
Learning Predictive State Representations Using Non-Blind Policies

Michael Bowling BOWLING@CS.UALBERTA.CA
Peter McCracken PETERM@CS.UALBERTA.CA

Department of Computing Science, University of Alberta, Edmonton, Alberta, T6G 2E8 Canada

Michael James MICHAEL.R.JAMES@GMAIL.COM

AI and Robotics Group, Technical Research Dept., Toyota Technical Center, Ann Arbor, Michigan, USA

James Neufeld NEUFELD@CS.UALBERTA.CA

Department of Computing Science, University of Alberta, Edmonton, Alberta, T6G 2E8 Canada

Dana Wilkinson D3WILKIN@UWATERLOO.CA

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Predictive state representations (PSRs) are pow-
erful models of non-Markovian decision pro-
cesses that differ from traditional models (e.g.,
HMMs, POMDPs) by representing state using
only observable quantities. Because of this,
PSRs can be learned solely using data from in-
teraction with the process. The majority of ex-
isting techniques, though, explicitly or implicitly
require that this data be gathered using a blind
policy, where actions are selected independently
of preceding observations. This is a severe limi-
tation for practical learning of PSRs. We present
two methods for fixing this limitation in most of
the existing PSR algorithms: one when the pol-
icy is known and one when it is not. We then
present an efficient optimization for computing
good exploration policies to be used when learn-
ing a PSR. The exploration policies, which are
not blind, significantly lower the amount of data
needed to build an accurate model, thus demon-
strating the importance of non-blind policies.

1. Introduction
Predictive state representations (PSRs) are a method of rep-
resenting the state of a controlled, discrete-time, stochastic
dynamical system by maintaining predictions about the ef-
fect of future actions on observations (Littman et al., 2002).

Appearing in Proceedings of the 23 rd International Conference
on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by
the author(s)/owner(s).

PSRs have several advantages over other methods of state
representation, such as POMDPs and k-Markov models.
It has been shown that PSRs are able to compactly model
any system representable by a POMDP (Singh et al., 2004)
or k-Markov model (Littman et al., 2002). Also, unlike
POMDPs which use a postulated set of underlying, nomi-
nal states, PSRs are completely specified using observable
quantities like actions and observations. This allows them
to be learned solely using data from interaction with the
system.

There have been numerous algorithms proposed for build-
ing PSR models from data (Singh et al., 2003; James &
Singh, 2004; Rosencrantz et al., 2004; Wolfe et al., 2005;
Wiewiora, 2005; McCracken & Bowling, 2006). Many
of these algorithms specify a particular policy to be used
when gathering their data. Those that do not are usually
evaluated using the uniform-random policy. In either case
the policy is blind, ignoring preceding observations when
selecting actions. To date all of the policies used in PSR
empirical evaluation have been blind. Generally speak-
ing, though, non-blind policies are the norm not the spe-
cial case. Selecting actions based on past observations is
key for any policy seeking to maximize reward or achieve
some goal. Even a smart exploration strategy will make
decisions based on past observations. The ability to build
accurate models from data gathered while purposefully ex-
ploring or acting to maximize reward is fundamental.

In this paper we examine the construction of PSR models
from data gathered while following non-blind policies. In
particular, we conclude that most existing algorithms fail
to build a correct model when data is gathered with such a
policy. We start with a brief introducion to PSRs in Sec-
tion 2. In Section 3 we prove that the majority of existing

Learning Predictive State Representations Using Non-Blind Policies

L
Pr(0) = 0.9
Pr(1) = 0.1

R
Pr(0) = 0.1
Pr(1) = 0.9

β β

α

α

Figure 1. A dynamical system with two nominal states, action set
A = {α, β}, and observation set O = {0, 1}. Action α switches
state, and action β preserves state. The initial state of the system
is state L.

algorithms are only correct if data is gathered with a blind
policy. We then show in Section 4 how existing algorithms
can be fixed to handle data from any policy, known or un-
known. In Section 5 we present a novel method for finding
smart exploration policies which are not blind. We then
show results in Section 6 when learning with these poli-
cies, demonstrating the correctness and usefulness of our
remedy.

2. Background
A controlled, discrete-time, finite dynamical system gener-
ates observations from a setO in response to actions from a
set A. The probability of a generated observation, though,
can depend on the complete interaction to date. An exam-
ple dynamical system is shown in Figure 1. This system
has two nominal states {L,R}, actions A = {α, β} and
observations O = {0, 1}. An interaction with a dynamical
system can be represented as a stream of action-observation
pairs, of the form a1o1a2o2 . . ., that begins at time step
zero. In such a sequence, the first action taken is a1, after
which the observation o1 is observed, followed by action
a2 and observation o2, etc., until the end of the interaction.
A sequence of action-observation pairs that has already oc-
curred is referred to as a history. The special history, φ, is
the zero-length history where no actions have been taken.

At its essence a system is a probability distribution over
observations, conditioned on the history and next action.
For example, the system in Figure 1 can be described as,

Pr(0|ha) =
{

0.9 if s(ha) = 0 mod 2
0.1 if s(ha) = 1 mod 2 ,

where s(h) is the number of α, or switching, actions in h.
POMDPs (or HMMs in the uncontrolled case), k-Markov
models, and PSRs are simply compact models of this infi-
nite set of probability distributions.

A policy is a probability distribution over actions, condi-
tioned on history. Example policies are shown in Table 1.
A policy can rely on previous observations, like Policy 1
in Table 1, or it can be blind to previous observations, like
Policy 2. A policy is said to be blind if each policy ac-
tion is conditionally independent of previous observations,

Table 1. Two policies for the system in Figure 1. Policy 1 is de-
pendent on the previous observation, and Policy 2 is blind. ‘∗0’
and ‘∗1’ represent any history that ends in observation 0 and 1,
respectively.

Policy 1 Policy 2
h Pr(α|h) Pr(β|h) Pr(α|h) Pr(β|h)
φ 0.5 0.5 0.5 0.5
∗0 0.9 0.1 0.5 0.5
∗1 0.1 0.9 0.5 0.5

given previous actions. It should be noted that blind policy
actions are not necessarily independent of previous obser-
vations. If action a2 depends on action a1, and observation
o1 depends on a1, then a2 and o1 may not be (statistically)
independent.

A policy and a system together define a complete probabil-
ity distribution on histories. The following convenient no-
tation summarizes the contributions of the policy and the
system for a particular history,

π(a1o1 . . . anon) ≡
n∏

i=1

Pr(ai|a1o1 . . . oi−1)

p(a1o1 . . . anon) ≡
n∏

i=1

Pr(oi|a1o1 . . . ai).

Using this notation the probability of any history is
Pr(h) = π(h)p(h). We will also use the notation,

π(t|h) ≡ π(ht)
π(h)

=
n∏

i=1

Pr(ai|ha1o1 . . . oi−1)

p(t|h) ≡ p(ht)
p(h)

=
n∏

i=1

Pr(oi|ha1o1 . . . ai),

where t = a1o1 . . . anon.

2.1. Predictive State Representations

A test is a sequence of action-observation pairs that may
occur in the future. A test t = a1o1 . . . anon succeeds
if the observation sequence of the test, o1, . . . , on, is ob-
served when the action sequence, a1, . . . , an, is taken. The
null test, ε, is the zero length test that, by definition, always
succeeds. The prediction for a test t from a particular his-
tory h is the probability that the test will succeed, which we
define to be p(t|h).1

1We use a mathematical definition of prediction that dif-
fers from the literature. Traditionally p(t|h) is written as
Pr(o1 . . . on|ha1 . . . an), where the actions of the test appear to
be random variables in the conditional probability. But they are
not. They are best thought of as parameters of the joint distribu-
tion. In this work we are interested in actions as random variables
and so use the more complicated but unambiguous definition.

Learning Predictive State Representations Using Non-Blind Policies

Suppose there exists a finite set of tests, Q, such that the
prediction for any test can be written as a linear combina-
tion of predictions of tests in Q. Then we can model the
system compactly as a predictive state representation. For-
mally, let p(Q|h) be the row vector of predictions for the
tests in Q at history h. So, for all tests t, there exists a col-
umn vector mt such that ∀h p(t|h) = p(Q|h)mt. We will
call such a Q, a set of core tests for the system.

A PSR summarizes histories (i.e., represents state) using
predictions of the core tests. In other words, the vector
p(Q|h) is the PSR’s state representation. After taking ac-
tion a and receiving observation o, we need to update this
state vector of core test predictions. Notice that for q ∈ Q,

p(q|hao) =
p(haoq)
p(hao)

=
p(aoq|h)p(h)
p(ao|h)p(h)

=
p(aoq|h)
p(ao|h)

.

Using the fact that all predictions are linear combinations
of core predictions, we get,

p(q|hao) =
p(Q|h)maoq

p(Q|h)mao
.

So we can compute the new prediction of any core test from
the previous core tests’ predictions. Hence, a PSR consists
of a finite set of core tests Q, an inital prediction vector
p0 ≡ p(Q|φ), and weight vectors maot for all t ∈ Q∪{ε}.
The size of a PSR is linear in the number of actions, obser-
vations, and rank of the system (i.e., |Q|) and is at least as
compact as the smallest POMDP (Singh et al., 2004). or k-
Markov representation of the same system (Littman et al.,
2002).

2.2. Discovery and Learning

One of the advantages of the PSR model is that the repre-
sentation is strictly in terms of observable quantities, i.e.,
tests consisting of actions and observations. This feature
allows PSRs to be learned solely using data from interac-
tion with the system. Extracting a PSR model is often di-
vided into two subproblems. The problem of finding a set
of core tests is called discovery, while finding the initial
prediction and weight update vectors given a set of core
tests is usually termed learning. A number of algorithms
have been successfully shown to perform both discovery
and learning (Singh et al., 2003; James & Singh, 2004;
Rosencrantz et al., 2004; Wolfe et al., 2005; Wiewiora,
2005; McCracken & Bowling, 2006). The algorithms dif-
fer in both method and assumptions (e.g., some algorithms
assume the system can always be reset to the null history
while gathering data.)

A common component in most of the existing algorithms
is Monte Carlo prediction estimation. Estimates of p(t|h)

are collected through interaction with the system and then
used to choose core tests and approximate initial prediction
and weight vectors. Many approaches proceed in an itera-
tive fashion: alternating between gathering data for Monte
Carlo estimates and using the estimates to find core tests
and update vectors. This paper focuses on this broad class
of algorithms, mainly concentrating on how prediction es-
timates are made from data.

Some of the Monte Carlo approaches explicitly specify a
policy used for data collection (James & Singh, 2004).
Other approaches only show results with uncontrolled
systems where there are no actions (Rosencrantz et al.,
2004). Others make no mention of how data is to be gath-
ered (Wolfe et al., 2005; Wiewiora, 2005) using a uniform-
random or other equally blind policy in the experiments.
Regardless of how data is collected, all of the approaches
use the following Monte Carlo estimator for a prediction,

p̂•(a1o1 . . . anon|h) ≡ #ha1o1 . . . anon

#ha1a2 . . . an
,

where #h are counts of the number of times a particu-
lar history is observed and #ha1a2 . . . an is the number
of times the particular sequence of actions is observed af-
ter reaching history h regardless of the interleaved obser-
vations.2 In the next section we examine this estimator
closely showing that it does not always converge to p(t|h).

3. Non-Blind Policies
To date all of the experimental results for Monte Carlo ap-
proaches have involved blind policies. This is either explic-
itly part of the algorithm or a choice of the experimental
setup. However, blind policies are a very narrow class of
policies. It is interesting to consider if these algorithms are
correct outside of this special case.

Theorem 1 p̂•(t|h) is not, in general, an unbiased estima-
tor of p(t|h).

Proof. Let t = a1o1 . . . anon. Then,

E

[
#ha1o1 . . . anon

#ha1a2 . . . an

]
= E

[
E

[
#ha1o1 . . . anon

#ha1a2 . . . an

∣∣∣∣#ha1a2 . . . an

]]
= E

[
E [#ha1o1 . . . anon|#ha1a2 . . . an]

#ha1a2 . . . an

]
= E

[
#ha1a2 . . . an Pr(o1 . . . on|ha1 . . . an)

#ha1a2 . . . an

]
(1)

= Pr(o1 . . . on|ha1 . . . an)

2For algorithms that don’t require the ability to reset the sys-
tem, h more precisely refers to a set of histories or contexts.

Learning Predictive State Representations Using Non-Blind Policies

=
Pr(a1o1 . . . anon|h)

Pr(a1 . . . an|h)
=

p(t|h)π(t|h)
Pr(a1 . . . an|h)

= p(t|h)
∏n

i=1 Pr(ai|ha1o1 . . . oi−1)∏n
i=1 Pr(ai|ha1 . . . ai−1)

, (2)

where 1 follows from the expectation of a binomial and the
rest from basic probability and our notation. The estimator
is only unbiased when the ratio in Equation 2 is one. This is
true only if the policy from history h is conditionally inde-
pendent of observations given actions, i.e., is blind. If the
policy is not blind from history h the estimator is biased.

�

As an example, consider the system in Figure 1 where t =
α0α0 and h = φ.

E [p̂•(t|h)] = Pr(0|α) Pr(0|α0α)
Pr(α|φ) Pr(α|α0)
Pr(α|φ) Pr(α|α)

=
Pr(0|α) Pr(0|α0α) Pr(α|α0)

Pr(0|α) Pr(α|α0) + Pr(1|α) Pr(α|α1)

Using Policy 1 from Table 1, we have,

E [p̂•(t|h)] =
(0.1)(0.9)(0.9)

(0.1)(0.9) + (0.9)(0.1)
= 0.45 6= p(t|h).

Using Policy 2 from Table 1, we have,

E [p̂•(t|h)] =
(0.1)(0.9)(0.5)

(0.1)(0.5) + (0.9)(0.5)
= 0.09 = p(t|h).

The Monte Carlo estimator is in fact only correct when
the data is gathered with a blind policy. As motivated in
the introduction, non-blind policies arise in many impor-
tant learning scenarios, e.g., learning while taking actions
to achieve some goal or observation guided exploration.
Therefore, this is a serious limitation on the majority of
existing PSR discovery and learning algorithms.3 In the
next section we present unbiased Monte Carlo estimators
for both the case where the policy is known and the case
where it is unknown. We then show how non-blind explo-
ration policies can be found and used to speed learning.

4. Corrected Monte Carlo Estimators
In order to construct a PSR from data gathered by a non-
blind policy we need an unbiased Monte Carlo estimate of
predictions. These estimates can then be used in any of
the Monte Carlo discovery and learning algorithms to han-
dle data from an arbitrary policy. We will construct our
estimates from sample trajectories of interaction with the

3The myopic gradient algorithm (Singh et al., 2003), which
does not address discovery, and the constrained gradient algo-
rithm (McCracken & Bowling, 2006) are the two exceptions. Nei-
ther uses Monte Carlo estimates.

system. As above, we use counts, #h, of the number of
times a history occurred in the sample trajectories.

Depending on the circumstance, we may have other knowl-
edge as well. In particular, the non-blind policy used to
gather the data may be known, either because we are given
the policy or because we are actually choosing the policy.
In this case, π(h) is known or computable for any history. It
is also possible that the policy is not known. For example,
the data may have been generated by another agent (e.g., a
human) interacting with the system. We look at each case
in turn.

4.1. Policy is Known

Let us suppose the policy is known. Let,

p̂π(t|h) =
#ht

#h

1
π(t|h)

. (3)

Theorem 2 p̂π(t|h) is an unbiased estimator of p(t|h).

Proof.

E

[
#ht

#h

1
π(t|h)

]
= E

[
E

[
#ht

#h

1
π(t|h)

∣∣∣∣#h

]]
= E

[
E [#ht|#h]
#h π(t|h)

]
= E

[
#h Pr(ht)/ Pr(h)

#h π(t|h)

]
(4)

=
Pr(ht)/ Pr(h)

π(t|h)

=
p(ht)π(ht)

p(h)π(h)π(t|h)
= p(t|h),

where 4 follows from the expectation of a binomial and the
rest from basic probability and our notation. �

Not only is p̂π(t|h) unbiased, we can also compute its vari-
ance conditioned on observing n trajectories reaching his-
tory h.4

V
[
p̂π(t|h)

∣∣#h = n
]

=
V [#ht|#h = n]

n2π(t|h)2

=
n Pr(ht)/ Pr(h)(1− Pr(ht)/ Pr(h))

n2π(t|h)2

=
π(t|h)p(t|h)(1− π(t|h)p(t|h))

nπ(t|h)2

=
p(t|h)(1− π(t|h)p(t|h))

nπ(t|h)

=
p(t|h)

nπ(t|h)
− p(t|h)2

n
.

4Since there is some non-zero probability that no trajectory
will reach history h, the unconditional variance is not defined.

Learning Predictive State Representations Using Non-Blind Policies

Since p(t|h) is not generally known we may want to find
a bound on the variance. In particular, the value of p(t|h)
that maximizes the variance is (2π(t|h))−1. Substituting
we get the following bound,

V [p̂π(t|h)|#h = n] =
p(t|h)

nπ(t|h)
− p(t|h)2

n

≤ 1
2nπ(t|h)2

− 1
4nπ(t|h)2

=
1

4nπ(t|h)2
. (5)

We will use this bound in Section 6.

4.2. Policy is Not Known

Suppose the policy generating the data is not known. Let,

p̂π×(t|h) =
n∏

i=1

#ha1o1 . . . aioi

#ha1o1 . . . ai
, (6)

where t = a1o1 . . . anon.

Theorem 3 p̂π×(t|h) is an unbiased estimator of p(t|h).

Proof. We will prove by induction on n. If n = 1, then
the policy is essentially blind for this test since there are
no preceding observations to condition actions upon. For-
mally,

E

[
#ha1o1

#h

]
= E

[
E

[
#ha1o1

#ha1

∣∣∣∣#ha1

]]
= E

[
#ha1 Pr(o1|ha1)

#ha1

]
= Pr(o1|ha1) = p(a1o1|h).

Now, suppose p̂π× is an unbiased estimator for all n − 1
length tests. Consider a test t of length n.

E

[
n∏

i=1

#ha1o1 . . . aioi

#ha1o1 . . . ai

]

= E

E

 n∏
i=1

#ha1o1 . . . aioi

#ha1o1 . . . ai

∣∣∣∣∣ ∀j ∈ {1, . . . n}
#ha1o1 . . . aj

#ha1o1 . . . oj−1


We’re conditioning on all of the random variables in the
product but #ha1o1 . . . anon. So all but this term can be
pulled outside the inner expectation. The remaining term
is conditionally independent of all of the conditioning vari-
ables but one.

= E

[(∏n−1
i=1

#ha1o1...aioi

#ha1o1...ai

)
E[#ha1o1...anon|#ha1o1...an]

#ha1o1...an

]

= E

[(∏n−1
i=1

#ha1o1...aioi

#ha1o1...ai

)
#ha1o1...an Pr(on|ha1o1...an)

#ha1o1...an

]

= E

[
n−1∏
i=1

#ha1o1 . . . aioi

#ha1o1 . . . ai

]
Pr(on|ha1o1 . . . an)

By the induction hypothesis, the expectation becomes,

=

(
n−1∏
i=1

Pr(oi|ha1o1 . . . ai)

)
Pr(on|ha1o1 . . . an)

=
n∏

i=1

Pr(oi|ha1o1 . . . ai) = p(t|h),

thus concluding the proof. �

5. Exploration in PSRs
With a correct estimate of predictions we can now correctly
incorporate data from non-blind policies when constructing
a PSR. We will use this feature to develop a novel explo-
ration mechanism to speed discovery and learning of PSR
models. Our approach to exploration assumes that data is
gathered in iterations. For each iteration, we will construct
a suitable, non-blind exploration policy to be executed to
gather data. The new estimates will then be combined with
the estimates from the previous iterations. In this section
we describe how to find a suitable exploration policy. In
the next section, we show results of learning using non-
blind exploration policies with the James and Singh reset
algorithm (James & Singh, 2004).

5.1. Combining Estimators

Before we consider how to construct an exploration pol-
icy for the next iteration, we examine how to combine es-
timates from multiple iterations. Since each estimate in-
volves a variable amount of data using a different policy, it
is not a simple matter of averaging estimates.5

Suppose X1 and X2 are unbiased estimates of some un-
known value. We want to find the minimum variance
weighted combination of these two estimates. In other
words, find an α that minimizes,

V [αX1 + (1− α)X2]
= α2V [X1] + (1− α)2V [X2]
= α2(V [X1] + V [X2])− 2αV [X2] + V [X2]. (7)

Taking the derivative with respect to α and setting to zero
gives us,

α =
V [X2]

V [X1] + V [X2]
(8)

5Although any weighted combination of unbiased estimates is
unbiased, we want our weighted combination to have small vari-
ance.

Learning Predictive State Representations Using Non-Blind Policies

=
V [X1]−1

(V [X1] + V [X2])/V [X1]V [X2]

=
V [X1]−1

V [X1]−1 + V [X2]−1
,

and substituting 8 into 7 gives,

V [αX1 + (1− α)X2] = V [X2]−
V [X2]2

V [X1] + V [X2]

=
V [X1]V [X2]

V [X1] + V [X2]

=
(
V [X1]−1 + V [X2]−1

)−1
.

Basically, estimates should be weighted proportionally to
their inverse variance. The inverse variance of the resulting
estimator is just the sum of the individual inverse variances.

5.2. Variance Minimizing Exploration

Monte Carlo based algorithms compute estimates of p(t|h)
for specific sets of tests and histories. Since our estima-
tor is unbiased, we reduce error in the estimate by simply
reducing the variance of the estimates. The problem of ex-
ploration for discovery and learning can be seen as simply
finding a policy that minimizes variance. Or equivalently,
we want a policy that maximizes inverted variance.

We will assume data is gathered in iterations. Let vi(h, t)
be the variance of our estimate p̂(t|h) at iteration i, and
ki the number of trajectories to be sampled for iteration i.
Then,

E
[
vi(h, t)−1

]
= E

[
vi−1(h, t)−1 + V

[
#ht

#h

1
π(t|h)

∣∣∣∣#h

]−1
]

≥ vi−1(h, t)−1 + E
[
4#h π(t|h)2

]
= vi−1(h, t)−1 + 4ki p(h)π(h)π(t|h)2.

We can further bound this term to get,

E
[
vi(h, t)−1

]
≥ vi−1(h, t)−1 + 4ki p(h)π(h)2π(t|h)2

= vi−1(h, t)−1 + 4ki p(h)π(ht)2.

For convenience we seek to maximize the square root of
the expected inverted variance above, which is equivalent
since square root is a monotonic function. We can then use
the fact that square root is a concave function 6 to arrive at
the following final bound,√

E [vi(h, t)−1]

≥
√

vi−1(h, t)−1 + 4ki p(h)π(ht)2

6If f is a concave function f
`

a
2

+ b
2

´
≥ f(a)

2
+ f(b)

2
.

=
√

2

√
vi−1(h, t)−1 + 4ki p(h)π(ht)2

2

≥
√

2
2

(√
vi−1(h, t)−1 +

√
4ki p(h)π(ht)2

)
=

√
2

2

(√
vi−1(h, t)−1 + 2

√
ki p(h)π(ht)

)
.

The Objective. We can now define an optimization prob-
lem to find a policy that will minimize the variance of our
estimates. We cannot simutaneously minimize the variance
of all estimates, since our policy must explicitly trade off
exploring some tests and histories for others. Therefore, we
attempt to minimize the expected variance of the highest-
variance estimate,

argmin
π

max
h,t

E [vi(h, t)] .

As we noted above, this is equivalent to maximizing the
smallest root expected inverse variance.

argmax
π

min
h,t

√
E [vi(h, t)−1].

Root expected inverse variance is well-defined (as opposed
to expected variance), but it is inconvenient from an op-
timization perspective. So we will instead maximize our
lower bound, pushing up root expected inverse variance in
the process. We get the following optimization,

argmax
π

min
h,t

(√
vi−1(h, t)−1 + 2

√
ki p(h)π(ht)

)
, (9)

where the constant factor on the root expected inverse vari-
ance falls out of the optimization. Notice that this problem
is linear in the policy variables π(h), which are essentially
a sequence form representation of the policy (Koller et al.,
1996).

The Constraints. Using the objective from 9, we still
have to constrain the variables π(h) to conform to a valid
representation of policy. In particular, the following con-
straints are sufficient for a policy in sequence form,

1. π(φ) = 1,
2. ∀h, o ∈ O π(h) =

∑
a π(hao), and

3. ∀h, a ∈ A, {o, o′} ⊆ O π(hao) = π(hao′).

Notice that these constraints are all linear in the policy vari-
ables π(h).

The Optimization. We can combine the above linear ob-
jective and linear constraints into a simple linear program.
For each iteration of the discovery and learning algorithm
we receive a list of history-test pairs, the previous esti-
mates’ inverse variances, and the number of trajectories to
be sampled, ki, using the exploration policy. The linear

Learning Predictive State Representations Using Non-Blind Policies

 1e−04

 0.001

 0.01

 0.1 Paint
Te

sti
ng

 E
rr

or Random
Non−blind

Sample Size
 220000 140000 60000

 1e−04

 0.001

 0.01

 0.1

Sample Size
 100000 300000 500000

Random
Non−blind

Te
sti

ng
 E

rr
or

Tiger

 1e−04

 0.001

 0.01

 0.1 Float−reset
Te

sti
ng

 E
rr

or

Sample Size
 0 100000 200000

Non−blind
Random

Figure 2. Results of PSR learning using non-blind policies as compared to blind random policies for three systems. Note that the error
uses a logarithmic scale. See text for details.

program produces the policy variables π(h) for every his-
tory that is a prefix of some history-test pair. The policy
can then be computed,

Pr(a|h) =
π(hao)
π(h)

.

and used to gather data for the next iteration of the algo-
rithm.

6. Results
As mentioned earlier, existing PSR discovery and learning
algorithms use blind policies, as opposed to our algorithm
which computes and follows a non-blind policy. The fol-
lowing experiments evaluate the difference in performance
between these two types of policies. The blind policy used
for these experiments is the uniform-random policy, select-
ing each action with the same probability.

In evaluating PSR discovery and learning algorithms, a
common technique (James & Singh, 2004) is to include a
reset, which is an additional action that brings the system
to a fixed, but unknown, state. Existing work (Wolfe et al.,
2005) shows how to extend discovery and learning algo-
rithms to the more general case without reset. However,
since our objective is just to evaluate the effect of blind and
non-blind policies, our experiments include a reset.

We selected three dynamical systems that are commonly
used in evaluating PSRs and POMDPs, whose definitions
are available online (Cassandra, 1999). Our experimen-
tal method used the reset-based PSR discovery and learn-
ing algorithm (James & Singh, 2004), but used the above
optimization to compute non-blind policies for action se-
lection during exploration. A typical PSR discovery and
learning run involves a number of iterations, each of which
will identify specific histories and tests for which additional
samples would be desirable. During each iteration, these
sets of histories and tests are passed into the linear pro-
gram, along with estimates of p(h) and #h, for appropriate
h. The optimization is run five times for each iteration of
discovery and learning, in order to maintain a reasonably
current exploration policy.

After the discovery and learning algorithm has completed
(see James and Singh (2004) for details on the stopping
condition), the resulting PSR model is evaluated. This is
accomplished by running the model for a long sequence
following the random policy, and computing the average
one-step error. The error for a run is,

1
L

L∑
t=1

∑
o∈O

[Pr(o|htat)− P̂r(o|htat)]2,

where Pr(o|htat) is the true probability of observation o in

Learning Predictive State Representations Using Non-Blind Policies

history ht when the randomly selected action at is taken,
and P̂r(o|htat) is the corresponding prediction from the
estimated model. For these experiments, L = 100, 000.
This procedure tests all the parameters of the PSR model,
not just the parameters for one-step prediction, because the
update procedure, which is used L times, will require the
use of all of the parameters.

Results are presented in Figure 2, displaying data for a
number of different discovery and learning runs for each
system. The x-axis shows the amount of data used for a
particular run, measured by the total number of sample tra-
jectories. Each trajectory begins with the reset action and
continues until the next reset is taken. The y-axis shows the
error as defined above. Note that these graphs use a loga-
rithmic scale, so small differences in the graphs correspond
to order of magnitude improvements in test error.

The test error when using the exploration policy in the paint
domain is dramatically lower than when using the blind
random exploration policy. The improvement is less dra-
matic in the tiger domain, but still amounts to a factor of
two reduction in the amount of data needed to learn a model
with equivalent accuracy. The exploration policy performs
similarly to the random policy in the float-reset domain.
This is not surprising since the the first few core-tests of
the domain are both very easy to learn and are enough to
attain fairly accurate predictions. In addition, it should be
noted that the test error is measured while following the
random policy, which may bias the results in favor of ran-
dom exploration.

7. Conclusion
The Monte Carlo estimator for predictions is integral to
the majority of current algorithms for discovery and learn-
ing in PSRs. The problem, as proven in this paper, is
that it is only an unbiased estimator when a blind policy
is used to gather data. Simple examples demonstrate that
this bias can be extreme depending on the policy. We pro-
vided a corrected Monte Carlo estimator that is unbiased
for all policies, even when the policy is not known. We fur-
ther provided a new variance-minimizing exploration algo-
rithm and demonstrated its improvement over a blind pol-
icy exploration algorithm in common non-Markovian test
domains.

Acknowledgments
We would like to thank Peter Hooper for his initial ob-
servation of the inconsistency of Monte Carlo estimates.
We would also like to thank Richard Sutton for numerous
discussions. This work was partially funded by NSERC,
iCore, and Alberta Ingenuity through the Alberta Ingenuity
Centre for Machine Learning.

References
Cassandra, A. (1999). Tony’s POMDP file repository page.

http://www.cs.brown.edu/research/ai/pomdp/examples/.

James, M. R., & Singh, S. (2004). Learning and discovery
of predictive state representations in dynamical systems
with reset. Proceedings of the 21st International Confer-
ence on Machine Learning (ICML) (pp. 719–726).

Koller, D., Megiddo, N., & von Stengel, B. (1996). Effi-
cient computation of equilibria for extensive two-person
games. Games and Economic Behavior, 14, 247–259.

Littman, M., Sutton, R. S., & Singh, S. (2002). Predictive
representations of state. Advances in Neural Information
Processing Systems 14 (NIPS) (pp. 1555–1561). MIT
Press.

McCracken, P., & Bowling, M. (2006). Online learning
of predictive state representations. Advances in Neural
Information Processing Systems 18 (NIPS). MIT Press.
To appear.

Rosencrantz, M., Gordon, G., & Thrun, S. (2004). Learn-
ing low dimensional predictive representations. Pro-
ceedings of the 21st International Conference on Ma-
chine Learning (ICML) (pp. 695–702).

Singh, S., James, M. R., & Rudary, M. R. (2004). Pre-
dictive state representations: A new theory for model-
ing dynamical systems. Uncertainty in Artificial Intelli-
gence: Proceedings of the Twentieth Conference (UAI)
(pp. 512–519).

Singh, S., Littman, M., Jong, N., Pardoe, D., & Stone, P.
(2003). Learning predictive state representations. Pro-
ceedings of the Twentieth International Conference on
Machine Learning (ICML) (pp. 712–719).

Wiewiora, E. (2005). Learning predictive representations
from a history. Proceedings of the 22nd International
Conference on Machine Learning (ICML) (pp. 969–
976).

Wolfe, B., James, M. R., & Singh, S. (2005). Learning pre-
dictive state representations in dynamical systems with-
out reset. Proceedings of the 22nd International Confer-
ence on Machine Learning (ICML) (pp. 985–992).

