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Abstract

Planning involves using a model of an agent’s ac-
tions to find a sequence of decisions which achieve
a desired goal. It is usually assumed that the mod-
els are given, and such models often require ex-
pert knowledge of the domain. This paper ex-
plores subjective representations for planning that
are learned directly from agent observations and ac-
tions (requiring no initial domain knowledge). A
non-linear embedding technique called Action Re-
specting Embedding is used to construct such a rep-
resentation. It is then shown how to extract the
effects of the agent’s actions as operators in this
learned representation. Finally, the learned repre-
sentation and operators are combined with search to
find sequences of actions that achieve given goals.
The efficacy of this technique is demonstrated in a
challenging robot-vision-inspired image domain.

1 Introduction
Planning, at its essence, involves searching an appropriately
defined state space. This state space is a consequence of the
agent’s model of the effects of its actions (e.g., STRIPS[Fikes
and Nilsson, 1971], Markov Decision Processes[Puterman,
1994]). It is assumed that these models can be defined from
domain experts and planning uses these models to find se-
quences of actions to achieve given goals. The problem is
that models are not always known or easily built for a do-
main of interest. Others have studied methods for learning or
agumenting models, such as STRIPS operators[Wang, 1995]
or MDP transitions[Peng and Williams, 1993]. All of these
techniques still require expert intuition about the domain to
provide, at the least, an appropriate state representation.

This paper focuses on learning an appropriate representa-
tion for planning, using only an agent’s observations and ac-
tions. We call this asubjective representationas the learned
representation is extracted based only on the agent’s experi-
ence, and requires no expert knowledge of the domain. The
approach solves two important problems: (i) learning an ap-
propriate state-space representation, and (ii) learning the ef-
fects of the agent’s actions in this representation.1 The re-

1The approach of learning a subjective representation more

quired input is a sequence of actions and observations from
the agent’s subjective experience, but no semantic meaning
(domain-specific or otherwise) is required. This input is used
in a three step process.

First, Section 2 reviews Action Respecting Embedding
(ARE). ARE is a technique for dimensionality reduction that
specifically makes use of a temporal sequence of observations
and actions. ARE learns manifolds that capture the important
underlying dynamics of the high-dimensional data in much
fewer dimensions (addressing the first problem). Next, Sec-
tion 3 describes a method for learning operators for each ac-
tion that can be applied to any point in the learned represen-
tation (addressing the second problem). Examples of learned
operators are provided along with a discussion of how the se-
mantic meaning of the associated actions can sometimes be
extracted. Finally, Section 4 shows the results of planning in
the resulting representation using the learned operators. Both
the resulting plan in the learned representation, and the result
of applying the plans in the original high-dimensional domain
are compared.

2 Action Respecting Embedding
High-dimensional data sets, such as sequences of images, can
often be characterized by a low-dimensional representation
that is related to the process generating the data. For example,
a low-dimensional representation for image data may corre-
spond to the degrees of freedom of a platform moving a cam-
era. Such a representation is ideal for planning as it directly
captures the actions’ effects on the world. The goal here is
to take a temporal sequence of data points,z1, . . . , zn, and
associated actions,a1, . . . , an−1, and find a low-dimensional
representation forzi that is appropriate for planning.

Recently, nonlinear manifold learningtechniques have
been used to map a high-dimensional dataset into a smaller
dimensional space. Semidefinite Embedding (SDE)[Wein-
berger and Saul, 2004] is one such technique. SDE learns
a kernel matrix, which represents a non-linear projection of

closely resembles recent work on learning predictive representa-
tions [James and Singh, 2004; Rosencrantzet al., 2004; Jaeger,
2000] than previous work on augmenting operators or transition
probabilities. This approach, though, is specifically designed for
very high-dimensional observation spaces as it implicitly involves a
dimensionality reduction component.



Algorithm: SDE( || · ||, (z1, . . . , zn))

Construct neighbors,N , usingk-NN with || · ||.

Maximize Tr(K) subject toK � 0,
∑

ij
Kij = 0, and

∀ij Nij > 0 ∨ [NT N ]ij > 0 ⇒
Kii − 2Kij + Kjj = ||zi − zj ||2

Run Kernel PCA with learned kernel, K.

Table 1: Algorithm: Semidefinite Embedding (SDE).

the input data into a more linear representation. It then uses
Kernel PCA[Scholkopf and Smola, 2002], a generalization
of principle components analysis using feature spaces rep-
resented by kernels, to extract out a low-dimensional rep-
resentation of the data. The kernel matrixK is learned in
SDE by solving a semidefinite program with a simple set of
constraints. The most important constraints encode the com-
mon requirement in dimensionality reduction that the non-
linear embedding should preserve local distances. In other
words, nearby points in the original input space should re-
main nearby in the resulting feature representation. There-
fore SDE requires a distance metric|| · || on the original input
space, and uses this metric to construct ak-nearest neighbors
graph. It then adds constraints into the semidefinite program
to ensure that the distance between neighbors is preserved.
The optimization maximizes Tr(K), i.e., the variance of the
learned feature representation, which should minimize its di-
mensionality. The SDE Algorithm is shown in Table 1.

SDE does not take into account two important pieces of
knowledge about the data: the temporal ordering of the in-
put vectors,zi, and the action labels,ai. Therefore, SDE
doesn’t guarantee that temporally-nearby input points will
be spatially nearby in the feature representation. Also, SDE
won’t necessarily result in a space where actions have a sim-
ple interpretation. The recent Action Respecting Embedding
(ARE) algorithm[Bowling et al., 2005] extends SDE to make
use of exactly this type of knowledge about the data.

Formally, ARE takes a set ofD-dimensional input vectors,
z1, . . . , zn (e.g., images), in temporal order, along with asso-
ciated discrete actions,a1, . . . , an−1, where actionai was ex-
ecuted between inputzi and inputzi+1. ARE then computes
a set ofd-dimensional output vectorsx1, . . . , xn in one-to-
one correspondence with the input vectors. This provides a
meaningful embedding ind < D dimensions. ARE modifies
SDE in two key ways. First, it exploits the knowledge that the
images are given in a temporal sequence. It uses this knowl-
edge to build an improved neighborhood graph based on each
input’s distances to its temporal neighbors using the provided
local distance metric2. Second, it constrains the embedding
to respect the action labels that are associated with adjacent
pairs of observations. This ensures that the actions have a
simple interpretation in the resulting feature space.

It is this second enhancement of ARE that is the critical

2We have found that ARE is fairly robust to the choice of distance
metrics, and use simple Euclidean distance for all of the experiments
in this paper.

Algorithm: ARE( || · ||, (z1, . . . , zn), (a1, . . . , an−1))

Construct neighbors,N , as in [Bowling et al., 2005].

Maximize Tr(K) subject toK � 0,
∑

ij
Kij = 0,

∀ij Nij > 0 ∨ [NT N ]ij > 0 ⇒
Kii − 2Kij + Kjj ≤ ||zi − zj ||2 , and

∀ij ai = aj ⇒
K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj

Run Kernel PCA with learned kernel, K.

Table 2: Algorithm: Action Respecting Embedding (ARE).

feature for subjective planning. ARE constrains the learned
manifold to be in a space where the labeled actions corre-
spond to distance-preserving transformations—those consist-
ing only of rotation and translation3. Therefore, for any two
inputs, zi and zj , the same action from these inputs must
preserve their distance in the learned feature space. Letting
Φ(zi) denote inputzi’s representation in the feature space,
actiona’s transformation,fa, must satisfy:

∀i, j ||fa(Φ(zi))− fa(Φ(zj))|| =
||Φ(zi)− Φ(zj)||. (1)

Now, leta = ai and consider the case whereaj = ai. Then,
fa(Φ(zi)) = Φ(zi+1) andfa(Φ(zj)) = Φ(zj+1), and Con-
straint 1 becomes:

||Φ(zi+1)− Φ(zj+1)|| = ||Φ(zi)− Φ(zj)||. (2)

In terms of the kernel matrix, this can be written as:

∀i, j ai = aj ⇒
K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) =
Kii − 2Kij + Kjj (3)

ARE simply adds Constraint 3 into SDE’s usual constraints
to arrive at the optimization and algorithm shown in Table 2.

Experiments. Here we define IMAGEBOT, a synthetic im-
age interaction domain used for all experiments. Given an
image, imagine a virtual robot that can observe a small patch
on that image and also take actions to move the patch around
the larger image. This “image robot” provides an excellent
domain in which subjective planning can be demonstrated.

For these experiments, IMAGEBOT will always be view-
ing a 200 by 200 patch of a2048 by 1536 image displayed
Figure 1. IMAGEBOT has eight distinct actions: four trans-
lations, two zoom actions, and two rotation actions. The al-
lowed translations are forward (F ), back (B), left (L) and
right (R) by 25 pixels The zoom changes the scale of the
underlying image by a factor of21/8 (i) or 2−1/8 (o). The
rotation rotates the square left (l) or right (r) by π

8 radians.
There are three distinct experimental data sets that are

looked at in this paper.

3Notice this is not requiring the actions in the objective space
to be rotations and translations, since ARE is learning a non-linear
feature representation.
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Figure 2: IMAGEBOT’s output (and ARE’s input) for theAT data set.

Figure 1: IMAGEBOT’s world.

AT : IMAGEBOT follows a path which looks like an “A” us-
ing only the translation actions:
F × 10, L× 5, R× 5, B × 5, L× 5, F × 5, B × 10

AZ : IMAGEBOT follows the same A pattern but substituting
zoom in for left actions and zoom out for right actions:
F × 10, i× 8, o× 8, B × 5, i× 8, F × 10, B × 20

Fr: IMAGEBOT moves back and forth in a line, but only us-
ing F andr actions:
F × 10, r × 8, F × 10, r × 8, F × 5, r × 16, F × 5

Note that inAZ the F andB actions only move half as
much when zoomed in as when zoomed out. Note that inFr
there are no opposites for the two actions used. An example
of the output of IMAGEBOT, and correspondingly an input
for ARE, is shown in Figure 2. These are the images seen in
theAT data set. Note that whileweknow that, for example,
action label3 corresponds to actionF , ARE gets no such
semantic information—it gets as input only the images and
the labels associated with them.

The effectiveness of ARE has been demonstrated previ-
ously [Bowling et al., 2005]. Here evidence is shown of
its power in capturing useful representations for planning.
Figure 3 shows the actual manifold underlying theAT test
set (i.e., IMAGEBOT’s path). Figure 4 shows the manifold
learned by ARE on that test set. Clearly the structure has
been captured.
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Figure 3: The path IMAGEBOT follows to generateAT .
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Figure 4: The representation learned by ARE forAT .

Figure 5 shows a “top” view and a “side” view of the 3-
dimensional manifold learned for theFr data set. here the
portion of the manifold corresponding to rotating to the right
(r) is a black line while the portion corresponding to mov-
ing forward (F ) is a light-gray line. The point corresponding
to the first image is circled. Although not as clear as in the
previous case, this manifold is clearly and distinctly captur-
ing the structure of the original path, with two dimensions
capturing ther action and a third capturing theF action. In
Figure 3, the original domain was one in which the actions
were distance-preserving and this structure was, indeed, ex-
tracted. In Figure 5 it is not immediately obvious what man-



Figure 5: Two different views of the three-dimensional cylindrical manifold learned for theFr data set.

ifold will be learned which makes the resulting one all the
more impressive—not just as a representation appropriate for
planning but as an aid to intuitive understanding of the origi-
nal underlying structure.

3 Distance Preserving Operators
ARE learns a representation with explicit constraints that the
actions correspond to distance-preserving transformations in
that representation. Before one can plan, though, one needs
to discover these transformations. For each unique actiona
there is a collection of data point pairs(xt, xt+1) which are
connected by that action. Another way of thinking of this is
that there is a functionfa wherefa(xt) = xt+1, and such a
function needs to be learned for each action. Because of the
distance-preserving constraints,fa can be represented as:

fa(xt) = Aaxt + ba = xt+1

Recall that transformations of the above form encode trans-
lation in theba vector, and rotation and scaling in theAa ma-
trix. Aa andba could be learned using simple linear regres-
sion but scaling is not distance preserving so there is the ad-
ditional constraint thatAa does not scale,i.e., AT

a Aa = I. It
turns out that this is similar to the extended orthonormal Pro-
crustes problem[Schoenemann and Carroll, 1970], but with-
out allowing for a global scaling constant. Here the solution
to the regression problem is derived.

Let Xa be thed by n matrix whose columns arext for all
t such thatat = a, and letYa be thed by n matrix whose
columns arext+1 for the samet. The goal is to learn a
rotation matrixAa and a translationba which mapsXa to
Ya. Formally, the following optimization problem needs to
be solved.

minimize: ||AaXa + baeT − Ya||
subject to: AT

a Aa = I

wheree is a column vector withn ones.
In order to obtain the least squares estimation ofAa and

ba, write the Lagrangian functionL:

L(Aa, ba,Λ) =

Tr((AaXa + baeT − Ya)T (AaXa + baeT − Ya)) +

Tr(Λ(AT
a Aa − I))

whereΛ is a matrix of lagrangian multipliers, and Tr(.) stands
for the trace of a matrix.

L(Aa, ba,Λ) =

Tr(Y T
a Ya) + Tr(XT

a AT
a AaXa) + nbT

a ba

−2Tr(Y T
a AaXa)− 2Tr(ebT

a Ya)

+2Tr(ebT
a AaXa) + Tr(Λ(AT

a Aa − I))
Now take the derivative of the Lagrangian function with re-
spect to the unknowns and set to zero:

∂L

∂Aa
= 2AaXT

a Xa − 2YaXT
a +

+2baeT XT
a + Aa(Λ + ΛT ) = 0 (4)

∂L

∂ba
= 2nba − 2Yae + 2AaXae = 0 (5)

The translation vector from Equation 5 gives:

ba =
(Ya −AaXa)e

n
(6)

Multiplying Equation 4 byAT
a /2 on the right:

AaXT
a XaAT

A + Aa(Λ + ΛT )AT
a /2 =

YaXT
a AT

a − baeT XT
a AT

a

Since the left hand side is symmetric, the right hand side must
also be symmetric. Substituting Equation 6, the right hand
side can be written as:

YaXT
a AT

a − Ya

(
eeT

n

)
XT

a AT
a + AaXa

(
eeT

n

)
XT

a AT
a

where the last term is symmetric. Thus the rest of the expres-
sion must also be symmetric. This can be simplified as:(

Ya

(
I − eeT

n

)
XT

a

)
AT

a (7)

Since 7 is symmetric, it should be equivalent to its transpose:(
Ya

(
I − eeT

n

)
XT

a

)
AT

a = Aa

(
Ya

(
I − eeT

n

)
XT

a

)T

(8)

One can easily verify that the following satisfies Equation 8:

V SWT = svd

(
Ya

(
I − eeT

n

)
XT

a

)
Aa = V WT (9)
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Figure 6: Demonstrating distance-preserving operators in the
representation learned forAT .

where svd(·) is the singular value decomposition, so,

V SWT WV T = V WT WST V T

becauseWT W = I (sinceW is orthonormal) andS = ST

(sinceS is diagonal). Thus Equations 6 and 9 are a solution to
the dual function,D = minΛ L(Aa, ba,Λ). Since this solu-
tion is also feasible with regards to the primal problem, strong
duality holds even though the original problem is non-convex.

Results. Figure 6 shows the two-dimensional representa-
tion that ARE generated forAT . The solid arrows show a
path which consists of new points resulting from the applica-
tion of operators learned for each action (F , B, L andR) as
described above. Clearly, the operators are intuitively captur-
ing the essence of the actions used to generate the data.

Note that while there is no semantic meaning given with
the input actions, such meaning can now be derived. It can
easily be tested whether a pair of actions are opposites, such
as(F,B) or (R,L). Also two actions can be tested for or-
thogonality or independence, such asF andR. If the learned
representation captures some underlying structure within the
data, the learned operators will maintain that structure and,
from them, relationships can be successfully hypothesized.

Figure 7 is similar to Figure 6, except the underlying rep-
resentation is from theAZ data set. Here, note that while
some actions are again opposite to each other, no actions are
orthoganal—theF andB actions are not independent of the
i ando actions. This critical facet of the original data set has
been successfully captured in the representation learned by
ARE and consequently in the action functions learned in that
manifold. Note, in particular, that when zoomed in all the
way (i × 8) 10 F actions are equivalent to 5F actions when
zoomed out all the way. AlthoughF action when zoomed
in half way was never observed, the learned operators cap-
ture the fact that between 7 and 8F actions at this scale are
equivalent to 5 and 10 actions at the other scales.

4 Planning
Now that low-dimensional representations and operators in
those representations can be learned, all the pieces are in
place to perform planning. The points in the learned represen-
tation are states, and the operators learned in Section 3 define
transitions between the states. This new domain has two ad-
vantages over the original data set. First, the dimensionality
has been reduced drastically (from 40,000 to 2 or 3). Second,
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Figure 7: Demonstrating distance-preserving operators in the
representation learned forAZ .

from the action labels functions have been learned for each
unique action that explicitly give the resulting state when that
action is applied from any state. Learning such a function in
the orignal space is not only intractable, but would require
application of knowledge specific to IMAGEBOT (or even the
underlying image) in order to attain any success.

Given any two images, one can find a shortest path be-
tween them, even if it traverses unobserved parts of the space.
First, find the corresponding points in the low-dimensional
representation, then find the shortest path between them us-
ing traditional search methods and the set of learned opera-
tors. Since each operator in the low-dimensional space corre-
sponds to an action label in the orginal space the list of action
labels that indicate the desired path can be returned. For the
following results, iterative-deepening depth-first search was
used and the path whose final point was closest to the desired
goal was returned. The quality of a path is demonstrated by
starting IMAGEBOT at the initial state, applying the sequence
of actions and showing the resulting image.

Results. For each of the three test sets, two sub-figures will
be shown. The first shows the representation learned for that
data set and the shortest path between a chosen initial state
(labelled with a triangle pointing right) and a chosen goal
state (labelled with a triangle pointing left). The second figure
contains two images. The left image shows the image at the
initial state, the right image contains two highlighted boxes.
The light-gray dotted box shows the image at the goal state,
the darker-gray solid box highlights the image obtained after
executing the resulting sequence of actions.

Figures 4(a) and 4(b) show the results forAT —the goal
state image and the image corresponding to the final state in
our path in Figure 4(b) are the same. Note that the shortest
path was successfully found, even though it involves moving
through portions of the space that we have never seen.

Figures 4(c) and 4(d) show the results forAZ—the goal
state image and the image corresponding to the final state in
the path in Figure 4(d) are the same. Note, the path found
successfully identifies that actionB must occur before action
o—if taken after then theB action would jump over the de-
sired end state to a state halfway between it and the next state.

Figures 4(e) and 4(f) show the results forFr—the goal
state image and the image corresponding to the final state in
the path in Figure 4(f) are very close to each other. Recall
that for this data set, unlike the others, the only actions were
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Figure 8: Results of planning in three examples. (a), (c), and (e) show the paths in the learned representation. (b), (d), and (f)
show the starting image, the sequence of actions, and outlines the resulting and goal images.

F andr with no corresponding opposites. This means that
such a path must rotate all the way around, step forward, then
rotate all the way around again—a fairly complex path.

5 Conclusion

ARE can be used to learn a subjective representation appro-
priate for planning. The only input required is a sequence
of observations and actions—no additional domain-specific
knowledge is necessary. The output from ARE is a new low-
dimensional space which captures the critical dynamics of the
environment. Operators which reflect these dynamics can be
recovered in the new space. Simple search procedures can
then can be used to find sequences of operators which achieve
goals in the learned representation. Since operators corre-
spond to original actions, this sequence provides a plan in the
original space. These plans are accurate, even though they
can involve actions in unobserved parts of the space.
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