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Abstract

Partially observable Markov decision processes
(POMDPs) are an intuitive and general way to model
sequential decision making problems under uncertainty.
Unfortunately, even approximate planning in POMDPs
is known to be hard, and developing heuristic planners
that can deliver reasonable results in practice has
proved to be a significant challenge. In this paper, we
present a new approach to approximate value-iteration
for POMDP planning that is based on quadratic rather
than piecewise linear function approximators. Specif-
ically, we approximate the optimal value function by
a convex upper bound composed of a fixed number of
quadratics, and optimize it at each stage by semidefinite
programming. We demonstrate that our approach can
achieve competitive approximation quality to current
techniques while still maintaining a bounded size
representation of the function approximator. Moreover,
an upper bound on the optimal value function can be
preserved if required. Overall, the technique requires
computation time and space that is only linear in the
number of iterations (horizon time).

Introduction
Partially observable Markov decision processes (POMDPs)
are a general model of an agent acting in an environment,
where the effects of the agent’s actions and the observations
it can make about the current state of the environment are
both subject to uncertainty. The agent’s goals are specified
by rewards it receives (as a function of the states it visits
and actions it executes), and an optimal behavior strategy in
this context chooses actions, based on the history of obser-
vations, that maximizes the long term reward of the agent.

POMDPs have become an important modeling for-
malisms in robotics and autonomous agent design (Thrun,
Burgard, & Fox 2005; Pineauet al. 2003). Much of the cur-
rent work on robot navigation and mapping, for example, is
now based on stochastic transition and observation models
(Thrun, Burgard, & Fox 2005; Roy, Gordon, & Thrun 2005).
Moreover, POMDP representations have also been used to
design autonomous agents for real world applications, in-
cluding nursing (Pineauet al. 2003) and elderly assistance
(Bogeret al. 2005).
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Despite their convenience as a modeling framework how-
ever, POMDPs pose difficult computational problems. It
is well known that solving for optimal behavior strate-
gies or even just approximating optimal strategies in a
POMDP is intractable (Madani, Hanks, & Condon 2003;
Mundhenket al. 2000). Therefore, a lot of work has focused
on developing heuristics for computing reasonable behavior
strategies for POMDPs. These approaches have generally
followed three broad strategies: value function approxima-
tion (Hauskrecht 2000; Spaan & Vlassis 2005; Pineau, Gor-
don, & Thrun 2003; Parr & Russell 1995), policy based op-
timization (Ng & Jordan 2000; Poupart & Boutilier 2003;
2004; Amato, Bernstein, & Zilberstein 2006), and stochas-
tic sampling (Kearns, Mansour, & Ng 2002; Thrun 2000).
In this paper, we focus on the value function approximation
approach and contribute a new perspective to this strategy.

Most previous work on value function approximation
for POMDPs has focused on representations that explicitly
maintain a set ofα-vectors or belief states. This is motivated
by the fact that the optimal value function, considered as a
function of the belief state, is determined by the maximum
of a set of linear functions—specified byα-vectors—where
eachα-vector is associated with a specific behavior policy.
Since the optimal value function is given by the maximum
of a (large) set ofα-vectors, it is natural to consider approx-
imating it by a subset ofα-vectors, or at least a small set
of linear functions. In fact, even an exact representation of
the optimal value function need not keep everyα-vector,
but only those that are maximal for at least some “wit-
ness” belief state. Motivated by this characterization, most
value function approximation strategies attempt to maintain
a smaller subset ofα-vectors by focusing on a reduced set
of belief states (Spaan & Vlassis 2005; Hauskrecht 2000;
Pineau, Gordon, & Thrun 2003). Although much recent
progress has been made onα-vector based approximations,
a drawback of this approach is that the number ofα-vectors
stored generally has to grow with the number of value iter-
ations to maintain an adequate approximation (Pineau, Gor-
don, & Thrun 2003).

In this paper, we consider an alternative approach that
drops the notion of anα-vector entirely from the approx-
imation strategy. Instead we exploit the other fundamen-
tal observation about the nature of the optimal value func-
tion: since it is determined by a belief-state-wise maxi-



mum over linear functions, the optimal value function must
be a convex function of the belief state (Sondik 1978;
Boyd & Vandenberghe 2004). Our strategy, then, is to com-
pute a convex approximation to the optimal value function
that is based on quadratic rather than linear functions of
the belief state. The advantage of using a quadratic basis
for value function approximation is several-fold: First, the
size of the representation does not have to grow merely to
model an increasing number of facets in the optimal solu-
tion; thus we can keep a bounded size representation at each
horizon. Second, a quadratic representation allows one to
conveniently maintain a provable upper bound on the opti-
mal values in an explicit compact representation without re-
quiring auxiliary linear programming to be used to retrieve
the bound, as in current grid based approaches (Hauskrecht
2000; Smith & Simmons 2005). Third, the computational
cost of updating the approximation does not change with it-
eration number (either in time or space), so the overall com-
putation time is only linear in the horizon. Finally, as we
demonstrate below, despite a significant reduction in rep-
resentation size, convex quadratics are still able to achieve
competitive approximation quality on benchmark POMDP
problems.

Background
We begin with Markov decision processes (MDP) since we
will need to exploit some basic concepts from MDPs in our
approach below. An MDP is defined by a set of statesS,
a set of actionsA, a state transition modelp(s′|s, a), and a
reward modelr(s, a). In this setting, a deterministic policy
is specified by a function from states to actions,π : S → A,
and thevalue functionfor a policy is defined as the expected
future discounted reward the policy obtains from each state

V π(s) = Eπ

[ ∞∑
t=0

γtr(st, π(st))
∣∣∣ s0 = s

]

Here the discount factor,0 ≤ γ < 1, expresses a tradeoff
between short term and long term reward. It is known that
there exists a deterministic optimal policy whose value func-
tion dominates all other policy values in every state (Bert-
sekas 1995). This optimal value function also satisfies the
Bellman equation

V ∗(s) = max
a

r(s, a) + γ
∑

s′
p(s′|s, a)V ∗(s′) (1)

Computing the optimal value function for a given MDP can
be accomplished in several ways. The two ways we consider
below arevalue iterationandlinear programming. Value it-
eration is based on repeatedly applying the Bellman backup
operator,Vn+1 = HVn, specified by

Vn+1(s) = max
a

r(s, a) + γ
∑

s′
p(s′|s, a)Vn(s′) (2)

It can be shown thatVn → V ∗ in the L∞ norm, and thus
V ∗ is a fixed point of (2) (Bertsekas 1995).V ∗ is also the
solution to the linear program

min
V

∑
s

V (s) s.t.V (s)≥r(s, a)+γ
∑

s′
p(s′|s, a)V (s′) (3)

for all s ∈ S anda ∈ A. It turns out that forcontinuous
state spaces, the Bellman equation (1) still characterizes the
optimal value function, replacing the transition probabilities
with conditional densities and the sums with Lebesgue inte-
grals. However, computationally, the situation is not so sim-
ple for continuous state spaces, since the integrals must now
somehow be solved in place of the sums, and (3) is no longer
finitely defined. Nevertheless, continuous state spaces are
unavoidable when one considers POMDP planning.

POMDPs extend MDPs by introducing an observation
modelp(o′|a, s′) that governs how a noisy observationo′ ∈
O is related to the underlying states′ and the actiona. Hav-
ing access to only noisy observations of the state compli-
cates the problem of choosing optimal actions significantly.
The agent now never knows the exact state of the envi-
ronment, but instead must infer a distribution over possi-
ble states,b(s), from the history of observations and ac-
tions. Nevertheless, given an actiona and observationo′
the agent’sbelief statecan be easily updated by Bayes rule

b′(b,a,o′)(s
′) = p(o′|a, s′)

∑
s

p(s′|s, a)b(s)/Z (4)

whereZ = p(o′|b, a) =
∑

s′ p(o′|a, s′)
∑

s p(s′|s, a)b(s).
By the Markov assumption, the belief state is a sufficient

representation upon which an optimal behavior strategy can
be defined (Sondik 1978). Therefore, a policy is naturally
specified in this setting by a function from belief states to
actions,π : B → A, whereB is the set of all possible distri-
butions over the underlying state spaceS (an|S|−1 dimen-
sional simplex). Obviously for any environment with two or
more states there are an infinite number of belief states, and
not every policy can be finitely represented. Nevertheless,
one can still define the value function of a policy as the ex-
pected future discounted reward obtained from each belief
state

V π(b) = Eπ

[ ∞∑
t=0

γtr(bt, π(bt))
∣∣∣ b0 = b

]

wherer(b, a) =
∑

s r(s, a)b(s). Thus, a POMDP can be
treated as an MDP over belief states; that is, a continuous
state MDP. As before, an optimal policy obtains the maxi-
mum value for each belief state, and its value function satis-
fies the Bellman equation (Sondik 1978)

V ∗(b) = max
a

r(b, a)+γ
∑

b′
p(b′|b, a)V ∗(b′)

= max
a

r(b, a)+γ
∑

o′
p(o′|b, a)V ∗(b′(b,a,o′))(5)

Unfortunately, solving the functional equation (5) forV ∗
is hard. Known techniques for computing the optimal value
function are generally based onvalue iteration(Cassandra,
Littman, & Zhang 1997; Zhang & Zhang 2001); although
policy based approaches are also possible (Sondik 1978;
Poupart & Boutilier 2003; 2004). As above, value iteration
is based on repeatedly applying a Bellman backup operator,
Vn+1 = HVn, to a current value function approximation.
In this case, a current lower bound,Vn, is represented by a



finite set ofα-vectors,Γn = {απ′ : π′ ∈ Πn}, where each
α-vector is associated with ann-step behavior strategyπ′.
GivenΓn, the value function is represented by

Vn(b) = max
απ′∈Γn

b · απ′

At each stage of value iteration, the current lower bound is
updated according to the Bellman backup,Vn+1 = HVn,
such that

Vn+1(b) = max
a

r(b, a)+γ
∑

o′
p(o′|b, a)Vn(b′(b,a,o′)) (6)

= max
a

b · ra+γ
∑

o′
b · arg

g(π′,a,o′)
max

π′∈Πn

b · g(π′,a,o′)

= max
a,{o′→π′}

b · αa,{o′→π′} (7)

where we use the quantities

g(π′,a,o′)(s) =
∑

s′
p(o′|a, s′)p(s′|a, s)απ′(s′)

αa,{o′→π′} = ra+γ
∑

o′
g(π′,a,o′)

Once again it is known thatVn → V ∗ in theL∞ norm, and
thusV ∗ is a fixed point of (6) (Sondik 1978).

Although the size of the representation forVn+1 remains
finite, it can be exponentially larger thanVn in the worst
case, since enumerating every possibility fora, {o′ → π′}
overa ∈ A, o ∈ O, π′ ∈ Πn, yields |Πn+1| ≤ |A||Πn||O|
combinations. Many of theseα-vectors are not maximal for
any belief state, and can be pruned by running a linear pro-
gram for each that verifies whether there is a witness belief
state for which it is maximal (Cassandra, Littman, & Zhang
1997). Thus, the set ofα-vectors,Γn, action strategies,Πn,
and witness belief states,Bn, are all associated 1 to 1. How-
ever, even with pruning, exact value iteration cannot be run
for many steps, even on small problems.

Value function approximation strategies
Much research has focused on approximating the optimal
value function, aimed for the most part at reducing the time
and space complexity of the value iteration update. Work
in this area has considered various strategies (Hauskrecht
2000), including direct MDP approximations and variants,
and using function approximation to fitVn+1 over sampled
belief states (Parr & Russell 1995; Littman, Cassandra, &
Kaelbling 1995). However, two approaches have recently
become the most dominant: grid based and belief point ap-
proximations.

The grid based approach (Gordon 1995; Hauskrecht 2000;
Zhou & Hansen 2001; Bonet 2002) maintains a finite col-
lection of belief states along with associated value estimates
{〈b, V̄n(b)〉 : b ∈ Bgrid}. These value estimates are updated
by applying the Bellman update onb ∈ Bgrid. An impor-
tant advantage of this approach is that it can maintain an
upper bound on the optimal value function. Unfortunately,
maintaining a tight bound entails significant computational
expense (Hauskrecht 2000): First,Bgrid must contain all
corners of the simplex so that its convex closure spansB.

Second, each successor belief stateb′ in (6) must have its
interpolated value estimate minimized by a linear program
(Zhou & Hansen 2001). Below we show that this large num-
ber of linear programs can be replaced with a single convex
optimization.

Unlike the grid based approach, which takes a current be-
lief state inBgrid and projects it forward to belief states out-
side ofBgrid, the belief point approach only considers belief
states in a witness setBwit (Pineau, Gordon, & Thrun 2003;
Smith & Simmons 2005). Specifically, the belief point ap-
proximation maintains a lower bound by keeping a subset
of α-vectors associated with these witness belief states. To
further explain this approach, letΓn = {απ′ : π′ ∈ Π̂n},
so that there is a 1 to 1 correspondence betweenα-vectors
in Γn, action strategies in̂Πn and belief states inBwit.
Then the set ofα-vectors is updated by applying the Bell-
man backup, but restricting the choices in (7) toπ′ ∈ Π̂n,
and only computing (7) forb ∈ Bwit. Thus, the number of
α-vectors in each iteration remains bounded and associated
with b ∈ Bwit.

The quality of both these approaches is strongly deter-
mined by the sets of belief points,Bgrid and Bwit, they
maintain. For the belief point approach, one generally has to
grow the number of belief points at each iteration to maintain
an adequate bound on the optimal value function. Pineauet
al. (2003) suggested doubling the size at each iteration, but
recently a more refined approach was suggested by (Smith
& Simmons 2005).

Convex quadratic upper bounds
The key observation behind our approach is that one does
not need to be confined to piecewise linear approximations.
Our intuition is that convex quadratic approximations are
particularly well suited for value function approximation in
POMDPs. This is motivated by the fact that each value iter-
ation step produces a maximum over a set of convex func-
tions, yielding a result that is always convex. Thus, one can
plausibly use a convex quadratic function to upper bound
the maximum overα-vectors, and more generally to upper
bound the maximum over any set of back-projected convex
value approximations from iterationn. Our basic goal then
is to retain a compact representation of the value approxi-
mation by exploiting the fact that quadratics can be more
efficient at approximating a convex upper bound than a set
of linear functions; see Figure 1. As with piecewise linear
approximations, the quality of the approximation can be im-
proved by taking a maximum over a set of convex quadrat-
ics, which would yield a convex piecewise quadratic rather
than piecewise linear approximation. In this paper, however,
we will focus on the most naive choice, and approximate the
value function with asinglequadratic in each step of value
iteration. The subsequent extension to multiple quadratics is
discussed below.

An important advantage the quadratic form has over other
function approximation representations is that it permits a
convex minimization of the upper bound, as we demonstrate
below. Such a convenient formulation is not readily achiev-
able for other function representations. Also, since we are
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Figure 1: Illustration of a convex quadratic upper bound ap-
proximation to a maximum of linear functionsb · απ.

not compelled to grow the size of the representation at each
iteration, we obtain an approach that runs in linear time in
the number of value iteration steps.

There are a few drawbacks in dropping the piecewise lin-
ear representation however. One drawback is that we lose
the 1 to 1 correspondence betweenα-vectors and behavior
strategiesπ′, which means that greedy action selection re-
quires a one step look ahead calculation based on (5). The
second drawback is that the convex optimization problem we
have to solve at each value iteration is more complex than a
simple linear program.

Convex upper bound iteration
The main technical challenge we face is to solve for a tight
quadratic upper bound on the value function at each stage
of value iteration. Interestingly, this can be done effec-
tively with a convex optimization as follows. We repre-
sent the value function approximation over belief states by a
quadratic form

V̂n(b) = b>Wnb + w>n b + ωn (8)

whereWn is a square matrix of weights,wn is a vector of
weights, andωn is a scalar offset weight. Equation (8) de-
fines aconvexfunction of belief stateb if and only if the
matrix Wn is positive semidefinite (Boyd & Vandenberghe
2004). We denote the semidefinite constraint onWn by
Wn º 0. As shown above, one step of value iteration
involves expanding (and back-projecting) a value approxi-
mation from stagen; defining the value function at stage
n + 1 by the maximum over the expanded, back-projected
set. However, back-projection entails some additional com-
plication in our case because we do not maintain a set of
α-vectors, but rather maintain a quadratic function approx-
imation at stagen. That is, our approximate value iteration
step has to pull the quadratic form through the backup op-
erator. Unfortunately, the result of a backup is no longer
a quadratic, but a rational (quadratic over linear) function.
Fortunately, however, the result of this backup is still con-
vex, as we now show.

Let the action-value backup of̂V be denoted by

qa(b) = r(b, a) + γ
∑

o′
p(o′|b, a)V̂ (b′(b,a,o′)) (9)

To express this as a function ofb, we need to expand the
definitions ofb′(b,a,o′) and V̂n respectively. First, note that
b′(b,a,o′) is a ratio of a vector linear function ofb over a scalar
linear function ofb by (4), therefore we can represent it by

b′(b,a,o′) =
Ma,o′b

p(o′|b, a)
=

Ma,o′b

e>Ma,o′b
(10)

where Ma,o′ is a matrix such thatMa,o′(s′, s) =
p(o′|a, s′)p(s′|s, a), ande denotes the vector of all 1s. Sub-
stituting (8) and (10) into (9) yields

qa(b) = r(b, a)+γ
∑

o′

b>M>
a,o′WMa,o′b

e>Ma,o′b
+(w+ωe)>Ma,o′b

Theorem 1 qa(b) is convex inb.

Proof First note thatM>
a,o′WMa,o′ º 0 if W º

0, and therefore it suffices to show that the function
f(b) = (b>Nb)/(v>b) is convex under the assumption
N º 0 and v>b ≥ 0. Note that N º 0 im-
plies N = QQ> for some Q, and thereforef(b) =
(b>QQ>b)/(v>b) = (Q>b)>(v>bI)−1(Q>b). Next,
we use a few elementary facts about convexity (Boyd
& Vandenberghe 2004). First, a function is convex iff
its epigraph is convex, so it suffices to show that the
set {(b, v>bI, δ)|v>bI ≥ 0, (Q>b)>(v>bI)−1(Q>b) ≤
δ} is convex. By the Schur complement lemma,
we have thatδ − (Q>b)>(v>bI)−1(Q>b) ≥ 0 iff[

v>bI Q>b
(Q>b)> δ

]
º 0 and thereforef(b) is convex iff

the set

{
(b, v>bI, δ)|v>bI ≥ 0,

[
v>bI Q>b

(Q>b)> δ

]
º 0

}

is convex. The result then follows because this set can be
written as a linear matrix inequality.

Corollary 1 Given a convex quadratic representation for
V̂n, maxa qa(b), and henceHV̂n, is convex inb.

So back-projecting the convex quadratic representation
still yields a convex result. Our goal is to optimize a tight
quadratic upper bound on the maximum of these convex
functions (which of course is still convex). In some ap-
proaches below we will use the back-projected action-value
functions directly. However, in other cases, it will prove ad-
vantageous if we can work with linear upper bounds on the
back-projections.

Proposition 1 The tightest linear upper bound onqa(b) is
given byqa(b) ≤ u>a b for a vectorua such thatu>a 1s =
qa(1s) for each corner belief state1s.

Algorithmic approach
We would like to solve for a quadratiĉVn+1 at stagen + 1
that obtains as tight an upper bound onHV̂n as possible.
To do this, we appeal to the linear program characterization



of the optimal value function (3) which also is expressed
as minimizing an upper bound on the back-projected value
function. Unfortunately, here, since we are no longer work-
ing with a finite space, we cannot formulate a linear program
but rather have to pose a generalized semi-infinite program

min
W,w,ω

∫

b

(
b>Wb + w>b + ω

)
µ(b) db subject to (11)

b>Wb + w>b + ω ≥ qa(b), ∀ a, b; W º 0

whereµ(b) is a measure over the space of possible belief
states. The semi-infinite program (11) specifies a linear ob-
jective subject to linear constraints (albeit infinitely many
linear constraints); and hence is aconvexoptimization prob-
lem inW , w, ω.

There are two main difficulties in solving this convex op-
timization problem. First, the objective involves an integral
with respect to a measureµ(b) on belief states. This mea-
sure is arbitrary (except that it must have full support on
the belief spaceB) and allows one to control the empha-
sis the minimization places on different regions of the belief
space. For simplicity, we assume the measure is a Dirichlet
distribution, specified by a vector of prior parametersθ(s),
∀s ∈ S. The Dirichlet distribution is particularly convenient
in this context since one can specify a uniform distribution
over the belief simplex merely by settingθ(s) = 1 for all
s. Moreover, the required integrals for the Dirichlet have a
closed form solution, which allows us to simplyprecompute
the linear coefficients for the weight parameters, by
∫

b

(
b>Wb + w>b + ω

)
µ(b)db = 〈W, E[bb>]〉+w>E[b]+ω

where E[b] = θ/‖θ‖1; E[bb>] = (diag(E[b]) +
‖θ‖1E[b]E[b]>)/(1 + ‖θ‖1) (Gelman et al. 1995); and
〈A,B〉 =

∑
ij AijBij . That is, one can specifyθ and com-

pute the linear coefficients ahead of time.
The second and more difficult problem with solving (11)

is to find a way to cope with the infinite number of linear
constraints. Here, we address the problem with a straight-
forward constraint generation approach. The idea is to solve
(11), iteratively, by keeping a finite set of constraints, each
corresponding to a belief state, and solving the finitesemi-
definiteprogram

min
W,w,ω

〈W,E[bb>]〉+ w>E[b] + ω subject to (12)

b>i Wbi + w>bi + ω ≥ qa(bi), ∀ a, bi ∈ C; W º 0

Given a putative solution,W , w, ω, a new constraint can be
obtained by finding a belief stateb that solves

min
b

b>Wb + w>b + ω − qa(b) subject to

b ≥ 0,
∑

s b(s) = 1 (13)

for eacha. If the minimum value is nonnegative for alla
then there are no violated constraints and we have a solution
to (11).

Unfortunately, (13) cannot directly be used for constraint
generation, sinceqa(b) is a convex function ofb (Theorem 1)

and hence−qa(b) is concave; yielding a non-convex objec-
tive. Thus, to use (13) for constraint generation we need to
follow an alternative approach. We have pursued three dif-
ferent approaches to this problem thus far.

Our first strategy maintains a provable upper bound on
the optimal value function by strengthening the constraint
threshold with the linear upper boundu>a b ≥ qa(b) from
Proposition 1. Replacingqa(b) with u>a b in (11) and (13)
ensures that an upper bound will be maintained, but also re-
duces (13) to a quadratic program that can be efficiently min-
imized to produce a belief state with maximum constraint
violation.

Our second strategy relaxes the upper bound guarantee by
only substitutingu>a b for qa(b) in the constraint generation
procedure, maintaining an efficient quadratic programming
formulation there, but keepingqa(b) in the main optimiza-
tion (12). This no longer guarantees an upper bound, but
can still produce better approximations in practice because
the bounds do not have to be artificially strengthened.

Our final strategy side-steps optimal constraint generation
entirely, and instead chooses a fixed set of belief states for
the constraint setC in (12). In this way, the semidefinite pro-
gram (12) needs to be solved only once per value iteration
step. This strategy doesn’t produce an upper bound either
but the resulting approximation is fast and effective in prac-
tice.

Finally, to improve approximation quality, one could aug-
ment the approximate value function representation with a
maximum over a set of quadratics, much as withα-vectors.
One natural way to do this would be to maintain a separate
quadratic for each action,a, in (11).

Experimental results
We implemented the proposed approach using SDPT3 (Toh,
Todd, & Tutuncu 1999) as the semidefinite program solver
for (12). Specifically, in our initial experiments, we have
investigated the third (simplest) strategy mentioned above,
CQUB, which only used a random sample of belief states
to specify the constraints inC. We compared this method
to two current value function approximation strategies in
the literature: Perseus (Spaan & Vlassis 2005), and PBVI
(Pineau, Gordon, & Thrun 2003). Here, both Perseus and
PBVI were run with the number of belief states fixed at
1000, whereas the convex quadratic method, CQUB, was
run with 100 random belief states.

In our initial experiments, we considered the bench-
mark problems: Maze (Hauskrecht 1997), Tiger-
grid, Hallway, Hallway2, Aircraft available from
http://www.cassandra.org/pomdp/examples. Table 1
gives the problem characteristics. In each case, a number
of value iteration steps was fixed as shown in Table 1, and
each method was run 10 times to generate an estimate of
value function approximation quality.

Table 2 shows the results obtained by the various value
function approximation strategies on these domains, report-
ing the expected discounted reward obtained by the greedy
policies defined with respect to the value function estimates,
as well as the average time and the size of the value function



Problems |S| |A| |O| value iters
Maze 20 6 8 40
Tiger-grid 33 5 17 76
Hallway 57 5 21 55
Hallway2 89 5 17 33
Aircraft 100 10 31 10

Table 1: Problem characteristics.

CQUB Perseus PBVI
Maze
Avg. reward 45.35±3.28 30.49±0.75 46.70±2.0
Run time (s) 197.71 60.00 0.66
Size 231 460 1160
Tiger-grid
Avg. reward 2.16±0.02 2.34±0.02 2.25±0.06
Run time (s) 7.5× 103 61.36 28.47
Size 595 4422 15510
Hallway
Avg. reward 0.58±0.14 0.51±0.06 0.53±0.03
Run time (s) 7.5× 103 61.26 39.79
Size 1711 3135 4902
Hallway2
Avg. reward 0.43±0.25 0.34±0.16 0.35±0.03
Run time (s) 1.8× 104 63.72 27.97
Size 4095 4984 8455
Aircraft
Avg. reward 16.70±0.58 12.73±4.63 16.37±0.42
Run time (s) 3.8× 105 60.01 8.03
Size 5151 10665 47000

Table 2: Mean discounted reward obtained over 1000 tra-
jectories using the greedy policy for each value function ap-
proximation, averaged over 10 runs of value iteration.

approximation.1 Interestingly, the convex quadratic strategy
CQUB performed surprisingly well in these experiments,
competing with state of the art value function approxima-
tions while only using 100 random belief states for con-
straint generation in (12). The result is slightly weaker in
the Tiger-grid domain, but significantly stronger in the Hall-
way domains; supporting the thesis that convex quadratics
capture value function structure more efficiently than linear
approaches.

Conclusions
We have introduced a new approach to value function
approximation for POMDPs that is based on a convex
quadratic bound rather than a piecewise linear approxi-
mation. We have found that quadratic approximators can
achieve highly competitive approximation quality without
growing the size of the representation, even while explicitly

1For Perseus and PBVI, the size is|S| times the number ofα-
vectors. For CQUB, the size is just|S|(|S|+1)/2+ |S|+1, which
corresponds to the number of variables in the quadratic approxima-
tor.

focusing on only a tiny fraction of the belief states. We ex-
pect that this approach can lead to new avenues of research
in value approximation for POMDPs.

We are currently considering extensions to this approach
based on belief state compression (Poupart & Boutilier
2002; 2004; Roy, Gordon, & Thrun 2005), and factored
models (Boutilier & Poole 1996; Feng & Hansen 2001;
Poupart 2005) to tackle POMDPs with large state spaces.
We also plan to combine our quadratic value function ap-
proximation with policy based and sampling based ap-
proaches. A further idea we are exploring is the interpre-
tation of convex quadratics as second order Taylor approx-
imations to the optimal value function, which offers further
algorithmic approaches with the potential for tight theoreti-
cal guarantees on approximation quality.
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