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Abstract

Robotic soccer presents a large spectrum of challenging research opportunities. In this ar-
ticle, we present the main research and technical contributions of our champion CMUnited-98
small robot team. The team is a multiagent robotic system with global perception, and dis-
tributed cognition and action. We describe the main features of the hardware design of the
physical robots, including differential drive, robust mechanical structure, and a kicking device.
We introduce our new robot motion algorithm which reactively generates motion control to ac-
count for the target point, the desired robot orientation, and obstacle avoidance. Our robots ex-
hibit successful collision-free motion in the highly dynamic robotic soccer environment. At the
strategic and decision-making level, we present the role-based behaviors of the CMUnited-98
robotic agents. Team collaboration is remarkably achieved through a new algorithm that allows
for team agents to anticipate possible collaboration opportunities. Robots position themselves
strategically in open positions that increase passing opportunities. The article terminates with
a summary of the results of the RoboCup-98 games in which the CMUnited-98 small robot
team scored a total of 25 goals and suffered 6 goals in the 5 games that it played.

Keywords: Mobile robots, Real-time decision making, Reactive motion control, Multiple col-
laborating and competing agents.
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1 Introduction
The CMUnited-98 small-size robot team is a complete, autonomous architecture composed of

the physical robotic agents, a global vision processing camera over-looking the playing field, and
several clients as the minds of the small-size robot players. Fig. 1 sketches the building blocks of

the architecture.
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Figure 1. The CMUnited architecture with global perception and distributed reaction.

The complete system is fully autonomous consisting of a well-defined and challenging pro-
cessing cycle. The global vision algorithm perceives the dynamic environment and processes the
images, giving the positions of each robot and the ball. This information is sent to an off-board
controller and distributed to the different agent algorithms. Each agent evaluates the world state
and uses its strategic knowledge to make decisions. Actions are motion commands that are sent
by the off-board controller through radio frequency communication. Commands can be broadcast
or sent directly to individual agents. Each robot has an identification binary code that is used on-
board to detect commands intended for that robot. Motion is not perfectly executed due to inherent
mechanical inaccuracies and unforeseen interventions from other agents. The effects of the actions
are therefore uncertain.

The physical robots themselves are of sizem x 12cm x 10cm. Fig. 2 shows our robots. A
differential drive mechanism is used in all of the robots. Two motors with integrated gear boxes
are used for the two wheels. Differential drive was chosen due to its simplicity and due to the
size constraints. The size of our robots conforms to RoboCup Competitiort. ri@sploying
the differential drive mechanism means that the robot is non-holonomic, which makes the robot
control problem considerably more challenging.

Although it may be possible to fit an on-board vision system onto robots of small size, in the
interest of being able to quickly move on to strategic multiagent issues, the CMUnited-98 teams
uses a global vision system. The fact that perception is achieved by a video camera overlooking
the complete field offers an opportunity to get a global view of the world state. This setup may
simplify the sharing of information among multiple agents, but it also presents a challenge for
reliable and real-time processing of the movement of multiple mobile objects, namely the ball, five
robots on our team, and five robots on the opponent’s team [3, 4, 1].

This article presents the main technical contributions of our CMUnited-98 small robot team. It
focuses on the problems of motion control and the robots’ strategy. The vision processing for the

see http://www.robocup.org/RoboCup/



Figure 2. The CMUnited-98 robots.

team is the same system used in the CMUnited-97 team [8], and so is not described here. Section 2
presents the motion planning approach for our robots including path planning to intercept moving
targets and obstacle avoidance. Section 3 introduces the individual and team behaviors of the
CMuUnited-98 robots. We introduce the novel concepawticipationwhich allows for the robots

to effectively receive passes from teammates. Section 4 summarizes the results of the RoboCup-98
games and Section 5 draws conclusions.

2 Motion Control

The goal of our low level motion control is to be as fast as possible while remaining accurate and
reliable. This is challenging due to the lack of feedback from the motors, forcing all control to be
done using only visual feedback. Our motion control algorithm is robust. It addresses stationary
and moving targets with integrated obstacle avoidance. The algorithm makes effective use of the
prediction of the ball’s trajectory provided by the Kalman-Bucy filter.

We achieve this motion control functionality by a reactive control mechanism that directs a
differential drive robot to a target configuration. Though based on the CMUnited-97’s motion
control [8], CMUnited-98 includes a number of major improvements. The target configuration
for the motion planner has been extended. The target configuration includes: Qattesian
positionn and (ii) thedirection that the robot is required to be facing when arriving at the target
position. Obstacle avoidance is integrated into this controller. Also, the target configuration can be
given as a function of time to allow for the controller to reason about intercepting the trajectory of
a moving target.

2.1 Differential Drive Control for Position and Direction

CMuUnited- 98’s basic control rules were improved from those used in CMUnited- 97. The rules
are a set of reactive equations for deriving the left and right wheel velocitiaagdv,, in order to
reach a target positiofiz*, y*):

A= 0-—¢ (1)
(t,r) = (cos® A -sgncosA),sin® A - sgn(sin A))

3



v = v(t—r)
v, = v(t+r),

wheref is the direction of the target poift*, y*), ¢ is the robot’s orientation, andis the desired
speed (see Fig. 3(&))A few aspects of these equations deserve explanation. The sisg ahd

cos? restricts the value§ =+ r) to the interval0, 1], which bounds the magnitude of the computed
wheel velocities by. These equations also do not necessarily drive the robot forward, possibly
driving the robot backwards towards the target.

Figure 3: (a) The parameters used to reach a target configutatioyi' ), without a specified target
orientation. (b) The adjustment 6fto ¢’ to reach a target configuration of the fotnt, y*, ¢*).

We extend these equations for target configurations of the farmy*, ¢*), where the goal
is for the robot to reach the specified target pdirit, y*) while facing the directiony*. This is
achieved with the following adjustment:

¢ = 60+ min (a,tanl (g)) ,

wheref' is the new target directiom is the difference between our angle to the target pointignd

d is the distance to the target point, ants a clearance parameter (see Fig. 3(b).) This will keep
the robot a distance from the target point while it is circling to line up with the target direction,
¢*. This new target directior®)/, is now substituted into equation 1 to derive wheel velocities.

In addition to our motion controller computing the desired wheel velocities, it also returns an
estimate of the time to reach the target configurat[ﬁ(w*,y*, ¢*). This estimate is a crucial
component in our robot’s strategy. It is used both in high-level decision making, and for low-
level ball interception, which is described later in this section. For CMUnite@QBt,y*, ¢*)is
computed using a very simple linear functiondty, andA:

T(a:*, Y, 0%) = wed + wea + waAA.

The weights were set by simple empirical measuremeniss the inverse of the robot’s transla-
tional speedy, is the inverse of the robot’s rotational speed; andis the inverse of the speed

2All angles are measured with respect to a fixed coordinate system.
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of the robot when traversing a circle of radigs|t is interesting to note that even this crude time
estimate can be incredibly useful for building more complex behaviors, which are discussed later
in this article.

2.2 Obstacle Avoidance

Obstacle avoidance was also integrated into the motion control. This is done by adjusting the target
direction of the robot based on any immediate obstacles in its path. This adjustment can be seen in

Fig. 4(b).
N e

Figure 4: The adjustment &f to #” to avoid immediate obstacles.

If a target direction passes too close to an obstacle, the direction is adjusted to run tangent
to the a preset allowed clearance for obstacles. Since the motion control mechanism is running
continuously, the obstacle analysis is constantly replanning obstacle-free paths. This continuous
replanning allows for the robot to handle the highly dynamic environment and immediately take
advantage of short lived opportunities.

2.3 Moving Targets

One of the real challenges in robotic soccer is to be able to control the robots to intercept a moving
ball. This capability is essential for a high-level ball passing behavior. CMUnited-98’s robots
successfully intercept a moving ball and several of their goals in RoboCup-98 were scored using
this capability.

This interception capability is achieved as an extension of the control algorithm to aim at a
stationary target. Fig. 5(a) illustrates the control path to reach a stationary target with a specific
direction, using the control mechanism described above. Our extension allows for the target con-
figuration to be given as a function of time, where 0 corresponds to the present,

ft) = (=%, 9%, ¢").

At some point in the futuref,, we can compute the target configuratigitt,). We can also use
our control rules for a stationary point to find the wheel velocities and estimated time to reach this
hypothetical target as if it were stationary. The time estimate to reach the target then informs us



whether it is possible to reach it within the allotted time. Our goal is to find the nearest point in the
future where the target can be reached. Formally, we want to find,

t* =min{t > 0: T(f(t)) < t}.

After finding t*, we can use our stationary control rules to reg¢t). In addition we scale the
robot speed so to cross the target point at exattly

Unfortunatelyt*, cannot be easily computed within a reasonable time-frame. We approximate
this value,t*, by discretizing time with a small time-step. We then find the smallest of these dis-
cretized time points that satisfies our estimate constraint. An example of this is shown in Fig. 5(b),
where the goal is to hit the moving ball.

() (b)

Figure 5: (a) Control for stationary target. (b) Control for moving target.

The target configuration as a function of time is computed using the ball’s predicted trajectory.
Our control algorithm for stationary points is then used to find a path and time estimate for each
discretized point along this trajectory, and the appropriate target point is selected.

3 Strategy

The main focus of our research is on developing algorithms for collaboration between agents in a
team. An agent, as a member of the team, needs to be capable of individual autonomous decisions
while, at the same time, its decisions must contribute towards the team goals.

CMuUnited-97 introduced a flexible team architecture in which agents are organifmtna-
tionsandunits Each agent plays @le in a unit and in a formation [5, 8]. CMUnited-98 builds
upon this team architecture by defining a set of roles for the agents. It also introduces improve-
ments within this architecture to help address the highly dynamic environment.

CMuUnited-98 uses the following roles: goalkeeper, defender, and attacker. The formation used
throughout RoboCup-98 involved a single goalkeeper and defender, and three attackers.

3.1 Goalkeeper

The ideal goalie behavior is to reach the expected entry point of the ball in thbefoatthe ball
reaches it. Assuming that the prediction of the ball trajectory is correct and the robot has a uniform
movement, we can state the ideal goalie behavior: given the predicéattiv, as the velocities of

the goalie and of the ball respectively, afyoandd, as the distances from the goalie and the ball to
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the predicted entry point, then, we Weﬁﬁt_ % — ¢, wheree is a small positive value to account
for the goalie reaching the entry point sllghtly before the ball.

Unfortunately, the ball easily changes velocity and the movement of the robot is not uniform
and is uncertain. Therefore we have followed a switching behavior for the goalie based on a
threshold of the ball's estimated trajectory.

If the ball's estimated speed is higher than a preset threshold, the goalie moves directly to the
ball's predicted entry goal point. Otherwise, the goalie selects the position that minimizes the
largest portion of unobstructed goal area. This is done by finding the location that bisects the
angles of the ball and the goal posts as is illustrated in Fig. 6.

N

o

Figure 6: The goalkeeper positions itself to minimize the unobstructed goal area.

The use of the predicted ball’s velocity for the goalie’s behavior was shown to be very effective
in the RoboCup-98 games. It was particularly appropriate for defending a penalty shot, due to the
accuracy of the predicted ball’s trajectory when only one robot is pushing the ball.

3.2 Defender

The CMUnited-97’s team did not have a well-specified defender’s role, but our experience at
RoboCup-97 made us understand that the purpose of a defending behavior is two-fold:

1. to stop the opponents from scoring in our goal; and

2. to not endanger our own goal.

The first goal is clearly a defender’s role. The second goal comes as the result of the uncertain
ball handling by the robots. The robots can easily push (or touch) the ball unexpectedly in the
wrong direction when performing a difficult maneuver.

To achieve the two goals, we implemented three behaviors for the defdBideking illus-
trated in Fig. 7(a), is similar to the goalkeeper’s behavior except that the defender positions itself
further away from the goal lineClearing illustrated in Fig. 7(b), pushes the ball out of the de-
fending area. It does this by finding the largest angular direction free of obstacles (opponents and
teammates) that the robot can push the ball towakdaoying illustrated in Fig. 7(c), is somewhat
similar to the goalkeeping behavior except that the robot tries to position itself between the ball
and the opponent nearest to it. This is an effort to keep the opponent from reaching the ball.

Selecting when each of these behaviors is used is very important to the effectiveness of the
defender. For example, clearing the ball when it is close to our own goal or when it can bounce
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Figure 7: The defender’s behaviors. The dark and light robots represent the defender and the
opponents respectively.

back off another robot, can lead to scoring in our own goal. We used the decision tree in Fig. 8 to
select which action to perform based on the current state.

The two attributes in the tree, namédall UpfieldandSafe to Clearare binary.Ball Upfield
tests whether the ball is upfield (towards the opponent’s goal) of the defesalerto Cleatests
whether the open area is larger than a preset angle threshBlall Wpfieldis false then the ball is
closer to the goal than the defender and the ralboioysthe attacking robot. The CMUnited-98’s
annoying behavior needs to select one particular opponent robot to annoy. For example, when two
opponent robots attack simultaneously, the current annoying behavior is able to annoy only one of
them. We are planning on further improving this behavior for RoboCup-99.

Ball Upfield

Annoy Safe to Clear

No Yes

Block Clear

Figure 8: The decision tree heuristic used by the defender to select its behavior.

If Ball Upfieldis true, the defender clears or blocks, depending on the valBafefto Clear
Clearing was shown to be very useful at RoboCup-98, with even a couple of our goals scored
directly by a clearing action of the defender.



3.3 Attackers - Active Teammate and Anticipation

Attacking involves one of the best opportunities for collaboration, and much of the innovation of
CMuUnited-98 has been developing techniques for finding and exploiting these opportunities.

In many multi-agent systems, one or a few agents are assigned, or assign themselves, the
specific task to be solved at a particular moment. We view these agents astitreeagents.

Other team members apassivewaiting to be needed to achieve another task or assist the active
agent(s). This simplistic distinction between active and passive agents to capture teamwork was
realized in CMUnited-97. The agent that goes to the ball is viewed as the active agent, while the
other teammates are passive.

CMUnited-98 significantly extends this simplistic view in two ways: (i) we use a decision
theoretic algorithm to select the active agent; and (ii) we use a technique for passivetagents
anticipatefuture collaboration. Passive agents are therefore not actually “passive;” instead, they
actively anticipateopportunities for collaboration. In CMUnited-98 this collaboration is built on
robust individual behaviors.

3.3.1 Individual Behaviors.

We first developed individual behaviors for passing and shooting. Passing and shooting in CMUnited-
98 is handled effectively by the motion controller. The target configuration is specified to be the
ball (using its estimated trajectory) and the target direction is either towards the goal or another
teammate. This gives us robust and accurate individual behaviors that can handle obstacles as well
as intercepting a moving ball.

3.3.2 Decision Theoretic Action Selection.

Given the individual behaviors, we must select an active agent and appropriate behavior. This is
done by a decision theoretic analysis using a single step look-aheadn»\éffants this amounts
to n? choices of actions involving shooting or a pass to another agent followed by that agent
shooting. An estimated probability of success for each pass and shot is computed along with the
time estimate to complete the action, which is provided by the motion controller. A value for each
action is computed,
Prpas®’shoot

time '
The action with the largest value is selected, which determines both the active agent and its behav-
ior. Table 1 illustrates an example of the values for the selection considering two attackers, 1 and 2.

It is important to note that this action selection is occurring on each iteration of control, i.e.,

approximately 30 times per second. The probabilities of success, estimates of time, and values of
actions, are being continuously recomputed. This allows for quick changes of actions if shooting
opportunities become available or collaboration with another agent appears more useful.

Value =

3.3.3 Dynamic Positioning (SPAR).

Although there is a clear action to be taken by the active agent, it is unclear what the passive agents
should be doing. Although, in a team multiagent system such as robotic soccer, success and goal



Probability of Success
Attacker| Action Pass Shoot | Time(s) | Value
1 Shoot - 60% 2.0 0.30
r Pass to 2 60% 90% 1.0 0.54
2 Shoot - 80% 15 0.53
2 Passto 1 50% 40% 0.8 0.25

Table 1: Action choices and computed values are based on the probability of success and estimate
of time. The largest-valued action (marked with*ams selected.

achievement often depends upon collaboration; so, we introduce in CMUnited-98, the concept that
team agents should not actually be “passive.”

CMuUnited-97’s team architecture allowed for the passive agents to flexibly vary their positions
within their role only as a function of the position of the ball. In so doing, their goal was to
anticipatewhere they would be most likely to find the ball in the near future. This is a first-level
of single-agent anticipation towards a better individual goal achievement [7].

However, for CMUnited-98, we introduce a team-based notiamtiCipation which goes be-
yond individual single-agent anticipation. The passive team members position themselves strate-
gically so as to optimize the chances that their teammates can successfully collaborate with them,
in particular pass to them. By considering the positions of other agents and the attacking goal, in
addition to that of the ball, they are able to position themselves more usefullyatiiejpatetheir
future contributions to the team.

This strategic position takes into account the position of the other robots (teammates and op-
ponents), the ball, and the opponent’s goal. The position is found as the solution to a multiple-
objective function with repulsion and attraction points. Let’s introduce the following variables:

e 1 - the number of agents on each team;

e O; - the current position of each opponeint; 1,. .., n;

e T, - the current position of each teammate; 1,...,(n — 1);
e B -the current position of the active teammate and ball;
e (7 - the position of the opponent’s goal;

e P -the desired position for the passive agent in anticipation of a pass.

Given these defined variables, we can then formalize our algorithm for strategic position, which
we call SPAR forStrategic Positioning with Attraction and Repulsionhis extends similar ap-
proaches using potential fields [2], to our highly dynamic, multi-agent domain. The probability of
collaboration is directly related to how “open” a position is to allow for a successful pass. SPAR
maximizes the repulsion from other robots and minimizes attraction to the ball and to the goal,
namely:
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e Repulsiorfrom opponents. Maximize the distance to each opponent:
Vi, max dist(P, O;).

e Repulsiorfrom teammates. Maximize the distance to other passive teammvatesix dist(P, T;).
e Attractionto the ball:min dist(P, B).

e Attractionto the opponent’s goathin dist(P, G).

This is a multiple-objective function. To solve this optimization problem, we restate this func-
tion into a single-objective function. This approach has also been applied to the CMUnited-98
simulator team [6].

As each term in the multiple-objective function may have a different relevance (e.g., staying
close to the goal may be more important than staying away from opponents), we want to consider
different functions of each term. In our CMUnited-98 team, we weight the terms differently,
namelywo,, wr,, wg, andwg, for the weights for opponents, teammates, the ball, and the goal,
respectively. For CMUnited-98, these weights were hand tuned to create a proper balance. This
gives us a weighted single-objective function:

max (Z wo, dist(P,0;) + > wr, dist(P,T;) — wpdist(P, B) — wedist(P, G)) :

=1 =1
This optimization problem is then solved under a set of constraints:
e Do not block a possible direct shot from active teammate.

¢ Do not stand behind other robots, because these are difficult positions to receive passes from
the active teammate.

The solution to this optimization problem under constraints gives us a target location for the
“passive” agent. Fig. 9(a) and (b) illustrate these two sets of constraints and Fig. 9(c) shows the
combination of these constraints and the resulting position of the anticipating passive teammate.

This positioning was very effective for CMUnited-98. The attacking robots very effectively
and dynamically adapted to the positioning of the other robots. The SPAR anticipation algorithm
created a number of opportunities for passes and rebounds that often led to goals and other scoring
chances.

In general, we believe that our approach represents a major step in team multiagent systems in
terms of incorporatingnticipationas a key aspect of teamwork.

4 Results

CMUnited-98 successfully defended our title of the Small Robot Champion at RoboCup-98 in
Paris. The competition involved 11 teams from 7 different countries. It consisted of a preliminary
round of two games, followed by the 8 advancing teams playing a 3-round playoff. CMUnited-98
won four of five games, sweeping the playoff competition, scoring a total of 25 goals scored and
only 6 suffered. The individual results of these games are in Table 2.
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Figure 9: Constraints for the dynamic anticipation algorithm are represented as shaded regions; (a)
and (b) show three opponents and the current position of the ball; (c) illustrates the position of the
passive agent - dark square - as returned by SPAR.

Phase Opponent Affiliation Score (CMU - Opp.)
round-robin | iXS iIXs Inc., Japan 16-2
round-robin| 5DPO University of Porto, Portugal 0-3
guarter-final| Paris-8 University of Paris-8, France 3-0

semi-final | Cambridge| University of Cambridge, UK 3-0

final Roboroos | University of Queensland, Australia 3-1

Table 2: The scores of CMUnited-98's games at RoboCup-98. The games marked titlean
forfeited at half time.

There were a number of technical problems during the preliminary rounds, including outside
interference with our radio communication. This problem was the worst during our game against
5DPO, in which our robots were often responding to outside commands just spinning in circles.
This led to our forfeit at half time and a clear loss against 5DPO, a very good team which ended in
third place at RoboCup-98. Fortunately, the communication problems were isolated and dealt with
prior to the playoff rounds.

The three playoff games were very competitive and showcased the strengths of our team. Paris-
8 had a strong defense with a lot of traffic in front of the goal. Our team’s obstacle avoidance still
managed to find paths and to create scoring chances around their defenders. The final two games
were very close against very good opponents. Our interception was tested against Cambridge, and
included blocking a powerful shot by their goalie, which was deflected back into their goal. The
final game against Roboroos demonstrated the dynamic positioning, especially during the final
goal, which involved a pass to a strategically positioned teammate.
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5 Conclusion

The success of CMUnited-98 at RoboCup-98 was due to several technical innovations, includ-
ing robust hardware design, effective vision processing, reliable time-prediction based robot mo-
tion with obstacle avoidance, and a dynamic role-based team approach. The CMUnited-98 team
demonstrated in many occasions its collaboration capabilities which resulted from the robots’ be-
haviors. Most remarkably, CMUnited-98 introduces the concemnicipation in which pas-
sive robots (not going to the ball) strategically position themselves using attraction and repulsion
(SPAR) to maximize the chances of a successful pass.

The CMUnited-98 team represents an integrated effort to combine solid research approaches
to hardware design, vision processing, and individual and team robot behaviors.
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