
Bayesian Calibration for Monte Carlo Localization

Armita Kaboli∗ and Michael Bowling† and Petr Musilek∗

University of Alberta
Edmonton, Alberta, Canada

armita@ece.ualberta.ca, bowling@cs.ualberta.ca, musilek@ece.ualberta.ca

Abstract

Localization is a fundamental challenge for autonomous
robotics. Although accurate and efficient techniques now ex-
ist for solving this problem, they require explicit probabilistic
models of the robot’s motion and sensors. These models are
usually obtained from time-consuming and error-prone mea-
surement or tedious manual tuning. In this paper we exam-
ine automatic calibration of sensor and motion models from
a Bayesian perspective. We introduce an efficient MCMC
procedure for sampling from the posterior distribution of the
model parameters. We also present a novel extension of par-
ticle filters to make use of our posterior parameter samples.
Finally, we demonstrate our approach both in simulation and
on a physical robot. Our results demonstrate effective infer-
ence of model parameters as well as a paradoxical result that
using posterior parameter samples can produce more accurate
position estimates than the true parameters.

Introduction
Estimation of a mobile robot’s position from sensor and
odometry readings, or localization, is a prerequisite of most
tasks for autonomous robots. Solutions to robot localization
have become well established over the past decade. In situa-
tions where a unimodal distribution can adequately represent
position uncertainty, the Kalman filter (Kalman 1960) and
extensions (Julier & Uhlmann 2004), have proven effective.
In situations requiring a multimodal representation, Monte
Carlo localization (MCL) based on particle filtering (Fox et
al. 1999; Thrun et al. 2000) is a robust solution.

All of these techniques for localization require probabilis-
tic models of the robot’s motion and sensors. The accuracy
of the resulting position estimates naturally depends upon
the accuracy of these models. Finding accurate models, or
calibration, traditionally involves a combination of expert
knowledge, manual measurement, and hand tuning. As a re-
sult, calibration of a robot’s motion and sensor models can
be tedious and error-prone. It becomes a more serious prob-
lem when one considers that a robot’s physical properties
(e.g., tire inflation and motor wear) and the details of the

∗Department of Electrical and Computer Engineering.
†Department of Computing Science.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

environment (e.g., surface friction, lighting, and obstacle re-
flectivity) are always changing. When faced with new sen-
sors, locomotion mechanisms, or even environmental con-
ditions, calibration can be a serious hurdle. For example,
consider modelling a laser range-finder outdoors with falling
snow, or a legged robot walking on a very soft surface for the
first time.

This paper proposes a technique for automatic calibration
of motion and sensor models for use with Monte Carlo local-
ization. We take a Bayesian approach to the problem. First,
we encode our expertise as a prior distribution over a param-
eterization of possible models. Then, after gathering data
from the robot, we compute the posterior distribution over
model parameters conditioned on this data. In particular, we
describe an efficient Markov chain Monte Carlo (MCMC)
procedure for sampling from this posterior distribution. We
also introduce a novel extension to Monte Carlo localization
that makes use of our posterior model samples.

The rest of the paper is organized as follows. First, we
introduce Monte Carlo localization along with a brief sum-
mary of Markov chain Monte Carlo techniques. We then
present our Bayesian calibration algorithm and describe how
to use the posterior model samples in localization. We
present results of our algorithm both in simulation and on a
quadruped robot with vision as the primary sensor. Not only
do we demonstrate effective calibration, but we also show
paradoxical results that localization using the posterior can
result in better accuracy than localization with the true pa-
rameters. Finally, we relate our approach to other work on
automatic calibration, and then conclude.

Background
Monte Carlo localization (Fox et al. 1999) is basically the
application of particle filtering to the problem of robot pose
estimation. Let xt be the vector of the robot’s pose (e.g.,
position and orientation) at time t. Let ut be the robot’s ac-
tion to reach time t and zt be the subsequent vector of sensor
readings. Let x1:t be the sequence x1, . . . , xt (similarly for
u1:t and z1:t). Then, Monte Carlo localization is concerned
with characterizing the distribution Pr(xT |z1:T , u1:T), based
on a given motion and sensor model.

A common practical assumption of motion and sensor
models are that they are Markovian, i.e., future pose and cur-
rent observation are conditionally independent of any pre-

vious pose and observation given the present pose. There-
fore, the motion model can be defined simply as the distribu-
tion Pr(xt|xt−1, ut) and the sensor model as the distribution
Pr(zt|xt). This also allows localization to be performed in
an online fashion. Pr(xt+1|z1:t+1, u1:t+1) is computed from
Pr(xt|z1:t, u1:t), ut+1, and zt+1.

Particle Filtering. Particle filters approximate the target
distribution with a set of samples: x

(i)
t ∀i = 1 . . . n. These

samples are computed recursively using importance sam-
pling. A sample is first generated from a candidate distri-
bution based on the motion model. Its importance sampling
weight is then computed using the sensor model.

x̂
(i)
t ∼ Pr(xt|x(i)

t−1, ut) (1)

w
(i)
t = Pr(zt|x̂(i)

t) (2)

In Equation 1 x
(i)
t−1 is assumed, by the recursive na-

ture of particle filters, to be sampled according to
Pr(xt−1|z1:t−1, u1:t−1). Therefore x̂

(i)
t is a sample of

Pr(xt|z1:t−1, u1:t), which is not quite the target distribution
but differs from it by a factor proportional to Pr(zt|xt). This
is corrected by the importance sampling weight. Our new
particles are then obtained by drawing n samples from x̂

(i)
t

proportionally to w
(i)
t with replacement.

Particle Smoothing. In some situations one wishes to
sample a complete trajectory, i.e., sample x̄1:T according
to Pr(x1:T |z1:T , u1:T). Particle smoothing is a method for
drawing a sample trajectory by first performing particle fil-
tering to compute x̂

(i)
1:T and w

(i)
1:T . The sample trajectory

is then computed (backwards) recursively using importance
sampling. Specifically, x̄t−1 is sampled from x̂

(i)
t−1 with

probability proportional to w
(i)
t−1Pr(x̄t|x̂(i)

t−1, ut).
We can derive this procedure from the recursive distribu-

tion we are seeking to sample from.

Pr(xt−1|z1:T , u1:T , xt:T)
= Pr(xt−1|z1:t−1, u1:t, xt) (3)
= Pr(xt|z1:t−1, u1:t, xt−1)Pr(xt−1|z1:t−1, u1:t)/Z (4)
= Pr(xt|xt−1, ut)Pr(xt−1|z1:t−1, u1:t−1)/Z (5)
= Pr(xt|xt−1, ut)Pr(zt−1|z1:t−2, u1:t−1, xt−1)

Pr(xt−1|z1:t−2, u1:t−1)/Z ′ (6)
= Pr(xt|xt−1, ut)Pr(zt−1|xt−1)

Pr(xt−1|z1:t−2, u1:t−1)/Z ′, (7)

where Z and Z ′ are normalization constants, Equations
3, 5, and 7 follow from the conditional independence of
the Markov assumption, and Equations 4 and 6 follows
from Bayes’ rule. Since x̂

(i)
t−1 is sampled according to

Pr(xt−1|z1:t−2, u1:t−1), the importance sampling correction
terms w

(i)
t−1Pr(x̄t|x̂(i)

t−1, ut) account for the remaining terms
in 7.

Parameterized Models. We are interested in calibrating
motion and sensor models and so we assume that we are
given models that depend on some vector of parameters θ.

Our motion model now takes the form Pr(xt|xt−1, ut, θ),
and similarly our sensor model takes the form Pr(zt|xt, θ).
In the above description of particle filtering and particle
smoothing, all of the probabilities now carry an implicit con-
ditional on θ.

Markov Chain Monte Carlo Methods. As Markov chain
Monte Carlo (MCMC) methods are an important founda-
tion of our Bayesian calibration algorithm, we give a brief
synopsis of the basic ideas. Neal’s technical report (1993)
should be consulted for a full tutorial. MCMC techniques
seek to efficiently sample from probability distributions that
are expensive or impossible to do so directly. They construct
an ergodic Markov chain whose stationary distribution is the
target distribution for sampling. This chain is then simulated
for a sufficiently long period of time to be sure its distribu-
tion is near the stationary distribution.

In particular, consider sampling from the joint distribution
Pr(q1, . . . , qn), where the qi’s are not independent. Let qi =
qi
1, . . . , q

i
n be the ith state in the Markov chain. Define,

qi
j=(i mod n)

∼ Pr(qj |qi−1
1 , . . . , qi−1

j−1, q
i−1
j+1, . . . , q

i−1
n)

qi
j 6=(i mod n)

= qi−1
j

In other words, the (i mod n)th variable is sampled from
the conditional distribution given the other variables, and so
each variable is conditionally sampled in turn. This is known
as Gibbs sampling. It is easy to observe that the joint distri-
bution is the stationary distribution of this Markov chain, as
each step of the chain either leaves a variable (and therefore
its distribution) unchanged or samples from the desired con-
ditional. As long as all the conditional probabilities are non-
zero, then this chain is also ergodic, and therefore simulating
the Markov chain can be used to approximately sample the
joint distribution Pr(q1, . . . , qn).

Gibbs sampling is ideal for sampling from difficult joint
distributions when the conditional distribution can be sam-
pled easily. In some situations this is still expensive or im-
possible. Metropolis sampling provides an alternative when
the joint density can be computed efficiently. The idea is to
generate a possible next state in the chain q̂i from a candi-
date distribution that typically involves small Gaussian sam-
pled perturbations to the (i mod n)th variable of qi−1. The
candidate is accepted and becomes qi with probability equal
to the acceptance function,

A(qi−1, q̂i) = min
(

1,
Pr(q̂i)

Pr(qi−1)

)
. (8)

Otherwise it remains unchanged, i.e., qi = qi−1. As long as
the candidate distribution is non-zero everywhere, the chain
can be shown to be ergodic with the stationary distribution
equal to the joint distribution. We will make use of both
Gibbs and Metropolis sampling in the next section.

Bayesian Calibration
In this section we describe our procedure for automatic cal-
ibration of motion and sensor models. In our Bayesian ap-
proach, we are given training data D = (ū1:T , z̄1:T) and a

prior distribution over model parameters Pr(θ). Our goal is
to characterize the distribution, Pr(θ|D). As this distribution
does not have a simple closed form, we will employ Markov
chain Monte Carlo techniques to sample from this posterior
distribution.

We begin by reformulating the posterior distribution by
marginalizing over the robot’s unknown trajectory,

Pr(θ|D) =
∫

x̄1:T

Pr(θ, x̄1:T |D). (9)

Our approach is to draw samples from the joint distribution,

(θ(i), x
(i)
1:T) ∼ Pr(θ, x̄1:T |D), (10)

and as a result θ(i) will be sampled according to the de-
sired posterior distribution Pr(θ|D). The joint distribution in
Equation 10 can be sampled using the Gibbs method, where
each variable is repeatedly sampled in turn, conditioned on
the other variables. Gibbs’ sampling requires that the condi-
tional distributions,

x̄1:T ∼ Pr(x̄1:T |θ,D) (11)
θ ∼ Pr(θ|x̄1:T ,D), (12)

be easy to sample. Recall that particle smoothing, for partic-
ular model parameters, samples complete trajectories given
sequences of observations and actions. This is precisely
what is required in Equation 11. Unfortunately, Equation 12
is not so conveniently sampled.

The other approach is to use the Metropolis sampling
method, which requires that the joint density be easily com-
puted. We can manipulate the joint density into a product of
the prior and motion and sensor model densities.

Pr(θ, x̄1:T |D)
= Pr(x̄1:T , z̄1:T |θ, ū1:T)Pr(θ)/Z (13)

=
Pr(θ)

Z

T∏
t=1

Pr(x̄t, z̄t|x̄1:t−1, z̄1:t−1, ū1:T , θ) (14)

=
Pr(θ)

Z

T∏
t=1

(
Pr(x̄t|x̄1:t−1, z̄1:t−1, ū1:T , θ)

Pr(z̄t|x̄1:t, z̄1:t−1, ū1:T , θ)

)
(15)

=
Pr(θ)

Z

T∏
t=1

Pr(x̄t|x̄t−1, ūt, θ)Pr(z̄t|x̄t, θ), (16)

where Z is a normalization constant, Equation 13 follows
from Bayes’ rule and the assumption that the robot’s actions
are independent of the model parameters, and Equation 16
follows from the conditional independence of the Markov
assumption given the model parameters.

Our Algorithm. Since we can efficiently sample from one
of the conditional distributions and efficiently evaluate the
joint density, we employ a hybrid MCMC approach. In one
step, we use particle smoothing to sample a complete trajec-
tory as in the Gibbs method. In the second, we use a can-
didate and acceptance function based on the joint density as
in the Metropolis method. Specifically, we generate a candi-
date by making a small Gaussian perturbation to a single di-
mension of the parameter vector. The candidate is accepted

Table 1: Bayesian calibration algorithm. The parameter N
is the number of steps of change after burn-in; r is the rate of
including data, and m is the number of Metropolis iterations
per Gibbs step.

1. Given training data D and parameters N , r, m.
2. Initialize Markov chain.

θ(0) ∼ Pr(θ)
3. For i← 1 up to (N + T

r
):

(a) Sample a trajectory.
` ← min(T, i× r)

x(i) ← PARTICLESMOOTHING(z̄1:`, ū1:`, θ
(i−1))

(b) Sample model parameters.

θ(i) ← θ(i−1)

Repeat m times: For j ← 1 up to d:
i. Generate candidate.

δk ← SAMPLENORMAL(0, σ2
k)

θ̂k ← θ
(i)
k +


δk if k = j
0 otherwise

ii. Accept candidate.
p ← SAMPLEUNIFORM(0, 1)

θ(i) ←

(
θ̂ if p < min

“
1, Pr(θ̂,x̄1:`|D1:`)

Pr(θ,x̄1:`|D1:`)

”
θ(i) otherwise

4. Return samples (θ(i), x(i)) for i =
`

T
r

+ 1
´
. . .

`
T
r

+ N
´
.

using the acceptance function from Equation 8. Combined
with Equation 16 we get the acceptance probability,

A(θ, θ̂) = min

(
1,

Pr(θ̂, x̄1:T |D)
Pr(θ, x̄1:T |D)

)
=

min

(
1,

Pr(θ̂)
Pr(θ)

T∏
t=1

Pr(x̄t, |x̄t−1, ūt, θ̂)Pr(z̄t|x̄t, θ̂)
Pr(x̄t, |x̄t−1, ūt, θ)Pr(z̄t|x̄t, θ)

)
.

(17)

This process of accepting or rejecting a candidate perturba-
tion is then repeated for each dimension of the parameter
vector. The Markov chain is generated by simply alternating
between these two steps.

The stationary distribution of this hybrid MCMC ap-
proach remains the joint distribution, since each individual
step is known not to affect the stationary distribution (Neal
1993). As long as the conditional distributions and candi-
date perturbation distributions are everywhere non-zero then
the chain is also ergodic, and therefore samples of the chain
(θ(i), x̄

(i)
1:T) approximate samples from the target joint distri-

bution. The full procedure is outlined in Table 1.

Additional Details. There are two additional details that
can speed convergence and improve robustness. First, no-
tice that Step 3(a) is the costly operation in Table 1. It in-
volves 2Tn evaluations of the motion and sensor models,
where n is the number of particles used in particle filtering.
Step 3(b) only requires 2Td evaluations of the motion and
sensor models, where d � n is the number of model pa-
rameters. We repeat Step 3(b) multiple times (no more than

n/d) before returning to Step 3(a). This makes the Metropo-
lis sampling step closer to a true Gibbs step, and speeds con-
vergence, while having little effect on running time.

Second, we don’t use the entire training sequence when
computing the acceptance probability in early steps of the
chain. Instead, we only use the first min(T, r × i) observa-
tions and actions of D in the ith step of the chain, where r is
a parameter of the algorithm. The idea is that when a small
amount of training data is added, the new posterior distri-
bution of θ is not far from the posterior distribution without
the additional data. By adding in training data slowly, the
chain’s current sample of θ (with less data) will be closely
distributed to the new posterior (with more data). This will
result in candidate parameter perturbations having higher ac-
ceptance probabilities and therefore faster convergence.

Posterior Parameter Samples
In the previous section we described a procedure for drawing
samples of model parameters θ(i) from the model posterior.
What still remains is to show how to use the parameter sam-
ples with Monte Carlo localization. The simplest approach
is to choose some single parameter vector based on the sam-
ples and use this when doing particle filtering. One straight-
forward method using this approach is to use the parameters’
sample mean,

θmean =
∑N

i=1 θ(i)/N. (18)

Another simple method is to choose the maximum a poste-
riori (MAP) sample from the Markov chain,

θMAP = argmax
i={1,...,n}

Pr(θ(i), x
(i)
1:T |D), (19)

using Equation 16. We present accuracy results using both
methods in the next section. Neither, though, are properly
Bayesian, making use of the uncertainty inherent in the pos-
terior samples. The Bayesian approach is to construct poste-
rior motion and sensor models. A fully Bayesian approach,
though, would result in non-Markov models since the next
state and observation would no longer be independent of his-
tory. As we are taking a batch approach to calibration, we
only base our posterior models on the training data, ignor-
ing new observations. Essentially, we are assuming that the
model parameters are conditionally independent of new data
given the training data (we call this the batch assumption in
the derivation below.) As the size of the training data set
increases this assumption becomes more and more justified.

Posterior Motion Model. We derive a posterior motion
model by integrating over the unknown model parameters,

Pr(xt|xt−1, ut,D)

=
∫

θ

Pr(xt|xt−1, ut,D, θ)Pr(θ|xt−1, ut,D) (20)

=
∫

θ

Pr(xt|xt−1, ut, θ)Pr(θ|D), (21)

where Equation 21 follows from conditional independence
of the training data given the model parameters and the
batch assumption. We can sample from this distribution

by simply sampling θ ∼ Pr(θ|D) and then sampling xt ∼
Pr(xt|xt−1, ut, θ). Since θ(i) are samples from the model
parameter posterior, we can do approximate sampling by
choosing i ∈ {1, . . . N} with uniform probability and then
drawing the sample of xt using the parameters θ(i).

Posterior Sensor Model. For the posterior sensor model,
we can again derive a posterior by integrating over the un-
known model parameters,

Pr(zt|xt,D) =
∫

θ

Pr(zt|xt,D, θ)Pr(θ|xt,D) (22)

=
∫

θ

Pr(zt|xt, θ)Pr(θ|D), (23)

using conditional independence and the batch assumption
as was done with the posterior motion model. This can be
approximated using a Monte Carlo estimate with samples
of θ drawn from the posterior distribution. Since θ(i) are
samples from the posterior,

Pr(zt|xt,D) ≈
N∑

i=1

1
N

Pr(zt|xt, θ
(i)). (24)

We make one additional practical assumption. Rather than
summing over all of the posterior model parameter samples,
we will subsample k < N , and use the mean observation
likelihood as our approximate posterior likelihood.

Summary. We have described three methods for incorpo-
rating the posterior model samples into Monte Carlo local-
ization. The first two involve selecting a single vector of
model parameters using either the mean of the samples or
the maximum a posteriori sample. The third method approx-
imates the full posterior models given the training data. We
now examine the effectiveness of our Bayesian calibration
procedure as well as the resulting localization accuracy of
all three of these approaches.

Results
We applied our Bayesian calibration technique to two differ-
ent robots: a simulated wheeled robot, and a real quadruped
robot. In both scenarios, the calibration procedure was ap-
plied to two different amounts of training data, one small
and one large, to examine the effect of the amount of train-
ing. The posterior samples from calibration were then used
with MCL (with n = 500) using the three described meth-
ods. The resulting localization accuracy is compared to lo-
calization with both the mean of the prior (called “prior”)
and, in the case of the simulated robot, the true parameter
values (called “true”) as baselines.

Simulated Amigobot. Amigobot is a wheeled robot,
equipped with eight sonar sensors, six on the front side and
two on the back. We examined localization on a simulated
Amigobot using all eight sonar sensors and odometry. The
robot was given a map of an asymmetric “L”-shaped room
3 × 3 meters in size. The motion model consisted of inde-
pendent zero-mean Gaussian noise added to the odometry’s
measurements of forward movement, rotation, and sideways

8 10 12 14

0.8

1

1.2

1.4

1.6

forward noise std(mm)

si
de

w
ay

s
no

is
e

st
d(

m
m

)
1.5 2 2.5

15

20

25

30

35

40

rotation noise std(deg)

se
ns

or
 n

oi
se

 s
td

(m
m

)
8 10 12 14

0.6

0.8

1

1.2

1.4

1.6

forward noise std(mm)

si
de

w
ay

s
no

is
e

st
d(

m
m

)

1.5 2 2.5

15

20

25

30

35

40

rotation noise std(deg)
se

ns
or

 n
oi

se
 s

td
(m

m
)

Figure 1: Amigobot posterior parameter samples with small
(top) and large (bottom) amount of training. The lines show
the true parameters used in the training data.

drift (always zero). The sensor model consisted of indepen-
dent identically distributed zero-mean Gaussian noise added
to the sonar’s ideal reading. Thus, there are four parameters
corresponding to the standard deviations of the model noise.

For calibration we constructed a prior distribution over
the parameters using independent gamma distributions. The
true parameter vector, by which the training and test data
sets were generated, was then sampled from this distribu-
tion. Bayesian calibration was applied to both sets of short
(400 seconds) and long training data (2000 seconds). The
parameter samples returned from a sample run of calibra-
tion, along with lines corresponding to the true parameters,
are shown in the scatter plots of Figure 1. One might ex-
pect that the posterior samples will focus around the true pa-
rameters, with tighter distributions with more training. The
posterior is getting more concentrated with training, but not
necessarily around the true parameters. What’s more impor-
tant, though, is localization accuracy.

The posterior parameter samples were used in MCL with
all three methods: mean, MAP, and posterior, measuring the
accuracy of the estimated position on 10 minutes of test data.
The localization accuracy for all three methods as well as
the true and prior baselines are shown in Figure 2. Accura-
cies were averaged over six runs of calibration and evaluated
with thousands of test trajectories. Notice that the mean and
MAP methods result in a significant improvement over the
starting prior, and continue to improve with more data. In
addition, they outperform localization using the true values!
This paradox will be considered in more detail below, but
this may suggest why the posterior parameters do not con-
centrate around the true parameters.

AIBO. The Sony AIBO ERS-7 is a four-legged robot with
a CMOS color camera as the primary sensing device. This
robot is used in the RoboCup Legged League. Our experi-
ments used a similar environment, i.e., bi-colored landmarks
at the corners of a 2.7 × 1.8 meter field for localization.
We extract two visual features for each visible landmark
in the camera: the number of pixels and the relative angle
to the landmark. The motion model is identical to the one
used with Amigobot. The sensor model assumes indepen-
dent Gaussian noise is added to the angle and the ratio of

Localization Mean Error for Simulated Amigobot

18.5

19

19.5

20

20.5

21

True Prior Mean MAP Posterior

Methods

M
e

a
n

 E
rr

o
r

Long Training Short Training

Figure 2: Amigobot localization results with 95% confi-
dence intervals.

35 40 45
6

8

10

12

14

forward noise std(mm)

si
de

w
ay

s
no

is
e

st
d(

m
m

)

0.08 0.09 0.1 0.11
6

8

10

12

14

rotation noise std(rad)

si
de

w
ay

s
no

is
e

st
d(

m
m

)

6 8 10 12

0.04

0.06

0.08

0.1

0.12

pixel noise std(%)

an
gl

e
no

is
e

st
d(

ra
d)

35 40 45
6

8

10

12

14

forward noise std(mm)

si
de

w
ay

s
no

is
e

st
d(

m
m

)

0.08 0.09 0.1 0.11
6

8

10

12

14

rotation noise std(rad)

si
de

w
ay

s
no

is
e

st
d(

m
m

)

6 8 10 12

0.04

0.06

0.08

0.1

0.12

pixel noise std(%)

an
gl

e
no

is
e

st
d(

ra
d)

Figure 3: AIBO posterior parameter samples with small
(top) and large (bottom) amount of training.

the number of observed pixels and the ideal number of pix-
els. Thus, there are five standard deviation parameters in the
model, and we used independent gamma distributions for
the priors based on our existing experience with the robot.

Like the Amigobot experiment, calibration is performed
using a short (400 seconds) and long training set (1000 sec-
onds). Figure 3 shows the posterior samples of a sample run
of calibration on both sized training sets. Localization accu-
racy was then measured on a single sixteen minute test tra-
jectory with ground truth gathered from an overhead camera
with results shown in Figure 4. Localization over this same
test trajectory was repeated and the 95% confidence intervals
are shown. In this case, all three posterior sample methods
outperform the mean of the prior. As before, we also see that
error improves with more training data.

Outperforming the True Parameters. The results in Fig-
ure 2 seem at first glance impossible: if we use the true pa-
rameters then MCL should compute the true posterior, and
error should be as low as possible. Recall, though, that
particle filtering is only an approximation to the true pos-
terior. With a finite number of particles, the inexactness of
the approximation leaves room for improvement. Since our
Bayesian calibration algorithm uses the same approximation
when performing particle smoothing, it can actually com-
pensate. In particular, the MCMC methods will favor param-

115

120

125

130

135

140

Prior Mean MAP Posterior

Methods

M
e
a
n

 E
rr

o
r(

m
m

)
Long Training Short Training

Figure 4: AIBO localization results with 95% confidence
intervals.

eters that are more robust to the approximation as they will
have higher posterior probability. This paradox deserves fur-
ther exploration but it suggests that Bayesian calibration can
find parameters well-suited to the number of particles.

Related Work
Although accurate motion and sensor models are key ingre-
dients to accurate localization, the problem of calibration
has not received much attention in the robotics literature.
Roy and Thrun (1999) use a maximum likelihood estimator
for odometry calibration. They identify bias in the robot’s
odometry online. The procedure, though, does not estimate
a full probability distribution, instead assuming the odome-
try noise model is known. Eliazar and Parr (2004) go a step
further, using an Expectation-Maximization (EM) approach
to estimate a maximum likelihood motion model including
its full distribution. Neither approach though deals with cal-
ibrating the sensor model. Stronger and Stone (2005) cal-
ibrate both the sensor and motion model, but as with Roy
and Thrun their model is not probabilistic: only describing
the mean instead of a full distribution. Consequently, it can-
not readily be used in Monte Carlo localization.

In the more general state estimation community, calibra-
tion is more commonly referred to as model estimation.
In model estimation, one traditional approach is to include
model parameters in the state vector. State estimation will
then, in theory, estimate both the posterior distribution of the
system’s state and the posterior distribution of the model pa-
rameters. This method performs very poorly in the context
of particle filtering, as the only model parameters that are
ever considered are those sampled at the start of the filter.
One solution is to add artificial noisy dynamics to the model
to avoid impoverishment (Liu & West 2000). Another solu-
tion is to use a particle’s state trajectory as an implicit rep-
resentation of the distribution of parameters (Storvik 2002).
Sufficient statistics can be tracked for each particle to make
this efficient, but it prevents its use with common models
employed in robotics (e.g., mixtures of distributions).

Andrews (2005) takes an approach very similar to ours,
using MCMC to estimate the posterior distribution of model
parameters conditioned on observed data. He focuses on the
class of Nonlinear State-Space Models, which prevents its
use with many robotics models (e.g., bimodal noise distri-

butions due to false positives.) In addition, he uses sets of
trajectories and samples in his Markov chain, which can add
to the computational cost.

Conclusion
In this paper, we presented a Bayesian approach to calibra-
tion for Monte Carlo localization. We described an efficient
MCMC procedure for sampling from the posterior distribu-
tion of the model parameters conditioned on robot data. We
also showed a novel method for using the posterior sam-
ples in localization. We demonstrated the effectiveness of
our technique both in simulation and on a physical robot.
We also presented the paradoxical result that using posterior
samples in localization can result in better accuracy than the
true parameters. In the future we hope to gain a better un-
derstanding of this counter-intuitive result. We also plan to
apply this technique to more complex model spaces that in-
volve a larger numbers of parameters.

References
Andrews, M. W. 2005. Bayesian learning in nonlinear
state-space models. Unpublished manuscript.
Eliazar, A. I., and Parr, R. 2004. Learning probabilistic
motion models for mobile robots. In Twenty-First Interna-
tional Conference on Machine learning.
Fox, D.; Burgard, W.; Dellaert, F.; and Thrun, S. 1999.
Monte carlo localization: Efficient position estimation for
mobile robots. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence. 343–349.
Julier, S. J., and Uhlmann, J. K. 2004. Unscented filter-
ing and nonlinear estimation. Proceedings of the IEEE
92(3):401–422.
Kalman, R. E. 1960. A new approach to linear filtering and
prediction problems. Journal of Basis Engineering 82:35–
45.
Liu, J., and West, M. 2000. Combined parameter and
state estimation in simulation-based filtering. In Doucet,
A.; Freitas, J. F. G. D.; and Gordon, N. J., eds., Sequen-
tial Monte Carlo Methods in Practice. New York. Springer-
Verlag, New York.
Neal, R. 1993. Probabilistic inference using markov chain
monte carlo methods. Technical Report CRG-TR-93-1,
University of Toronto.
Roy, N., and Thrun, S. 1999. Online self-calibration for
mobile robots. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2292–2297.
Storvik, G. 2002. Particle filters for state-space models
with the presence of unknown static parameters. IEEE
Transactions on Signal Processing 50:281–289.
Stronger, D., and Stone, P. 2005. Simultaneous calibration
of action and sensor models on a mobile robot. In IEEE
International Conference on Robotics and Automation.
Thrun, S.; Fox, D.; Burgard, W.; and Dellaert, F. 2000. Ro-
bust monte carlo localization for mobile robots. Artificial
Intelligence 128(1-2):99–141.

