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Abstract

Stochastic games are a generalization of MDPs
to multiple agents, and can be used as a frame-
work for investigating multiagent learning. Hu
and Wellman (1998) recently proposed a multia-
gent Q-learning method for general-sum stochas-
tic games. In addition to describing the algo-
rithm, they provide a proof that the method will
converge to a Nash equilibrium for the game un-
der specified conditions. The convergence de-
pends on a lemma stating that the iteration used
by this method is a contraction mapping. Un-
fortunately the proof is incomplete. In this pa-
per we present a counterexample and flaw to the
lemma’s proof. We also introduce strengthened
assumptions under which the lemma holds, and
examine how this affects the classes of games to
which the theoretical result can be applied.

1. Introduction

One of the greatest difficulties of learning in a multiagent
domain is that the world does not appear stationary from
an agent’s perspective. The effects of an agent’s actions
depend on the actions of the other agents, which are likely
to be changing as the other agents also learn to improve
their behavior. The result is that the value of an agent’s
policy depends upon the behavior of the other agents. In
addition, the value might change even though the policy
is not changing, as the other agents learn and adapt. This
problem requires the traditional notion of optimality to be
abandoned, since most tasks do not have optimal policies
independent of the policies of the other agents.

The field of game theory specifically addresses these
multiagent issues, by providing a theoretical framework
for examining policy selection. Specifically, stochastic
games (Shapley, 1953) offer a compelling model for multi-
agent learning. Stochastic games are a natural extension
of traditionally single-agent Markov decision processes
(MDPs) to include multiple agents. Game theory also pro-
vides the notion of a Nash equilibria, which are a set of
policies for the players such that no player would do better

by deviating from its policy. Minimax-Q (Littman, 1994)
was one of the first reinforcement learning algorithms for
stochastic games and directly learns an equilibrium policy
in zero-sum stochastic games.

Recently, Hu and Wellman (1998) introduced a new algo-
rithm for learning in general-sum stochastic games. This
algorithm, like Minimax-Q, is designed to directly learn a
Nash equilibrium. In addition to the algorithm, they pre-
sented a theoretical analysis proving their algorithm will
converge to an equilibrium under certain conditions. Un-
fortunately their proof is not complete. In this paper we
present a counterexample and flaw to the proof of their cru-
cial lemma. We also introduce strengthened assumptions
under which the lemma and main theorem are valid, but
rather limited.

In Section 2 we present a brief overview of the stochas-
tic game framework and the necessary results from game
theory. In Section 3 we present the Hu and Wellman algo-
rithm and outline their convergence proof. In Section 4 we
introduce the counterexample and flaw in their proof, and
also the strengthened assumptions under which their result
is valid. In Section 5 we discuss the ramifications of this
result before concluding.

2. Stochastic Game Framework

A stochastic game is a tuple
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. This looks very similar to the MDP framework
except we have multiple agents selecting actions and the
next state and rewards depend on the joint action of the
agents. It’s also important to notice that each agent has its
own separate reward function. The goal for each agent is
to select actions in order to maximize its discounted future
rewards with discount factor 2 .

Stochastic games are a very natural extension of MDPs
to multiple agents. They are also an extension of matrix
games to multiple states. Two example matrix games are in
Table 1. In these games there are two players; one selects a



row and the other selects a column of the matrix. The en-
try that they jointly select determines the payoffs according
to their matrix. In Table 1 the matching pennies game is a
zero-sum matrix game, since the column player always re-
ceives the negative of the payoff of the row player. General-
sum games, of which the coordination game is an example,
do not have any restriction on the players’ payoffs.

Table 1. Matching pennies and coordination matrix games.
Matching pennies is a zero-sum game, while the coordination
game is general-sum.
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Coordination Game

Each state in a stochastic game can be viewed as a ma-
trix game with the payoffs for each joint action determined
by the matrices

� � �	� ��
 �
. After playing the matrix game

and receiving their payoffs the players are transitioned to
another state (or matrix game) determined by their joint ac-
tion. We can see that stochastic games then contain both
MDPs and matrix games as subsets of the framework.

Mixed Policies. Unlike in single-agent settings, deter-
ministic policies in multiagent settings can often be ex-
ploited by the other agents. Consider the matching pennies
matrix game as shown in Table 1. If the column player were
to play either action deterministically, the row player could
win (and column player lose) every time. This requires us
to consider stochastic or mixed strategies and policies. A
stochastic policy, ��
 � ( ��� � � � �

, is a function that
maps states to mixed strategies, which are probability dis-
tributions over the player’s actions.

Nash Equilibria. Even with the concept of mixed strate-
gies there are still no optimal strategies that are indepen-
dent of the other players’ strategies. We can, though, de-
fine a notion of best-response. A strategy is a best-response
to the other players’ strategies if it is optimal given their
strategies. The major advancement that has driven much of
the development of matrix games, game theory, and even
stochastic games is the notion of a best-response equilib-
rium, or Nash equilibrium (Nash, Jr., 1950).

A Nash equilibrium is a collection of strategies for each
of the players such that each player’s strategy is a best-
response to the other players’ strategies. So, no player can

do better by changing strategies given that the other play-
ers also don’t change strategies. What makes the notion
of equilibrium compelling is that all matrix games have
such an equilibrium, possibly multiple equilibria. Zero-
sum two-player games, where one player’s payoffs are the
negative of the other, have a single Nash equilibrium.1 In
the matching pennies example in Table 1, the equilibrium
consists of each player playing the mixed strategy where
both actions have equal probability. In the coordination
game, there are two pure (or deterministic) equilibria: both
players select their first action, or both players select their
second action.

The concept of equilibria also extends to stochastic games.
This is a non-trivial result, proven by Shapley (1953) for
zero-sum stochastic games and by Filar and Vrieze (1997)
for general-sum stochastic games.

Minimax-Q. Littman (1994) introduced a reinforcement
learning technique for zero-sum games that directly learns
the game’s Nash equilibrium. The algorithm, Minimax-Q,
extends Q-learning in order to explicitly reason about mul-
tiple agents. The algorithm maintains � values for every
state/joint-action pair. The entry � ��� ��
 �

approximates the
expected discounted reward if the players select joint ac-
tion



from state

�
and then follow the stochastic game’s

Nash equilibrium. Given an observation, � � ��
 �����	����� , con-
sisting of a state, joint-action of the players, resulting next
state, and rewards, the � values can be updated. The update
rule uses a learning parameter � and performs the follow-
ing computation,
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This update rule is very similar to standard Q-learning but
with the next state’s value involving the computation of the
value of the matrix game that corresponds to the � values
for that state.2

Littman proved that this technique will converge to the
game’s Nash equilibrium with the usual Q-learning as-
sumptions on exploration and learning rate. An interest-
ing aspect of this result is that the � values will converge
regardless of the actions selected by the opponent.

1There can actually be multiple equilibria, but they will all
have equal payoffs and are interchangeable (Osborne & Rubin-
stein, 1994).

2The value of this zero-sum matrix game is+-,�.0/�132547698;:�<�+>=@?'A�B 1�8 B C A :D1�8;:FEHG	I�J$KMLON�JPL�QSRPTPU A : , which
can be solved using linear programming.



3. Q-Learning for General-Sum Games

Hu and Wellman (1998) introduced a Q-learning method
for solving general-sum stochastic games. Their algorithm
is an extension of Minimax-Q, and replaces the computa-
tion of the value of a zero-sum game with the computation
of the value of a general-sum game. The algorithm strives
to maintain the same property of Minimax-Q that it can
learn equilibria independent of the actions selected by the
other players.

The algorithm, like Minimax-Q, maintains � values for
every state/joint-action pair. Since the agents’ rewards in
general-sum games can be completely independent, multi-
ple � values (one for each agent) must be maintained. The
entry � � ��� ��
 � approximates the expected discounted re-
ward for player

�
if the players select joint action



from

state
�

and then follow the same Nash equilibrium of the
stochastic game. On an observation, � � ��
 ���$�	��� ��� where

� �
is player � ’s reward, the update is,� � �	� ��
 � � ��, � � � � � ��� ��
 � � � �	� � � 2 ! � �	� � ��� �
where, ! � �	� � � � Value

� * � �	� � � -
For ease of notation we use � ���!�

to represent the general-
sum matrix game that is represented by the
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rule the Value
�

operation computes the equilibrium value to
player � of the general-sum matrix game defined by the �
values at the state,

�$�
.3 Since the update operation makes

use of the equilibrium value of a state, this is only well-
defined if there is a single equilibrium (or multiple equilib-
ria with the same value.) It is assumed for their algorithm
and theoretical results that there is in fact a unique equilib-
rium.

Their main result is the theorem below. The theorem claims
convergence of the algorithm for two-player, general-sum
games. In the theorem,

� �� refers to the immediate re-
ward received by player

�
at time � , and 	 
 �	� � � � �	� � 	�
 �	� �

refers to player
�

’s expected value of playing the matrix
game � ���!�

where the players select actions according to
the strategies, �
	 
 �	� � � 	�
 ���!��� .
Theorem 1 (Hu & Wellman, 1998) Under assumptions be-
low, let the sequences � � 
� � ��
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3Finding the value of a general-sum game requires an involved
quadratic programming solution (Filar & Vrieze, 1997).

sequences converge to the Nash equilibrium Q values� � 
� � ��
� � defined by,� � � �	� � � 
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� ���!��� is a Nash equilibriumfor the stochas-
tic game.

The theorem requires three assumptions. Two of these as-
sumptions deal with exploration and the proper decay of
the learning rate. These are the standard assumptions of
Q-learning and are not presented in this paper. The final
assumption deals with the nature of the matrix games that
are faced while learning.

Assumption 1 (Hu & Wellman, 1998) A Nash equilibrium� 	 
 �	� � � 	�
 ���!� � for any matrix game � � 
� �	� � � ��
� �	� � � satis-
fies one of the following properties:
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2. The equilibrium receives a higher payoff if the other

agent deviates from the equilibrium strategy.� � � 	 
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It is interesting to note what matrix games the properties
encompass. The first property states that there’s a set of
strategies for the players where each player individually re-
ceives its maximum possible payoff. This also ensures that
such a set of strategies is an equilibrium, since no player
could benefit from deviating from the strategy. The second
property states that the Nash equilibrium for the game is a
“saddle point”. This means that not only does a player not
benefit from deviating from the equilibrium, but also that
all other players do benefit if the player deviates. Notice
that all zero-sum games satisfy this second property.

The proof of their theorem makes use of a crucial lemma
claiming their update function is a contraction mapping.
Let

� �� be an update function defined as,� �� � � �	� � � � �� � 2�	 
 ���!� � � �	� � 	 
 ���!� �
where

� 	 
 �	� � � 	�
 ���!��� are a Nash equilibrium for the
two-player matrix game defined by the matrices� � 
 ���!� � ��
 ���!� � . Notice that this is the same update
function as in Theorem 1, but without the stochastic
approximation. Their lemma claims that

� �� satisfies the
following property,� � � ��� � �� � � � � �� � � � ��� � 2 ��� � � � � � � ��� �
where

����� ���
is the max-norm operator over all states and

actions. This lemma effectively states that the update func-
tion will always move � � closer to � � � .



4. Counterexample and Flaw

In this section we show a counterexample to their lemma
and also the flaw in their proof of it. We follow this
by introducing strengthened assumptions under which the
lemma is valid.

4.1 Counterexample

Consider the stochastic game with three states shown in
Figure 1. State

� � always transitions to state
� 


with re-
wards 0. State

� 

is a

� � �
game with all actions causing

the game to transition to a terminating state,
� 
 .

Consider the following � function,� �	� � � � � 2 � 2 �� �	� 
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The matrix game corresponding to � �	� 
 �
has a unique

Nash equilibrium where both players choose their first ac-
tion. Notice that
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mapping then after applying
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the values should be closer
to � � . The actual values for
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Notice that
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. Hence, with the max norm

�
is not a contraction

mapping and the lemma is false.

4.2 Proof Flaw

The flaw in their proof of the lemma is due to a missing
case. It handles the case where � � �	� � meets property 1 of
Assumption 1, and the case where � �	� �

meets property 2 of
Assumption 1. It fails to address when � � �	� � meets prop-
erty 2 and � �	� �

meets property 1. This is exactly the case of
the counterexample. The matrix games � ��� 
 �

and � � ��� 
 �
both have unique pure strategy equilibriums (as shown by
the boxes in their respective matrices.) The Nash equilib-
rium of � �	� �

meets property 1 because both players play-
ing their first action is the best either player can do. The
Nash equilibrium of � � �	� � meets property 2 because it’s a
“saddle point”, that is if a player deviates from the equilib-
rium the other player gets rewarded. So the counterexample
does indeed satisfy their assumptions.

It is important to note that the counterexample and flaw
only show that the backup used by the algorithm is not a

contraction mapping using the max norm. This does not
necessarily disprove Theorem 1, as there may be another
norm for which the backup is a contraction mapping. On
the other hand, it leaves open whether the theorem is ac-
tually true and provides evidence to the contrary, which is
discussed further in Section 5.2.

4.3 Strengthened Assumptions

The original assumption on which their proof is based can
be strengthened in order to make the crucial lemma true.
This is done by simply ruling out the case not handled in
their proof and under which the counterexample falls.

Assumption 2 The Nash equilibrium of all matrix games,� � ���!� , as well as � � �	� � must satisfy property 1 in Assump-
tion 1 or the Nash equilibrium of all matrix games, � � �	� � ,
as well as � � �	� � must satisfy property 2 of Assumption 1.

This new assumption, although making the original theo-
rem true, places heavy limitations on the applicability of
the results. This is examined in the next section.

5. Discussion

In this section we discuss the applicability of Theorem 1
with the strengthened assumption that it requires. We also
examine other issues surrounding the problem of conver-
gence in general-sum stochastic games.

5.1 Applicability of the Theorem

Under strengthened Assumption 2 the theorem has a num-
ber of limitations. One of these limitations was also prob-
lematic under the original assumption, but is even more so
under Assumption 2.

The first limitation is that if the current � � values satisfy
the assumption and the � � values are known to satisfy the
assumption, there’s still no guarantee that future � � � 
 val-
ues will satisfy the assumption. Since no guarantees are
made on future values, the theorem cannot actually guar-
antee convergence. Rather it only guarantees that if the� values converge while always satisfying the assumption,
then they’ve converged to the game’s equilibrium. Since
Assumption 2 makes a further requirement that the values
always satisfy the same property, this only magnifies this
problem.

The second limitation is due directly to the strengthened
assumption. The � values must always satisfy the same
property that the unknown � � values satisfy. Although,
the � values can be initialized to satisfy both properties
(e.g. by initializing all the values to zero), the initial steps
of learning will undoubtedly move the � values into satis-
fying only one of the properties. The theorem, then, only
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Figure 1. A three state stochastic game, including the Nash equilibrium values, E�� . All transitions are deterministic and are independent
of the actions selected. The only choice available to the agents is in state I N , where the corresponding matrix game has a unique Nash
equilibrium where both players choose their second action.

guarantees convergence if the unknown � � values for the
stochastic game satisfies the exact same property.

5.2 Convergence in General-Sum Games

One question that arises is why general-sum games are
more problematic for convergence of learning algorithms.
The counterexample presented in this paper gives some in-
sight into this question. Small changes in the values of
joint-actions can cause a large change in the state’s Nash
equilibria. This can cause drastic changes in the value of
that state. Overall, this means small changes in values can
propagate into even larger changes in values. This is ev-
ident in the counterexample where an

�
change in the �

values propagates into a
� �

change.

Despite this fact, there are some classes of general-sum
stochastic games where convergent learning is not so prob-
lematic. In fact, there is a large class where even naive
single-agent learners, such as Q-learning (Watkins, 1989),
can find Nash equilibria. Fully collaborative games, where
all the agents have identical reward functions, can be
learned by simple Q-learners (Claus & Boutilier, 1998).
Games that are iterated dominance solvable, where the pro-
cess of eliminating universally inferior policies by the play-
ers leaves only Nash equilibria policies, are also solvable
by naive learning (Fudenberg & Levine, 1999).

In fact even stochastic games that do not fall under these
two categories can still be solved with single-agent learn-
ers. Consider the two-agent gridworld game depicted in
Figure 2, which was introduced as an example domain for
the Hu and Wellman algorithm (Hu, 1999). The agents start
in two corners and are trying to reach the goal square on the
opposite wall. The players have the four compass actions
(i.e. N, S, E, and W), which are in most cases determinis-
tic. If the two players attempt to move to the same square,
both moves fail. To make the game interesting and force
the players to interact, from the initial starting position the
North action is uncertain, and is only executed with proba-

bility 0.5. The optimal path for each agent, then, is to move
laterally on the first move and then move North to the goal,
but if both players move laterally then the actions will fail.
There are two Nash equilibria for this game. They involve
one player taking the lateral move and the other trying to
move North.

S2 S1

G

Figure 2. Gridworld game. The dashed walls represent the actions
that are uncertain.

Table 2. Q-learning for the gridworld game. The table shows the
number of trials where the players converged to a particular pol-
icy. “W-N” and “E-N” correspond to the two Nash equilibria
where one player moves laterally in initial state while the other
tries to move North. “Other” corresponds to all other policies.

Strategy Trials
W-N 114 (57%)
N-E 86 (43%)
Other 0 (0%)
Total 200 (100%)

Table 2 shows the results of training two agents in the grid-
world game, using standard Q-learning. The agents were
trained with a decayed learning rate for one million steps
to be sure the policies had converged. The table shows how
often the agents converged to specific policies in the 200
trials. The important thing to note is that the agents always
converged to one of the game’s Nash equilibria. So naive
single-agent learners can also converge to Nash equilibrium
in games that aren’t fully-collaborative or iterated dom-
inance solvable. Understanding what characterizes these



easier general-sum games may be helpful for isolating the
difficulties present in other general-sum games.

5.3 Static Solutions

It is important to note that there do exist static algorithms
for solving general-sum stochastic games. An equilib-
rium solution can be constructed by solving a set of non-
linear complementarity problems, one for each state (Filar
& Vrieze, 1997). This implies a model-based learning al-
gorithm could be constructed, where the transition and re-
ward functions are learned through experience, but the pol-
icy is constructed using the static solver. Not only is this
likely to be computationally intractable, it’s also unknown
whether it might encounter the same “convergence” prob-
lems. In particular, a small error in the learned transition
probabilities and rewards might cause a large difference in
the resulting equilibrium policies and values. Hence, it’s
difficult to know when the transition and reward model is
accurate enough, since even a small error can mean a com-
pletely different equilibrium policy and value.

6. Conclusion

This paper examined the general-sum multiagent reinforce-
ment learning algorithm introduced at ICML by Hu and
Wellman (1998). The main contribution of their paper is
both the algorithm and a proof of its convergence to a Nash
equilibrium under specific assumptions. A technique with
such guarantees would be very desirable for multiagent re-
inforcement learning. Unfortunately, the result depends on
a crucial lemma, the proof of which we have shown to be
incomplete.

We presented both a counterexample to the lemma and de-
scribed the flaw in their proof. We also presented strength-
ened assumptions, which would allow the lemma and the-
orem to be valid, but creates even further restrictions on its
applicability. These restrictions were discussed along with
other issues surrounding the problem of equilibrium con-
vergence in general-sum stochastic games.
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