx∗ is a solution to

(4) - (6), thenπ∗
sa =

x∗
sa∑

a x∗
sa

is an optimal policy, andx∗

is the occupancy measure ofπ∗. Often (5) - (6) are called
theBellman flow constraints.

The linear program in (4) - (6) is actually the dual of the
linear program that is typically used to find an optimal pol-
icy in an MDP. Accordingly, solving (4) - (6) is often called
theDual LPmethod of solving MDPs .

Having found an optimal policy by the Dual LP method,
computing its values is straightforward. The next lemma
follows immediately from the definitions of the occupancy
measure and value of a policy.
Lemma 1. If policy π has occupancy measurexπ, then
V (π) =

∑
s,a Rsaxπ

sa andV i(π) =
∑

s,a Ri
saxπ

sa.

5. Main Theoretical Tools

Recall that the MWAL algorithm produces mixed policies.
In Sections 6 and 7, we will present algorithms that achieve

the same theoretical guarantees as the MWAL algorithm,
but produce stationary policies (and are also faster). To
prove the correctness of these algorithms, we need to show
that every mixed policy has an equivalent stationary policy.

In Section 4, we said that the Dual LP method of solving an
MDP outputs the occupancy measure of an optimal policy.
In fact, all x that satisfy the Bellman flow constraints (5)
- (6) are the occupancy measure of some stationary policy,
as the next theorem shows.
Theorem 2. Let x satisfy the Bellman flow constraints(5)

- (6), and letπsa =
xsa∑
a xsa

be a stationary policy. Then

x is the occupancy measure forπ. Conversely, ifπ is
a stationary policy such thatx is its occupancy measure,

thenπsa =
xsa∑
a xsa

andx satisfies the Bellman flow con-

straints.

An equivalent result as Theorem 2 is given in (Feinberg &
Schwartz, 2002), p. 178. For completeness, a simple and
direct proof is contained in the Appendix.

The Bellman flow constraints make it very easy to show
that, for every mixed policy, there is a stationary policy that
has the same value.
Theorem 3. Let π̃ be a mixed policy defined by
{(πj , λj)}N

j=1, and letxj be the occupancy measure ofπj ,
for all j. Let π̂ be a stationary policy where

π̂sa =

∑
j λjxj

sa∑
a

∑
j λjxj

sa

.

ThenV (π̂) = V (π̃).

Proof. By Theorem 2,xj satisfies the Bellman flow con-
straints (5) - (6) for allj. Let x̂sa =

∑
j λjxj

sa. By lin-
earity,x̂ also satisfies the Bellman flow constraints. Hence,
by Theorem 2, the stationary policŷπ defined byπ̂sa =

x̂sa∑
a x̂sa

has occupancy measurex̂. Therefore,

V (π̂) =
∑

s,a

Rsax̂sa =
∑

j

λj
∑

s,a

Rsaxj
sa =

∑

j

λjV (πj)

= V (π̃).

where these equalities use, in order: Lemma 1; the defini-
tion of x̂; Lemma 1; the definition of a mixed policy.

6. MWAL-Dual Algorithm

In this section, we will make a minor modification to the
MWAL algorithm so that it outputs a stationary policy in-
stead of a mixed policy.

Recall that the MWAL algorithm requires, in Steps 6 and
7, a way to compute an optimal policy and its basis values,
but that no particular methods are prescribed. Our proposal
is to use the Dual LP method in Step 6 to find the occu-
pancy measurext of a policy πt that is ε-optimal for re-
ward functionRsa =

∑
i wt

iR
i
sa. Then in Step 7 we let

Apprenticeship Learning Using Linear Programming

V̂ i,t =
∑

s,a Ri
saxt

sa, for i = 1 . . . k. Note that Lemma 1

impliesV̂ i,t = V i(πt).

Now we can apply Theorem 3 to combine all the policies
computed during the MWAL algorithm into a single sta-
tionary apprentice policy. This amounts to changing Step
11 to the following:

Return: Let apprentice policyπA be the stationary
policy defined by

πA
sa =

1
T

∑
t xt

sa∑
a

1
T

∑
t xt

sa

.

We call this modified algorithm the MWAL-Dual algo-
rithm, after the method it uses to compute optimal policies.

It is straightforward to show that these changes to the
MWAL algorithm do not affect its performance guarantee.

Theorem 4. Let πA be the stationary policy returned by
the MWAL-Dual algorithm. If

T ≥ O

(
log k

(ε(1 − γ))2

)

then
V (πA) ≥ V (πE) + v∗ − O(ε)

wherev∗ = maxπ mini V i(π) − V i(πE).

Proof. By Theorem 3, the stationary policy returned by the
MWAL-Dual algorithm has the same value as the mixed
policy returned by the original MWAL algorithm. Hence
the guarantee in Theorem 1 applies to the MWAL-Dual al-
gorithm as well.

Of course, the trick used here to convert a mixed policy to a
stationary one is completely general, provided that the oc-
cupancy measures of the component policies can be com-
puted. For example, this technique could be applied to the
mixed policy output by the algorithms due to Abbeel & Ng
(2004).

Let T (n) be the worst-case running time of an LP solver on
a problem with at mostn constraints and variables.2 For a
typical LP solver,T (n) = O(n3.5) (Shu-Cherng & Puthen-
pura, 1993), although they tend to be much faster in prac-
tice. Using this notation, we can bound the running time
of Steps 6 and 7 in the MWAL-Dual algorithm. Finding an
optimal policy using the Dual LP method takesT (|S||A|)
time. And by Lemma 1, given the occupancy measure of
a policy, we can compute its basis values inO (k|S||A|)
time.

7. LPAL Algorithm

We now describe a way to use the Bellman flow constraints
to find a good apprentice policy in a much more direct fash-

2Technically, the time complexity of a typical LP solver also
depends on the number of bits in the problem representation.

ion than the MWAL algorithm. Recall the objective func-
tion proposed in (Syed & Schapire, 2008) for solving ap-
prenticeship learning:

v∗ = max
π

min
i

V i(π) − V i(πE) (7)

We observed earlier that, ifπA is a solution to (7), then
V (πA) ≥ V (πE) + v∗, and thatv∗ ≥ 0. In this section,
we describe a linear program that solves (7). In Section
8, we describe experiments that show that this approach is
much faster than the MWAL algorithm, although it does
have some disadvantages, which we also illustrate in Sec-
tion 8.

Our LPAL (Linear Programming Apprenticeship Learning)
algorithm is given in Algorithm 2. The basic idea is to
use the Bellman flow constraints (5) - (6) and Lemma 1 to
define a feasible set containing all (occupancy measures of)
stationary policies whose basis values are above a certain
lower bound, and then maximize this bound.

Algorithm 2 LPAL algorithm

1: Given: S,A, θ, α, γ,R1 . . . Rk,D.
2: Using the expert’s sample trajectoriesD, compute an

ε-good estimatêV i,E of V i(πE), for all i.
3: Find a solution (B∗, x∗) to this linear program:

max
B,x

B (8)

such that

B ≤
∑

s,a

Ri
saxsa − V̂ i,E (9)

∑

a

xsa = αs + γ
∑

s′,a

xs′aθs′as (10)

xsa ≥ 0 (11)
4: Return: Let apprentice policyπA be the stationary

policy defined by

πA
sa =

x∗
sa∑

a x∗
sa

.

Theorem 5. Let πA be the stationary policy returned by
the LPAL algorithm. Then

V (πA) ≥ V (πE) + v∗ − O(ε)

wherev∗ = maxπ mini V i(π) − V i(πE).

Proof. By Theorem 2, the Bellman flow constraints (10) -
(11) imply that all feasiblex correspond to the occupancy
measure of some stationary policyπ. Using this fact and
Lemma 1, we conclude that solving the linear program is
equivalent to finding(B∗, πA) such that

B∗ = min
i

V i(πA) − V̂ i,E

andB∗ is as large as possible. Since|V̂ i,E − V i(πE)| ≤ ε
for all i, we know thatB∗ ≥ v∗ − ε. Together with (9) and

Apprenticeship Learning Using Linear Programming

Lemma 1 this implies

V i(πA) =
∑

s,a

Ri
sax∗

sa ≥ V̂ i,E +B∗ ≥ V i(πE)+v∗ −2ε.

Note that theoverall worst-case running time of the LPAL
algorithm isT (|S||A| + k), whereT (n) is the complexity
of an LP solver.

8. Experiments

8.1. Gridworld

We tested each algorithm in gridworld environments that
closely resemble those in the experiments of Abbeel & Ng
(2004). Each gridworld is anN × N square of states.
Movement is possible in the four compass directions, and
each action has a 30% chance of causing a transition to a
random state. Each gridworld is partitioned into several
square regions, each of sizeM × M . We always choose
M so that it evenly dividesN , so that each gridworld has
k = (N

M
)2 regions. Each gridworld also hask basis reward

functions, where theith basis reward functionRi is a 0-1
indicator function for theith region.

For each gridworld, in each trial, we randomly chose a
sparse weight vectorw∗. Recall that the true reward func-
tion has the formR(s) =

∑
i w∗

i Ri(s), so in these ex-
periments the true reward function just encodes that some
regions are more desirable than others. In each trial, we let
the expert policyπE be the optimal policy with respect to
R, and then supplied the basis valuesV i(πE), for all i, to
the MWAL-VI, MWAL-PI, MWAL-Dual and LPAL algo-
rithms.3

Our experiments were run on an ordinary desktop com-
puter. We used the Matlab-basedcvx package (Grant
& Boyd, 2008) for our LP solver. Each of the values
in the tables below is the time, in seconds, that the al-
gorithm took to find an apprentice policyπA such that
V (πA) ≥ 0.95V (πE). Each running time is the average
of 10 trials.

Table 1.Time (sec) to findπA s. t.V (πA) ≥ 0.95V (πE)
Gridworld MWAL-VI MWAL-PI MWAL-Dual LPAL

Size (sec) (sec) (sec) (sec)
16 × 16 6.43 5.78 46.99 1.46
24 × 24 14.45 10.27 90.16 1.55
32 × 32 27.23 15.04 247.38 2.76
48 × 48 61.37 35.33 791.61 8.62
64 × 64 114.12 85.26 3651.70 30.52

128 × 128 406.24 307.58 4952.74 80.21
256 × 256 1873.93 1469.56 29988.85 588.60

3Typically in practice,πE will be unknown, and so the ba-
sis values would need to be estimated from the data set of expert
sample trajectoriesD. However, since we are primarily concerned
with computational complexity in this work, and not sample com-
plexity, we sidestep this issue and just compute eachV i(πE) di-
rectly.

Table 2.Time (sec) to findπA s. t.V (πA) ≥ 0.95V (πE)

Gridworld Number of MWAL-VI MWAL-PI MWAL-Dual LPAL
Size Regions (sec) (sec) (sec) (sec)

64 14.45 10.27 90.16 1.55
24 × 24 144 32.33 20.06 97.58 2.64

576 129.87 75.81 120.82 1.86
64 27.23 15.04 247.38 2.76

32 × 32 256 107.11 60.24 270.71 8.43
1024 440.64 267.12 361.36 4.75
64 61.37 35.33 791.61 8.62
144 135.83 79.88 800.23 11.42

48 × 48 256 244.46 150.08 815.66 16.89
576 575.34 352.15 847.38 16.33
2304 2320.71 1402.10 1128.32 11.14

In the first set of experiments (Table 1), we tested the al-
gorithms in gridworlds of varying sizes, while keeping the
number of regions in each gridworld fixed (64 regions). Re-
call that the number of regions is equal to the number of
basis reward functions. In the next set of experiments (Ta-
ble 2), we varied the number of regions while keeping the
size of the gridworld fixed.

Several remarks about these results are in order. For every
gridworld size and every number of regions, the LPAL al-
gorithm is substantially faster than the other algorithms —
in some cases two orders of magnitude faster. As we previ-
ously noted, LP solvers are often much more efficient than
their theoretical guarantees. Interestingly, in Table 2, the
running time for LPAL eventually decreases as the number
of regions increases. This may be because the number of
constraints in the linear program increases with the num-
ber of regions, and more constraints often make a linear
program problem easier to solve.

Also, the MWAL-Dual algorithm is much slower than the
other algorithms. We suspect this is only because the
MWAL-Dual algorithm calls the LP solver in each itera-
tion (unlike the LPAL algorithm, which calls it just once),
and there is substantial overhead to doing this. Modifying
MWAL-Dual so that it uses the LP solver as less of a black-
box may be a way to alleviate this problem.

8.2. Car driving

In light of the results from the previous section, one might
reasonably wonder whether there is any argument for using
an algorithm other than LPAL. Recall that, in those exper-
iments, the expert’s policy was an optimal policy for the
unknown reward function. In this section we explore the
behavior of each algorithm when this is not the case, and
find that MWAL produces better apprentice policies than
LPAL. Our experiments were run in a car driving simulator
modeled after the environments in (Abbeel & Ng, 2004)
and (Syed & Schapire, 2008).

The task in our driving simulator is to navigate a car on
a busy three-lane highway. The available actions are to
move left, move right, drive faster, or drive slower. There
are three basis reward functions that map each environment
state to a numerical reward: collision (0 if contact with an-

Apprenticeship Learning Using Linear Programming

other car, and 1/2 otherwise), off-road (0 if on the grass,
and 1/2 otherwise), and speed (1/2, 3/4 and 1 for each of
the three possible speeds, with higher values correspond-
ing to higher speeds). The true reward function is assumed
to be some unknown weighted combinationw∗ of the basis
reward functions. Since the weights are assumed to be pos-
itive, by examining the basis reward functions we see that
the true reward function assigns higher reward to states that
are intuitively “better”.

We designed three experts for these experiments, described
in Table 3. Each expert is optimal for one of the basis re-
ward functions, and mediocre for the other two. Therefore
each expert policyπE is an optimal policy ifw∗ = wE ,
wherewE is the weight vector that places all weight on
the basis reward function for whichπE is optimal. At the
same time, eachπE is very likely to be suboptimal for a
randomly chosenw∗.

We used the MWAL and LPAL algorithms to learn appren-
tice policies from each of these experts.4 The results are
presented in Table 4. We letγ = 0.9, so the maximum
value of the basis value function corresponding to speed
was 10, and for the others it was 5. Each of the reported
policy values for randomly chosenw∗ was averaged over
10,000 uniformly sampledw∗’s. Notice that for each ex-
pert, whenw∗ is chosen randomly, MWAL outputs better
apprentice policies than LPAL.

Table 3.Expert types
Speed Collisions Off-roads

(per sec) (per sec)
“Fast” expert Fast 1.1 10

“Avoid” expert Slow 0 10
“Road” expert Slow 1.1 0

Table 4.Driving simulator experiments.
Expert Algorithm w∗ = wE w∗ chosen randomly
type used

V (πA) V (πE) V (πA) V (πE)
“Fast” MWAL 10 10 9.83 8.25

LPAL 10 10 8.84 8.25
“Avoid” MWAL 5 5 8.76 6.32

LPAL 5 5 7.26 6.32
“Road” MWAL 5 5 9.74 7.49

LPAL 5 5 8.12 7.49

9. Conclusion and Future Work

Each of the algorithms for apprenticeship learning pre-
sented here have advantages and disadvantages that make
them each better suited to different situations. As our ex-
periments showed, the LPAL algorithm is much faster than
any of the MWAL variants, and so is most appropriate
for problems with large state spaces or many basis reward
functions. And unlike the original MWAL algorithm, it
produces a stationary policy, which make it a good choice

4Each of the MWAL variants behaved in exactly the same way
in this experiment. The results presented are for the MWAL-PI
variant.

whenever a simple and easily interpretable apprentice pol-
icy is desired. On the other hand, we also presented evi-
dence that LPAL performs poorly when the expert policy is
far from an optimal policy for the true reward function. If
one suspects in advance that this may be the case, then one
of the MWAL variants would be a better choice for a learn-
ing algorithm. Among these variants, only MWAL-Dual
produces a stationary policy, although it has the drawback
of being the slowest algorithm that we tested.

Although the theoretical performance guarantees of both
the MWAL and LPAL algorithm are identical, the results in
Table 4 suggest that the two algorithms are not equally ef-
fective. It seems possible that the current theoretical guar-
antees for the MWAL algorithm are not as strong as they
could be. Investigation of this possibility is ongoing work.

One way to describe the poor performance of the LPAL al-
gorithm versus MWAL is to say that, when there are several
policies that are better than the expert’s policy, the LPAL
algorithm fails to optimally break these “ties”. This char-
acterization suggests that recent techniques for computing
robust strategies in games (Johanson et al., 2008) may be
an avenue for improving the LPAL algorithm.

It would also be interesting to examine practically and the-
oretically how apprenticeship learning can be combined
with MDP approximation techniques. In particular, the
dual linear programming approach in this work might com-
bine nicely with recent work on stable MDP approximation
techniques based on the dual form (Wang et al., 2008).

Acknowledgements

We would like to thank Michael Littman, Warren Powell,
Michele Sebag and the anonymous reviewers for their help-
ful comments. This work was supported by the NSF under
grant IIS-0325500.

References
Abbeel, P., & Ng, A. (2004). Apprenticeship learning via

inverse reinforcement learning.Proceedings of the In-
ternational Conference on Machine Learning.

Feinberg, E. A., & Schwartz, A. (2002).Handbook of
Markov Decision Processes: Methods and Applications.
Springer.

Grant, M., & Boyd, S. (2008). CVX: Matlab software
for disciplined convex programming (web page and soft-
ware). http://stanford.edu/∼boyd/cvx.

Horn, R. A., & Johnson, C. R. (1985).Matrix Analysis.
Cambridge University Press.

Johanson, M., Zinkevich, M., & Bowling, M. (2008). Com-
puting robust counter-strategies.Advances in Neural In-
formation Processing Systems.

Puterman, M. L. (1994).Markov decision processes: Dis-
crete stochastic dynamic programming. John Wiley and
Sons.

Apprenticeship Learning Using Linear Programming

Ratliff, N. D., Bagnell, J. A., & Zinkevich, M. A. (2006).
Maximum margin planning.Proceedings of the Interna-
tional Conference on Machine Learning.

Shu-Cherng, & Puthenpura, S. (1993).Linear Optimization
and Extensions: Theory and Algorithms. Prentice Hall.

Syed, U., & Schapire, R. E. (2008). A game-theoretic ap-
proach to apprenticeship learning.Advances in Neural
Information Processing Systems.

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D.
(2008). Stable dual dynamic programming.Advances
in Neural Information Processing Systems.

10. Appendix

This is a proof of Theorem 2. Before proceeding, we in-
troduce another linear system. For any stationary policy
π, theπ-specific Bellman flow constraintsare given by the
following linear system in which thexsa variables are un-
known:

xsa = πsaαs + πsaγ
∑

s′,a′

xs′a′θs′a′s (12)

xsa ≥ 0 (13)

The next lemma shows thatπ-specific Bellman flow con-
straints have a solution.

Lemma 2. For any stationary policyπ, the occupancy
measurexπ of π satisfies theπ-specific Bellman flow con-
straints(12) - (13).

Proof. Clearly,xπ
sa is non-negative for alls, a, and so (13)

is satisfied. As for (12), we simply plug in the definition of
xπ

sa from (1). (In the following derivation, all the expecta-
tions and probabilities are conditioned onα, θ, andπ. They
have been omitted from the notation for brevity.)

x
π
sa = E

"

∞
X

t=0

γ
t
1(st=s∧at=a)

#

=

∞
X

t=0

γ
t Pr(st = s, at = a)

= πsaαs +

∞
X

t=0

γ
t+1 Pr(st+1 = s, at+1 = a)

= πsaαs

+

∞
X

t=0

γ
t+1

X

s′,a′

Pr(st = s
′
, at = a

′
, st+1 = s, at+1 = a)

= πsaαs +

∞
X

t=0

γ
t+1

X

s′,a′

Pr(st = s
′
, at = a

′) · θs′a′sπsa

= πsaαs + πsaγ
X

s′,a′

E

"

∞
X

t=0

γ
t
1(st=s′∧at=a′)

#

θs′a′s

= πsaαs + πsaγ
X

s′,a′

x
π
s′a′θs′a′s

Now we show that the solution to theπ-specific Bellman
flow constraints given by Lemma 2 is unique.

Lemma 3. For any stationary policyπ, theπ-specific Bell-
man flow constraints(12) - (13)have at most one solution.

Proof. Define the matrix

A(sa,s′a′) ,

{
1 − γθs′a′sπsa if (s, a) = (s′, a′)

− γθs′a′sπsa otherwise.

and the vectorbsa , πsaαs. (Note thatA and b are in-
dexed by state-action pairs.) We can re-write (12) - (13)
equivalently as

Ax = b (14)

x ≥ 0 (15)

The matrixA is column-wise strictly diagonally dominant.
This is because

∑
s′ θsas′ = 1,

∑
a πsa = 1 andγ < 1, so

for all s′, a′

∑

s,a

γθs′a′sπsa = γ < 1

⇒ 1 − γθs′a′s′πs′a′ >
∑

(s,a) 6=(s′,a′)

γθs′a′sπsa

⇒ |A(s′a′,s′a′)| >
∑

(s,a) 6=(s′,a′)

|A(sa,s′a′)|.

where the last line is the definition of column-wise strict
diagonal dominance. This implies thatA is non-singular
(Horn & Johnson, 1985), so (14) - (15) has at most one
solution.

We are now ready to prove Theorem 2.

Proof of Theorem 2.For the first direction of the theorem,
we assume thatx satisfies the Bellman flow constraints (5)
- (6), and thatπsa =

xsa∑
a xsa

. Therefore,

πsa =
xsa

αs + γ
∑

s′,a′ xs′a′θs′a′s

. (16)

Clearlyx is a solution to theπ-specific Bellman flow con-
straints (12) - (13), and Lemmas 2 and 3 imply thatx is the
occupancy measure ofπ.

For the other direction of the theorem, we assume thatx
is the occupancy measure ofπ. Lemmas 2 and 3 imply
thatx is the unique solution to theπ-specific Bellman flow
constraints (12) - (13). Therefore,π is given by (16). And
since

∑
a πsa = 1, we have

∑
a xsa

αs + γ
∑

s′,a′ xs′a′θs′a′s

= 1

which can be rearranged to show thatx satisfies the Bell-
man flow constraints, and also combined with (16) to show
thatπsa =

xsa∑
a xsa

.

