Apprenticeship Learning Using Linear Programming

Umar Syed USYED@CS.PRINCETONEDU
Princeton University, Department of Computer Science, Rie@Street, Princeton, NJ 08540

Michael Bowling BOWLING @CS.UALBERTA.CA
University of Alberta, Department of Computing Sciencepteaton, Alberta, T6G 2E8 Canada

Robert E. Schapire SCHAPIRE@CS.PRINCETONEDU
Princeton University, Department of Computer Science, Ble@Street, Princeton, NJ 08540

Abstract

In apprenticeship learning, the goal is to learn
a policy in a Markov decision process that is at
least as good as a policy demonstrated by an ex-
pert. The difficulty arises in that the MDP’s true
reward function is assumed to be unknown. We
show how to frame apprenticeship learning as a
linear programming problem, and show that us-
ing an off-the-shelf LP solver to solve this prob-
lem results in a substantial improvement in run-
ning time over existing methods — up to two or-
ders of magnitude faster in our experiments. Ad-
ditionally, our approach produces stationary poli-
cies, while all existing methods for apprentice-
ship learning output policies that are “mixed”,
i.e. randomized combinations of stationary poli-

done in this case because it is unknown).

The apprenticeship learning framework, introduced by
Abbeel & Ng (2004), is motivated by a couple of observa-
tions about real applications. The first is that reward func-
tions are often difficult to describe exactly, and yet at the
same time it is usually easy to specify what the rewards
must depend on. A typical example, investigated by Abbeel
& Ng (2004), is driving a car. When a person drives a
car, it is plausible that her behavior can be viewed as maxi-
mizing some reward function, and that this reward function
depends on just a few key properties of each environment
state: the speed of the car, the position of other cars, the
terrain, etc. The second observation is that demonstsation
of good policies by experts are often plentiful. This is cer-
tainly true in the car driving example, as it is in many other
applications.

cies. The technique used is general enough to
convert any mixed policy to a stationary policy. Abbeel & Ng (2004) assumed that the true reward func-
tion could be written as a linear combination /oknown
functions, and described an iterative algorithm that, mjive

a small set of demonstrations of the expert policy, output

))) _)) an apprentice policy withi®(k log k) iterations that was

In apprenticeship learning, as with policy learning for nearly as good as the expert's policy. Syed & Schapire
Markov decision processes (MDPs), the objective is to find2008) gave an algorithm that achieved the same guarantee
a good policy for an autonomous agent, called the “apprenin O(log k) iterations. They also showed that by assum-
tice”, in a stochastic environment. While the setup of an aping that the linear combination is also a convex one, their
prenticeship learning problem is almost identical to tHfat 0 g1gorithm can sometimes find an apprentice policy that is
policy learning in an MDP, there are a few key differences.sypstantially better than the expert's policy. Essentitie

In apprenticeship learning the true reward function is un-assumption of positive weights implies that the apprentice
known to the apprentice, but is assumed to be a weighteflas some prior knowledge about which policies are better

combination of several known functions. The apprenticethan others, and their algorithm leverages this knowledge.
is also assumed to have access to demonstrations from an-

other agent, called the “expert”, executing a policy in theEXisting algorithms for apprenticeship learning share a
same environment. The goal of the apprentice is to find &ouple of properties. One is that they each use an algorithm
policy that is at least as good as the expert's policy withfor finding an MDP’s optimal policy (e.g. value iteration or
respect to the true reward function. This is distinct from Policy iteration) as a subroutine. Another is that they out-
policy learning, where the goal is to find an optimal policy PUt apprentice policies that are “mixtures”, i.e. randoeuliz

with respect to the true reward function (which cannot becombinations of stationary policies. A stationary polisy i
a function of just the current environment state.

1. Introduction

Appearing inProceedings of the&5" International Conference
on Machine LearningHelsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

Our first contribution in this paper is to show that, if
one uses the linear programming approach for finding an

Apprenticeship Learning Using Linear Programming

MDP’s optimal policy (Puterman, 1994) as a subroutine,Unlike an MDP, in apprenticeship learning the true reward
then one can modify Syed & Schapire’s (2008) algorithmfunction R is unknown. Instead, we are givérasis re-

so that it outputs a stationary policy instead of a mixed pol-ward function$ R'... R¥, where R, is the reward of
icy. Stationary policies are desirable for a number of reastate-action paifs, a) with respect to théth basis reward
sons, e.g. they are simpler to describe, and are more naturainction. We assume that the true reward functidis an
and intuitive in terms of the behavior that they prescribe.unknown convex combination* of the basis reward func-
Moreover, this technique can be straightforwardly appliedtions, i.e., for alls, a

to any mixed policy, such as the ones output by Abbeel & R. — Z W' R
Ng'’s (2004) algorithms, to convert it to a stationary policy @ - Lo

that earns the same expected cumulative reward. . .
P where the unknown weights satisty’ > 0 and), w} =

Our technique leads naturally to the second contribution of. Each basis reward functidi has a correspondirgasis
this paper, which is the formulation of the apprenticeshipvalue functionV?(r) given by

learning problem as a linear program. We prove that the 0o

solution to this LP corresponds to an apprentice policy that Vi(r) 2 E Z V'R!
has the same performance guarantees as those produced by part L
existing algorithms, and that the efficiency of modern LP

solvers results in a very substantial improvement in ruginin Given the assumption of positive weights, the value: of
time compared to Syed & Schapire’s (2008) algorithm —can be viewed as a measure of how much the apprentice

up to two orders of magnitude in our experiments. knows about the true reward function.df= 1, the (only)
))) .. basis value of a policy is equal to its true value, and the sit-
In work closely related to apprenticeship learning, R&tlif ;ation reduces to a traditional MDP. At the other extreme,
Bagnell & Zinkevich (2006) described an algorithm for i e jth basis reward function is just an indicator function
learning the true reward function by assuming that the €X¢oy the ith state-action pair, theh = |SA|, and the ba-
pert’'s policy _is not very different from the optimal policy. sis values of a policy are equal to its occupancy measure.
They took this approach because they wanted to learn poliy, his situation, the apprentice knows essentially naghin
cies that were similar to the expert’s policy. In apprentice gpout which policies are better than others.
ship learning, by contrast, the learned apprentice poky ¢
be very different from the expert’s policy. The positive weight assumption also implies that if for
state-action pairés, a) and(s’,a’) we haveR., > R,

. . for all 7, thenR,, > R, .. SO the basis rewards them-
2. Preliminaries selves can encode prior knowledge about the true rewards.
Formall, an apprenticeship learing problem If_we wish not to assert any such pr_ior knowledgeZ we can
(S,A, 0,a,v,R"... Rk’D) closely resembles a Markov S|mply add the negative of each bagls reward function to the
decision process. At each time stepn autonomous agent original set, Fhereby at most doubling the number of basis
occupies a state;, from a finite setS, and can take an reward functions.
actiona, from a finite setd. When the agentis in stat¢ ~ We also assume that we are given a dataZ3evf M
taking actiona leads to state’ with transition probability j.i.d. sample trajectories from agxpert policyz” exe-
Osasr = Pr(s;y1 = s’ | s, = s,a; = a). Initial state cuting in the environment, where theth trajectory is a
probabilities are given by, = Pr(sy = s). The agent Sequence of state-action pairs visited by the expert, i.e.,

m m m m m m

decides which actions to take based on its poticwhere (sg',ag's 1", af", ..., sf7, a%;). For simplicity, we assume
Tsa 2 Pr(a; = a | s; = s). The value of a policyr is tjf}at all sample trajectories are truncated to the sameHhengt

given by

a,w,&] .

o The goal of apprenticeship learning (Abbeel & Ng, 2004)
V(m) 2 E > 4'Raa, | om0 is to find anapprentice policyr* such that
=0 V() = V(x") (2)

where Ry, € [-1,1] is the reward associated with the even though the true value functiovi(x) is unknown
state-action paifs, a), andy € [0,1) is a discount fac- (since the true reward function is unknown).

tor. An optimal policy 7* is one that satisfies™* =

arg max, V (m). We say a policyr is e-optimalif V(7*) — 2 1. A More Refined Goal

V(r) <e. o

A policy = hasoccupancy measute” if By our assumptions about the reward functions (and the

linearity of expectation), we have
Z ’ytl(st:s/\at:a)

a,w,@] 1) Vim) = qu*vl(ﬁ)
t=0 i

forall s, a. In other wordsz?, is the expected (discounted) 1|n (Abbeel & Ng, 2004) and (Syed & Schapire, 2008) these
number of visits to state-action pdis, a) when following functions were calleteatures but we believe that the present ter-
policy 7. minology is better suited for conveying these functions’ role.

T
T, =F

Apprenticeship Learning Using Linear Programming

Consequently, for any policy, the smallest possible differ- 3. Multiplicative Weights Algorithm for

ence betweel () andV (") is min; V*(7) — V*(x?), Apprenticeship Learning

because in the worst-case; = 1 for the minimizings.

Based on this observation, Syed & Schapire (2008) proSyed & Schapire (2008) observed that solving the objec-
posed finding an apprentice poliey* that solves the max- tive in (3) is equivalent to finding an optimal strategy in

imin objective a certain two-player zero-sum game. Because the size of
o B this game’s matrix is exponential in the number of states
v* = maxmin V*(m) — V(7). (3) |S|, they adapted a multiplicative weights method for solv-

ing extremely large games. The resulting MWAL (Mul-
Note that ifr“ is a solution to (3), the# (74) > V(7 ¥)+ tiplicative Weights Apprenticeship Learning) algorithe i
v* (because* = min; Vi(r?) — Vi(x¥) < V(x4) — described in Algorithm 1 below.

V(7¥)). We also have* > 0 (becauser = =¥ is avail-
able in (3)). Thereforer* satisfies the goal of apprentice- Algorithm 1 MWAL algorithm

ship learning given in (2). 1: Gi\(en: S, A0,a,7,R". ”Rk7p_ .
Syed & Schapire (2008) showed that in some cases where2: Using the expert’s sample trajectori® compute an
V(7F) is small,v* is large, and so adding* to the lower e-good estimaté’ ¥ of Vi(x¥), for all 4.

perts. Our algorithms also produce apprentice policies tha 3:

bound in (2) serves as a kind of insurance against bad ex- — -1
Letﬁ:(l—h/z%) € (0,1].
achieve this more refined goal.

4: Initialize w; = ¢, fori =1...k.
5:fort=1...7Tdo

2.2. Estimating the Expert Policy’s Values 6: Computee-optimal policy 7 for reward function
Our algorithms require knowledge of the basis values of Rso =32, wiRy,. N _

the expert's policy. From the expert's sample trajectories 7. Computee-good estimatéd/*? of Vi(xt), fori =
D, we can form an estimaté®* of Vi(r¥) as follows: ...k

8 Letw!™ =wip""" V" fori=1...k

M H . H
. 1 . ~. 9: Renormalizew.
Vir®) ~ Y > > 'Rl 2VHE 10: end for
m=1t=0 11: Return: Let apprentice policyr* be the mixed policy

7 t 1\\T
Clearly, as the number of sample trajectorigsand the defined by{ (7",)}/

truncation lengthf increase, the error of this estimate will

decrease. Thus the issue of accurately estimdfifig”) In each iteration of the MWAL algorithm, an optimal pol-
is related tasamplecomplexity, while in this work we are jcy = is computed with respect to the current weight vec-
primarily concerned witrcomputationalcomplexity. To tor w!. Then the weights are updated so thatis in-
make our presentation cleaner, we will assume Mas creased/decreased if is a bad/good policy (relative to
large enough to yield an estimdté-# of V() suchthat 7) with respect to théth basis reward function.

[VHE — Vi(x®)| < ¢ forall i. We call such an estimate The next theorem bounds the number of iteratidhse-
e-good The sample complexity of apprenticeship |eam'”gquired for the MWAL algorithm to produce a good appren-

is treated in (Syed & Schapire, 2008). tice policy. The computational complexity of each iteratio
. is discussed in Section 3.1.
2.3. Policy Types Theorem 1 (Syed & Schapire (2008)).Let 74 be the

Unless otherwise noted, a polieyis presumed to be sta- Mixed policy returned by the MWAL algorithm. If
tionary, i.e.;rs, is the probability of taking action in state log k

5. One exception is mixed policy A mixed policyr is de- T>0 (72)

fined by a set of ordered paif$’,)} ;. The policyx (e(1 =)

is followed by choosing at timéone of the stationary poli- then

ciesw/, each with probability\’, and then following that V(x?) > V(xP) +v* — O(e)

policy exclusively thereafter. The value of a mixed policy \\ herev* — max. min. Vi(r) — Vi(aF)

is the expected value of the stationary policies it compgrise T ! '

- 3.1. MWAL-VI and MWAL-PI
N
~\ 3] — j j The specification of the MWAL algorithm is somewhat
VE) =E [V(ﬂ)] ;)\ V(r’), and open-ended. Step 6 requires findingeaoptimal policy in

an MDP, and Step 7 requires computiagood estimates of
i . N oo i the basis values of that policy. There are several procedure
Vi(F) = B [Vi(@))] =Y NV, available for accomplishing each of these steps, with each
j=1 option leading to a different variant of the basic algorithm

Apprenticeship Learning Using Linear Programming

We briefly describe some natural options, and remark orthe same theoretical guarantees as the MWAL algorithm,
their implications for the overall computational comptgxi but produce stationary policies (and are also faster). To
of the MWAL algorithm. prove the correctness of these algorithms, we need to show

In Step 6, we can find the optimal policy using value it- that every mixed policy has an equivalent stationary policy

eration (Puterman, 1994), which has a worst-case runnintn Section 4, we said that the Dual LP method of solving an
time of O (log, (1/e(1 —~))|S|?|A]). We can also use MDP outputs the occupancy measure of an optimal policy.
value iteration to compute thebasis values in Step 7 (this In fact, all = that satisfy the Bellman flow constraints (5)
is sometimes called “policy evaluation”), which implies a - (6) are the occupancy measure of some stationary policy,
worst-case running time ab (klog, (1/€(1 —v))|S|?). as the next theorem shows.

We call this variant the MWAL-VI algorithm. Theorem 2. Let z satisfy the Bellman flow constrain(s)

Another choice for Step 6 is to find the optimal policy us- - (6), and letr,, = % hea stationary policy. Then

ing policy iteration (Puterman, 1994). No polynomial time . 2 Tsa .
bound for policy iteration is known; however, in practice * 1S the occupancy measure far. Conversely, ifr is

it has often been observed to be faster than value iteratiort Stationary policy such that is its occupancy measure,
We call this variant the MWAL-PI algorithm. In Section 8, thenw,, = ——— and satisfies the Bellman flow con-
we present experiments comparing these algorithms to th§-traints 2aTsa

ones described later in the paper. '

An equivalent result as Theorem 2 is given in (Feinberg &
4. Dual Methods for MDPs Schwartz, 2002), p. 178. For completeness, a simple and
direct proof is contained in the Appendix.
As we previously observed, the MWAL algorithm must re- The Bellman flow constraints make it very easy to show
peatedly find the optimal policy in an MDP, and this task isthat for everv mixed policy. there isastatio)llwar yolicytth
usually accomplished via classic iterative technique$ suc ’th y | policy, yp
as value iteration and policy iteration. However, there aré1as € Same value.)) .
other techniques available for solving MDPs, and in thisTheorem 3. Let 7 be a mixed policy defined by
work we show that they can lead to better algorithms for{ (77, X)}/_,, and letz’ be the occupancy measurerdf,
apprenticeship learning. Consider the following linear-pr for all j. Let7 be a stationary policy where

gram: >N,
Tsa = X — . 7 -
J
max Z Rsasq 4 D2 M aka
o ThenV (#) = V(7).
such that () ()
sza =g+~ Z T5als as (5) Proof. By Theorem 217 satisfies the Bellman flow con-
" o straints (5) - (6) for allj. LetZ,, = > ; Mal,. By lin-
T >0 (6) earity, & also satisfies the Bellman flow constraints. Hence,
. = L _ by Theorem 2, the stationary polidy defined by#,, =
Itis well-known (Puterman, 1994) thatif is a solution to 4
o _ _ ** _ has occupancy measute Therefore,
(4) - (6), thenr?, = Tsa__ s an optimal policy, and* Yo Zsa upancy

20 Tia
is the occupancy measureof. Often (5) - (6) are called V(7)) = > Rufisa = Y N Y Reatl, = > NV (r)
theBellman flow constraints s.a F s,a J

The linear program in (4) - (6) is actually the dual of the =V (7).

linear program that is typically used to find an optimal pol- where these equalities use, in order: Lemma 1; the defini-

icy in an MDP. Accordingly, solving (4) - (6) is often called tjon of #; Lemma 1; the definition of a mixed policy. O
the Dual LP method of solving MDPs .

Having found an optimal policy by the Dual LP method, g M\WAL-Dual Algorithm
computing its values is straightforward. The next lemma
follows immediately from the definitions of the occupancy In this section, we will make a minor modification to the

measure and value of a policy. MWAL algorithm so that it outputs a stationary policy in-

Lemma 1. If policy = has occupancy measure’, then stead of a mixed policy.

Vi(m) =320 Reatlg andVi(m) =3, | Ri,27,. Recall that the MWAL algorithm requires, in Steps 6 and
7, a way to compute an optimal policy and its basis values,

5. Main Theoretical Tools but that no particular methods are prescribed. Our proposal

is to use the Dual LP method in Step 6 to find the occu-
Recall that the MWAL algorithm produces mixed policies. pancy measure; of a policy 7, that ise-optimal for re-
In Sections 6 and 7, we will present algorithms that achievavard functionR,, = Y, w!R!,. Then in Step 7 we let

Apprenticeship Learning Using Linear Programming

Vit = Zw Ri,at, , fori =1...k. NotethatLemmal ion than the MWAL algorithm. Recall the objective func-

impIiesXA/” = Vi(rh). tion propoged in (_Syed & Schapire, 2008) for solving ap-
prenticeship learning:

Now we can apply Theorem 3 to combine all the policies

computed during the MWAL algorithm into a single sta- v" = maxmin Vi(m) = Vir"))
tionary apprentice policy. This amounts to changing Step) o]
11 to the following: We observed earlier that, if4 is a solution to (7), then

V(z4) > V(xF) + v*, and that* > 0. In this section,
Return: Let apprentice policyr* be the stationary Wwe describe a linear program that solves (7). In Section

policy defined by 8, we describe experiments that show that this approach is
. . much faster than the MWAL algorithm, although it does
sA_ _T 221 %sa have some disadvantages, which we also illustrate in Sec-
D DR D tion 8.

Our LPAL (Linear Programming Apprenticeship Learning)
algorithm is given in Algorithm 2. The basic idea is to
‘use the Bellman flow constraints (5) - (6) and Lemma 1 to
It is straightforward to show that these changes to thelefine afeasible set containing all (occupancy measures of)
MWAL algorithm do not affect its performance guarantee. stationary policies whose basis values are above a certain

Theorem 4. Let 7 be the stationary policy returned by '0Wer bound, and then maximize this bound.
the MWAL-Dual algorithm. If

We call this modified algorithm the MWAL-Dual algo-
rithm, after the method it uses to compute optimal policies

Algorithm 2 LPAL algorithm

TZO(&) 1: Given: S, A,0,a,v, R ... R*,D.
(e(1=7))? 2: Using the expert's sample trajectori®s compute an
then e-good estimaté ¥ of Vi(x), for all 4.

V(x> V(nB) +v* — O(e) 3: Find a solution (B*,z*) to this linear program:
wherev* = max, min; V(7)) — Vi (n¥). max B ®)
Proof. By Theorem 3, the stationary policy returned by the such that
MWAL-Dual algorithm has the same value as the mixed ; i B
policy returned by the original MWAL algorithm. Hence B<Y Rlaw—V")
the guarantee in Theorem 1 applies to the MWAL-Dual al- 5,a
gorithm as well. O Y T =i+ Toabsas (10)
Of course, the trick used here to convert a mixed policy to a o (11)

stationary one is completely general, provided that the oc-] _ _— .
cupancy measures of the component policies can be com# Retum: Let apprentice policyr” be the stationary
puted. For example, this technique could be applied to the ~ Policy defined by

mixed policy output by the algorithms due to Abbeel & Ng z*

2004). Ty = —.
(2004) S T

LetT'(n) be the worst-case running time of an LP solver on
a problem with at most constraints and variablésFor a N) i
typical LP solverT'(n) = O(n®?) (Shu-Cherng & Puthen- Theorem 5. Let 7 be the stationary policy returned by
pura, 1993), although they tend to be much faster in practhe LPAL algorithm. Then

tice. Using this notation, we can bound the running time V(mt) > V(rP) +v* — O(e)

of Steps 6 and 7 in the MWAL-Dual algorithm. Finding an))

optimal policy using the Dual LP method tak@g|S||.4|) ~ Wherev* = max, min; V*(m) — V(7 ").

time. And by Lemma 1, given the occupancy measure of

a policy, we can compute its basis values(rk|S||A|) Proof. By Theorem 2, the Bellman flow constraints (10) -
time. (11) imply that all feasible: correspond to the occupancy
measure of some stationary poligy Using this fact and

. Lemma 1, we conclude that solving the linear program is
7. LPAL Algorithm equivalent to finding B*, 74) such that

We now describe a way to use the Bellman flow constraints
to find a good apprentice policy in a much more direct fash-

B* = min Vi(x?) — VP

2Technically, the time complexity of a typical LP solver also andB* is as large as possible. Sindé"? — V(x| < e
depends on the number of bits in the problem representation. for all i, we know thatB* > v* — e. Together with (9) and

Apprenticeship Learning Using Linear Programming

Lemma 1 this implies _]
Table 2.Time (sec) to findr” s. t. V(x*) > 0.95V ()

Vi(n?) = ZRi at, > VP4 B > VirP) +v* — 2

sawsa Gridworld | Number of [MWAL-VI MWAL-PI | MWAL-Dual | LPAL

Size Regions (sec) (sec) (sec) (sec)

64 14.45 10.27 90.16 | 1.55

O 24 x 24 144 32.33 20.06 9758 | 2.64

576 129.87 75.81 120.82 | 1.86

. . 64 27.23 15.04 24738 2.76

Note that theoverall worst-case running time of the LPAL | 32 x 32 256 107.11 60.24 27071 | 843
algorithm isT" (|S||.A| + k), whereT'(n) is the complexity 1024 44064 | 267.12 36136 | 475
64 61.37 3533 791.61| 862

of an LP solver. 144 135.83 79.88 800.23 | 11.42
48 x 48 256 244.46 150.08 815.66 | 16.89

576 575.34 352.15 847.38 | 16.33

8. Experiments 2304 2320.71| 140210 1128.32 | 11.14

8.1. Gridworld

We tested each algorithm in gridworld environments thatin the first set of experiments (Table 1), we tested the al-
closely resemble those in the experiments of Abbeel & Nggorithms in gridworlds of varying sizes, while keeping the

(2004). Each gridworld is aiv x N square of states. number of regions in each gridworld fixed (64 regions). Re-
Movement is possible in the four compass directions, andall that the number of regions is equal to the number of
each action has a 30% chance of causing a transition to lgasis reward functions. In the next set of experiments (Ta-

random state. Each gridworld is partitioned into severable 2), we varied the number of regions while keeping the
square regions, each of sidé x M. We always choose sjze of the gridworld fixed.

M so that it evenly dividesV, so that each gridworld has)
k = ()2 regions. Each gridworld also hasasis reward Several remarks about these results are in order. For every

gridworld size and every number of regions, the LPAL al-
gorithm is substantially faster than the other algorithms —
in some cases two orders of magnitude faster. As we previ-
For each gridworld, in each trial, we randomly chose aously noted, LP solvers are often much more efficient than
sparse weight vectar*. Recall that the true reward func- their theoretical guarantees. Interestingly, in Tableh2, t
tion has the formR(s) = >, w}R'(s), so in these ex- running time for LPAL eventually decreases as the number
periments the true reward function just encodes that somef regions increases. This may be because the number of
regions are more desirable than others. In each trial, we latonstraints in the linear program increases with the num-
the expert policyr” be the optimal policy with respect to ber of regions, and more constraints often make a linear
R, and then supplied the basis valueq~¥), for alli, to program problem easier to solve.

the MWAL-VI, MWAL-PI, MWAL-Dual and LPAL algo-
rithms3

functions, where théth basis reward functio®? is a 0-1
indicator function for theth region.

Also, the MWAL-Dual algorithm is much slower than the
other algorithms. We suspect this is only because the
Our experiments were run on an ordinary desktop comMWAL-Dual algorithm calls the LP solver in each itera-
puter. We used the Matlab-basedx package (Grant tion (unlike the LPAL algorithm, which calls it just once),
& Boyd, 2008) for our LP solver. Each of the values and there is substantial overhead to doing this. Modifying
in the tables below is the time, in seconds, that the allMWAL-Dual so that it uses the LP solver as less of a black-
gorithm took to find an apprentice policy* such that box may be a way to alleviate this problem.

V(r4) > 0.95V (7). Each running time is the average

of 10 trials. 8.2. Car driving
In light of the results from the previous section, one might
Table 1.Time (sec) to findr? s. t. V(74) > 0.95V (zF) reasonably wonder whether there is any argument for using
Grigggrld MWAL(;\élc) MWA(LS-GPC') MWAL-?SUe% L('?G\}t) an algorithm other than LPAL. Recall that, in those exper-
16 % 16 643 =g 1699 146 iments, the expert’'s policy was an optimal policy for the
24 x 24 14.45 10.27 90.16 | 155 unknown reward function. In this section we explore the
i; X jé 2133 éggg 5;‘122 g-ég behavior of each algorithm when this is not the case, and
64 % 64 114.12 8526 365170 | 3052 find that MWAL produces better apprentice policies than
128 x 128 406.24 307.58 4952.74 | 80.21 LPAL. Our experiments were run in a car driving simulator
256 x 256 | 187393 | 1469.56] 29988.85) 588.60 modeled after the environments in (Abbeel & Ng, 2004)

and (Syed & Schapire, 2008).

3Typically in practice,7x will be unknown, and so the ba- he task i drivi imulator is t iqat
sis values would need to be estimated from the data set of expe-r[[€ task In our driving simuiator IS to navigate a car on

sample trajectorie®. However, since we are primarily concerned @ busy three-lane highway. The available actions are to
with computational complexity in this work, and not sample com- move left, move right, drive _faster, or drive slower._There
plexity, we sidestep this issue and just compute dattr”) di- are three basis reward functions that map each environment
rectly. state to a numerical reward: collision (0 if contact with an-

Apprenticeship Learning Using Linear Programming

other car, and 1/2 otherwise), off-road (O if on the grasswhenever a simple and easily interpretable apprentice pol-
and 1/2 otherwise), and speed (1/2, 3/4 and 1 for each dty is desired. On the other hand, we also presented evi-
the three possible speeds, with higher values correspondience that LPAL performs poorly when the expert policy is
ing to higher speeds). The true reward function is assumethr from an optimal policy for the true reward function. If

to be some unknown weighted combinatioh of the basis one suspects in advance that this may be the case, then one
reward functions. Since the weights are assumed to be posf the MWAL variants would be a better choice for a learn-
itive, by examining the basis reward functions we see thaing algorithm. Among these variants, only MWAL-Dual
the true reward function assigns higher reward to statés tharoduces a stationary policy, although it has the drawback
are intuitively “better”. of being the slowest algorithm that we tested.

We designed three experts for these experiments, describédthough the theoretical performance guarantees of both
in Table 3. Each expert is optimal for one of the basis rethe MWAL and LPAL algorithm are identical, the results in
ward functions, and mediocre for the other two. ThereforeTable 4 suggest that the two algorithms are not equally ef-
each expert policyr” is an optimal policy ifw* = w¥, fective. It seems possible that the current theoreticaf-gua
wherew® is the weight vector that places all weight on antees for the MWAL algorithm are not as strong as they
the basis reward function for which” is optimal. At the could be. Investigation of this possibility is ongoing work
same time, each” is very likely to be suboptimal for a

randomly chosem*. One way to describe the poor performance of the LPAL al-

gorithm versus MWAL is to say that, when there are several
We used the MWAL and LPAL algorithms to learn appren- policies that are better than the expert’s policy, the LPAL
tice policies from each of these expettsThe results are algorithm fails to optimally break these “ties”. This char-
presented in Table 4. We let = 0.9, so the maximum acterization suggests that recent techniques for congputin
value of the basis value function corresponding to speedobust strategies in games (Johanson et al., 2008) may be
was 10, and for the others it was 5. Each of the reporte@n avenue for improving the LPAL algorithm.

policy values for randomly chosen* was averaged over
10,000 uniformly sampled*’'s. Notice that for each ex-
pert, whenw* is chosen randomly, MWAL outputs better
apprentice policies than LPAL.

It would also be interesting to examine practically and the-
oretically how apprenticeship learning can be combined
with MDP approximation techniques. In particular, the

dual linear programming approach in this work might com-
bine nicely with recent work on stable MDP approximation

Table 3.Expert types techniques based on the dual form (Wang et al., 2008).

Speed | Collisions | Off-roads
(per sec) (per sec)
“Fast’ expert | Fast I1 10 Acknowledgements
“Avoid” expert Slow 0 10
Road" expert | Slow 1.1 0 We would like to thank Michael Littman, Warren Powell,
Michele Sebag and the anonymous reviewers for their help-
ful comments. This work was supported by the NSF under
Table 4.Driving simulator experiments. grant [1S-0325500.
Expert | Algorithm w* = w? w* chosen randomly]
type used
VD) [VE?) [VED [v References
“Fast” MWAL 10 10 9.83 8.25
, LPAL 10 10 8.84 8.25 Abbeel, P., & Ng, A. (2004). Apprenticeship learning via
“Avoid” MWAL 5 5 8.76 6.32
LPAL 5 5 796 6.32 inverse reinforcement learning®roceedings of the In-
"Road” | MWAL 5 5 9.74 7.49 ternational Conference on Machine Learning
LPAL 5 5 8.12 7.49

Feinberg, E. A., & Schwartz, A. (2002)Handbook of
Markov Decision Processes: Methods and Applications
Springer.

)))) Grant, M., & Boyd, S. (2008). CVX: Matlab software
Each of the algorithms for apprenticeship learning pre- for disciplined convex programming (web page and soft-
sented here have advantages and disadvantages that mak@are). http://stanford.edwboyd/cvx.
them each better suited to different situations. As our ex- . .
periments showed, the LPAL algorithm is much faster tharf0™n, R. A., & Johnson, C. R. (1985)Matrix Analysis
any of the MWAL variants, and so is most appropriate Cambridge University Press.
for problems with large state spaces or many basis rewargohanson, M., Zinkevich, M., & Bowling, M. (2008). Com-
functions. And unlike the original MWAL algorithm, it puting robust counter-strategiesdvances in Neural In-
produces a stationary policy, which make it a good choice formation Processing Systems

“Each of the MWAL variants behaved in exactly the same wayPuterman, M. L. _(1994)M_arkov decisio_n processes: Dis-
in this experiment. The results presented are for the MWAL-PI crete stochastic dynamic programmingphn Wiley and
variant. Sons.

9. Conclusion and Future Work

Apprenticeship Learning Using Linear Programming

Ratliff, N. D., Bagnell, J. A., & Zinkevich, M. A. (2006).
Maximum margin planningProceedings of the Interna-
tional Conference on Machine Learning

Shu-Cherng, & Puthenpura, S. (1993hear Optimization
and Extensions: Theory and Algorithnfarentice Hall.

Now we show that the solution to thespecific Bellman
flow constraints given by Lemma 2 is unique.

Lemma 3. For any stationary policyr, ther-specific Bell-
man flow constraint§l2) - (13) have at most one solution.

Syed, U., & Schapire, R. E. (2008). A game-theoretic ap-"roof. Define the matrix

proach to apprenticeship learnind\dvances in Neural
Information Processing Systems

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D.
(2008). Stable dual dynamic programmingdvances
in Neural Information Processing Systems

10. Appendix

This is a proof of Theorem 2. Before proceeding, we in-

if (s,a) =(s,d)
otherwise.

1- Pyes’a’sﬂ-sa
- Ves’a'sﬂ-sa

|

and the vectob,, £ 7,,a,. (Note that4d andb are in-
dexed by state-action pairs.) We can re-write (12) - (13)
equivalently as

A(sa,s’a/)

Az =D
x>0

(14)
(15)

troduce another linear system. For any stationary policyThe matrixA is column-wise strictly diagonally dominant.

w, ther-specific Bellman flow constraingse given by the
following linear system in which the,, variables are un-
known:

Tsq = MgqQs + Tsa”Y Z xs’a’es’a’s (12)

s’,a’

Tgq >0 (13)
The next lemma shows thatspecific Bellman flow con-
straints have a solution.

Lemma 2. For any stationary policyr, the occupancy
measurer™ of 7 satisfies ther-specific Bellman flow con-
straints(12) - (13).

Proof. Clearly,z7, is non-negative for al, a, and so (13)

is satisfied. As for (12), we simply plug in the definition of

zT, from (1). (In the following derivation, all the expecta-
tions and probabilities are conditioned @9, andx. They
have been omitted from the notation for brevity.)

t=0

= th Pr(s: = s,at = a)

t=0
oo
t+1
= Msalls + E Y + Pr(8t+1 =S,0t+1 = a)
t=0

= Tsals

oo
t+1 / ’
+ E ~y E Pr(st = s',at = a’, S¢41 = S, ae41 = a)

t=0 s,a’

oo
2 : t+1§ : / /

= Tsalls + Y Pr(St =S,a¢ :a)-@s/u/swsa
t=0

s',a’
oo
t
= TsaQs + Tsa"y § E § Y 1(st:s’/\at:a’) 95’(1/5
s’ a’ t=0

™
= MsaOls + Tsa”Y § xs’a’gs’a’s

s ,a’

This is becaus® __, 0505 = 1,), T = 1 @ndy < 1, so
for all s', o’

Z’yes’a’sﬂ-sa =7< 1
s,a

= 1-— 708/0/8/7[-8/(1/ > Z Ves’a/sﬂsa
(s,0)%(s",a")
= ‘A(s’aﬂs’a’)‘ > Z |A(sa,s’a’)"
(s,a)#(s",a’)

where the last line is the definition of column-wise strict
diagonal dominance. This implies thdtis non-singular
(Horn & Johnson, 1985), so (14) - (15) has at most one
solution. O

We are now ready to prove Theorem 2.

Proof of Theorem 2For the first direction of the theorem,
we assume that satisfies the Bellman flow constraints (5)

- (6), and thatr,, = Lsa . Therefore,

Za Tsa

m«sa
Qg + 7y Zsl,a/ TsraOsrars

7T80, -

(16)

Clearly z is a solution to ther-specific Bellman flow con-
straints (12) - (13), and Lemmas 2 and 3 imply thad the
occupancy measure af

For the other direction of the theorem, we assume that
is the occupancy measure of Lemmas 2 and 3 imply
thatz is the unique solution to the-specific Bellman flow
constraints (12) - (13). Therefore,is given by (16). And
since) |, 7y, = 1, we have

20 Tsa _
as + 7y Zs’,a’ xs’a’es’a’s
which can be rearranged to show thasatisfies the Bell-
man flow constraints, and also combined with (16) to show
'TSG,
thatr,, = O

Za Tsa .

