
MPADS: Memory-Pooling-Assisted Data Splitting

Stephen Curial
Xymbiant Systems Inc.

scurial@gmail.ca

Peng Zhao
Intel Corporation

peng.zhao@intel.com

José Nelson Amaral
Department of Computing Science,

University of Alberta
amaral@cs.ualberta.ca

Yaoqing Gao Shimin Cui Raul Silvera Roch Archambault
IBM Toronto Software Laboratory

{ygao,scui,rauls,archie}@ca.ibm.com

Abstract
This paper describes Memory-Pooling-Assisted Data Splitting
(MPADS), a framework that combines data structure splitting with
memory pooling.1 MPADS relies on pointer analysis to ensure that
splitting is safe and applicable to type-unsafe language. MPADS
makes no assumption about type safety. The analysis can identify
cases in which the transformation could lead to incorrect code and
thus MPADS abandons those cases.

To make data structure splitting efficient in a commercial com-
piler, MPADS is designed with great attention to reduce the number
of instructions required to access the data after the data-structure
splitting. Moreover the implementation of MPADS reveals that ar-
chitecture details should be considered carefully when re-arranging
data allocation. For instance one of the most significant gains from
the introduction of data-structure splitting in code targetting the
IBM POWER architecture is a dramatic decrease in the amount of
data prefetched by the hardware prefetch engine without a notice-
able decrease in the cache utilization. Triggering fewer hardware
prefetch streams frees memory bandwidth and cache space. Fewer
prefetching streams also reduce the interference between the data
accessed by multiple cores in modern multicore processors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms compilers, optimization

Keywords memory management, allocation strategies, memory
pooling

1. Introduction
Lattner and Adve and Shin et al. have convincingly demon-
strated that significant performance improvements can be realized

1 Although it MPADS may call to mind “memory padding,” a distintion of
this framework is that is does not insert padding.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM ’08 June 7–8, 2008, Tucson, Arizona, U SA.
Copyright c© 2008 ACM 978-1-60558-134-7/08/06. . . $5. 00

by improving the memory placement of linked-based data struc-
tures (9; 17). Zhong et al. and Rabbah and Palem proposed expen-
sive affinity-based analysis, based on trace or profile information,
for controlling the layout of pointer-based data structures (24; 15).
However, Zhao et al. found that a simple and inexpensive maximal
splitting strategy, which splits an array of aggregated data struc-
tures into many arrays, with each element containing a single field,
works very well in standard benchmarks (23).

An open question is whether maximal splitting can be applied
to pointer-based data structures that are not organized into arrays.
Moreover, is it possible to combine maximal splitting with Lattner
and Adve’s memory pooling in a commercial compiler for type-
unsafe language? Targeting a commercial compiler is important be-
cause such an environment imposes constraints that are not seen in
optimizing compilers developed for research purpose: the analysis
cannot rely on memory traces — traces are too large for commer-
cial applications; the analysis must be conservative — whenever
there is a possibility that the transformation will change the seman-
tics of the program, the transformation must be abandoned; and the
analysis must work with any legal construct in the language, in-
cluding unusual code idioms that may not appear in benchmarks.

Splitting data structures is a data reorganization technique that
can significantly increase the spatial locality of data and reduce
the runtime of programs that use link-based data structures (2;
4; 7; 20). Memory-Pooling-Assisted Data Splitting (MPADS) is a
framework designed to safely and automatically split pointer-based
data structures without adding padding. MPADS’ pointer analysis
guarantees that it is safe to split a given structure even when the
program is written in a weakly-typed language like C or C++.

MPADS introduces two different splitting techniques that trade
address computation and storage overhead for increased data local-
ity that reduces the number of cycles that processors spend stalled
waiting for data. MPADS extends Lattner and Adve’s Data Struc-
ture Analysis (DSA) that is used to identify type-homogeneous
structures (8; 9).

The implementation of MPADS includes Lattner and Adve’s
pool allocation; a simple annotation to the existing pointer analysis
to keep track of allocation sites and to identify structures whose
layout can be safely transformed; and the introduction of new
address computation code to every statement in the program that
contains a reference to transformed data structures.

Some of the highlights of MPADS are that it does not require
profile information or collection and analysis of memory trace —
the importance of implementing this code transformation without
such requirements cannot be understated. Also, MPADS does not

101

require padding of fields, and the address computation code intro-
duced is designed to minimize its impact on runtime performance.

MPADS is not the first implementation of the combination
of memory pools and splitting of pointer-based data structures.
In April of 2007 Jeon, Shin and Han published their structure-
splitting (6). While the technique presented in this paper was devel-
oped before their work appeared and in a completely independent
fashion, their structure splitting framework is similar to the non-
uniform splitting described in Section 2.2.2. Section 2 describes
MPADS. A detailed comparison of their system and MPADS is
given in section 4.

MPADS improves upon the state of the art data splitting sys-
tems (6; 15; 24) by reducing the overhead of the address computa-
tion. MPADS also shows that, for some benchmarks, using a much
faster, and less precise, pointer analysis is feasible. The experimen-
tal results in Section 3 shows that while a series of microbench-
marks showcase the potential performance improvements due to
MPADS, it still is not delivering its full potential on standard bench-
marks in the IBM XL compilers. The culprit is the unification-
based alias analysis that the compiler uses and that prevents the
analysis from identifying profitable opportunities.

2. MPADS: Memory-Pooling-Assisted Data
Splitting

2.1 Memory Pooling
When dynamically allocated objects of different types may are
mapped to the same cache line the result is poor locality, a polluted
cache and an increase in the number of cache misses.2 Memory
pooling is a memory allocation policy for dynamically allocated
objects that places objects of the same type together in a memory
pool to improve data spatial locality. Memory pools also tend to
result in frequent cache reuse and less capacity misses.

2.1.1 Memory Allocation Library
Standard memory allocation functions do not provide support to
allocate a group of objects together. Thus, a memory allocation
library that can allocate similar objects in a pool must be created.
The memory allocation calls are similar to those provided in the
standard C library. The difference is that each object is allocated in
a pool that is managed by the memory allocation library.

The memory allocation functions take a structure identifier as
a parameter. The structure identifier is used to tell the memory
allocation library which allocations should be grouped together.

2.1.2 APIs
The Memory Allocation Library must provide support for the com-
mon memory allocation calls found in the standard C library: mal-
loc, calloc and free. The APIs currently supported are:

• void* pool alloc(unsigned int struct id,
size t struct size, size t pool size);

• void* pool calloc(unsigned int struct id, size t
num objs, size t struct size, size t pool size);

• void pool free(void* ptr);

2.1.3 Memory Pools
The Memory Allocation Library manages a set of pools for each
data structure. Distinct data structures are identified by the structure
identifier that is passed into the allocation function. The pools have
a fixed size, typically the same size as, or larger than, a page. Data is

2 In this paper object refers to an instantiation of an aggregated data struc-
ture.

allocated contiguously within the pool until the pool is full. When
the pool is full, another pool is allocated and more memory can be
allocated in this newly created pool.

Memory can be freed from the pools by using the Memory
Allocation Library’s free function. The freed objects are stored in
a list and the memory can then be assigned to another allocation.
When all of the memory in the pool is freed, the pool can be
reclaimed.

Using multiple pools to store the data for each data structure
allows MPADS to use only a small amount of additional memory
while not limiting the framework to a fixed number of structures
that can be allocated.

2.1.4 Compiler Transformation
MPADS uses the results of the pointer analysis to differentiate
objects and allocate each structure in its own pool. To do this,
MPADS must first determine which structures should be grouped
together and then must replace the memory allocation calls with
calls to the custom-made Memory Allocation Library.

MPADS uses a Steengard’s style unification-based analysis (19).
Thus an alias set is a set of pointers that may point to the same
object(s). An allocation site in the program is a call to mal-
loc, calloc, realloc, alloca, valloc, strdup, memcpy, memalign or
posix memalign.3 The alias analysis has been modified to collect
the allocation sites during the same pass that performs the pointer
analysis. When two alias sets are unified during the analysis the
list of associated allocation sites is also unified. All objects that
may be pointed to by a pointer in an alias set are allocated in the
same pool. After the pointer analysis is complete the compiler it-
erates through the list of allocation sites for each candidate, and
transforms the allocation to the corresponding call from the mem-
ory allocation library. The structure identifier from the alias set
is passed as the struct id parameter to the allocation function.
MPADS also creates a list of the deallocation sites during the alias
analysis. The same process that was performed for the allocation
sites is performed for deallocation sites. If an object is flagged to
be transformed, the deallocation sites are also changed to use the
corresponding functions in the Memory Allocation Library.

If a non-standard allocation function is used to allocate an object
that is associated with an alias set, that set is not a candidate for pool
allocation. The usage of non-standard memory allocators suggests
that the programmer may be manually tuning the application. In
this case interfering with the placement of the objects in memory
may actually degrade performance.

2.2 Structure Splitting
Memory pooling increases the locality of data by grouping similar
structures together. Memory pooling works well when a traversal
of a data structure references several fields of each object before
moving to the next object. However, often a traversal of linked-
based objects only accesses a small fraction of the fields in each
object. The non-referenced fields are likely to share a cache line
with the fields that are referenced. These non-referenced fields
pollute the cache and waste valuable memory bandwidth. Structure
splitting is a technique that addresses this problem.

When a structure is split, all of the similar fields in each struc-
ture are grouped together. For example, all of the first fields in a
structure are allocated near each other, all of the second fields in
a structure are allocated near each other and so on. The result is
that the fields with the same offsets in different instantiations of the
structures have good spatial locality.

3 The current implementation of MPADS only transform objects that are
allocated through a call to malloc or calloc in the standard C library.

102

Figure 1 gives an example of how three structures, A, B and
C are allocated both with and without splitting. Each structure in
the example has 4 fields, f1, f2, f3 and f4. When structures are
allocated without splitting, as shown in Figure 1(a), the fields of
each structure are located next to each other in memory: A.f1,
A.f2, A.f3 and A.f4. MPADS organizes the data as shown in
Figure 1(b). In the split version, fields A.f1, B.f1 and C.f1 now
have good spatial locality.

Splitting data structures may improve performance in several
ways. If the traversal of a data structure only accesses a few fields
of the structure, then splitting greatly increases locality, reduces
the size of the working set, reduces the memory traffic, reduces
the number of capacity misses and does not pollute the cache.
Splitting the data also creates data streams that can be prefetched
by hardware prefetchers. Most hardware prefetch engines support
prefetching multiple data streams simultaneously.

There are three common methods to split structures: affinity-
based splitting, frequency-based splitting and maximal splitting.
Affinity-based splitting typically requires a profiling run to analyze
and determine the affinity of the fields in a structure. Fields with
high affinity are grouped together and then the structure is broken
into groups based on the field affinity. Frequency-based splitting
also needs information about how often each field is accessed and
this is typically obtained from a profile or memory trace. The fields
are grouped into frequently-accessed fields, known as hot fields,
and infrequently-accessed fields, or cold fields. The structure is
split to separate the hot and cold fields. Maximal splitting does
not group any of the fields in a structure together, it completely
separates every field in the structure.

Zhao et al. studied data splitting techniques and found that
maximal splitting can achieve the best, or near-best, performance
when compared with affinity- and frequency-based splitting (23).
MPADS uses maximal splitting.

Splitting a data structure changes the address computation re-
quired to access a field of an object. The new address computa-
tion must be efficient because memory references occur frequently.
Without careful design, the additional overhead from adding in-
structions for the new address computation may not be offset by
performance improvement from increasing data locality. To reduce
the overhead of address calculation MPADS uses two different
techniques for structure splitting depending on the layout of the
structure

2.2.1 Splitting Structures with Uniform Layout
If all of the fields in the structure are of the same length then the
address computation is simpler and more efficient than the case
where the fields are different lengths.

The access to a field via a pointer p, before splitting, is calcu-
lated as: *(p + offset) where the value of offset is typically small.
After splitting the pointer dereference is still computed as *(p +
offset) but now the offset is a much larger value. When uniform
splitting is used, the new offset for the i-th field in a data structure,
fi, can be calculated as:

num structs per pool =
pool size

P

i
sizeof (fi)

(1)

fi offset = length(fi) ∗ num structs per pool ∗ (i − 1) (2)

If the target processor has a base-plus-offset addressing mode,
there is likely a limited number of bits available to use for the offset.
In such architectures, either the pools can be made small enough to
ensure that the offset can be accommodated in the base-plus-offset
addressing mode or an additional add instruction can be used before
the memory access.

2.2.2 Splitting Structures with Non-Uniform Layouts
A structure with non-uniform layout is a structure comprised of
fields that have different lengths. MPADS still allocates fields into
a pool and splits them maximally, but the address calculation re-
quired to reference a field is more complicated.

A drawback of using multiple pools for splitting structures with
fields of multiple sizes is that for each field access, the start address
of the sub-pool in which the field resides must be computed at
runtime. For example, consider a pool that has several objects
allocated in it, shown in Figure 2. Let the length of fields 1, 2, 3
and 4 be 2, 4, 4 and 8, respectively.

f i e l d 1 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

f i e l d 2 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

f i e l d 3 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

f i e l d 4 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

p p + o f f se t

o f f se t

p - > f 3

Figure 2. Example illustrating why the index in the pool must be
known for non-uniform splitting.

Assume that there is a pointer p and that the program contains
a reference to field f3: p->f3. Assume that the pool can store 100
objects and that p points to the third object allocated in the pool.
If MAPS were to use equation 2 to calculate the offset, it would
obtain (2∗100)+(4∗100) = 600. However, this offset is actually
4 bytes short of the location that should be accessed. The dotted
arrow in Figure 2 shows the data that would be accessed if the offset
was 600 bytes. Thus, to access the correct location MAPS needs to
compute how many objects have been allocated in the pool before
the structure referenced by the pointer.

Using the runtime library to search for the start of the pool
that the pointer belongs to and then returning its index in the pool
is extremely expensive. To make address calculation inexpensive,
MPADS aligns the memory allocated for the pools on boundaries
that are multiples of the size of the pool. If the pools are aligned
then a simple bitwise and operation can be used to find the index of
the object. The bit mask, mask , can be calculated by the expression
∼ (poolSize − 1).4 The index of the object into the pool is given
by:

index =
p & mask

sizeof (f1)
(3)

where & stands for the bitwise logic AND operation and f1 is the
first field in the data structure. Let N be the maximum number of
structures that can be allocated in the pool, and S(fi) be the size,
measured in bytes, of field fi. The offset of f1 is zero. The offset
of all other fields is given by:

offset (fi) = S(fi) ∗ index − p&mask +

i−1
X

j=1

S(fj) ∗ N (4)

4 This calculation of the bit mask requires that the pool sizes be a power of
2.

103

A . f 1 A . f 2 A . f 3 A . f 4

B . f 1 B . f 2 B . f 3 B . f 4

C . f 1 C . f 2 C . f 3 C . f 4

A

B

C

0 4 8 1 2

A B C

0

1 0 2 4

2 0 4 8

3 0 7 2

A . f 1

A . f 2

A . f 3

A . f 4

B . f 1

B . f 2

B . f 3

B . f 4

C . f 1

C . f 2

C . f 3

C . f 4

(a) (b)

Figure 1. An example of (a) three structures allocated without splitting and (b) three structures allocated with MPADS Maximal Splitting.

The calculation of offset (fi) using equation 4 is shown graphically
in Figure 3.

All of the sub expressions in equation 4, except for index and
p, are known at compile time and can be folded to further reduce
overhead. Moreover, when S(f1) is a power of 2 the compiler
can use strength reduction to replace the division with a bit-shift
operation. 5 The compiler can reorder the fields in the data structure
to place a frequently referenced field whose size is a power of
two as the first field in the structure. Moreover, if the referenced
field has the same length as the first field in the structure, then
S(fi) ∗ index = p&mask and the offset computation is greatly
simplified.

f i e l d 1 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

f i e l d 2 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

f i e l d 3 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

f i e l d 4 _ l e n g t h *
n u m _ s t r u c t s _ p e r _ p o o l

p p + o f f se t

o f f se t

p - > f 3

p & m a s k

Figure 3. Pointer access with MPADS Non-Uniform Maximal
Splitting

5 The S(f1) is known at compile time because the length of each field in
the structure must be known for the transformation to be identified as safe.

2.3 Identifying Structures to Transform
MPADS must discover data structures that are candidates for the
transformation and ensure that the transformation will not alter the
semantics of the program. For a transformation of an object X to
be safe, MPADS must identify all the pointers that may point to X .
Then MPADS must determine that all the objects pointed-to from
this alias set have the same layout.

In MPADS two objects have the same layout if their byte-
level view is the same. Formally, given two structures s1 and s2

with n fields in each structure, s1 and s2 have the same layout if
and only if for 0 ≤ i < n, lengthof (s1.fi) = lengthof (s2.fi)
AND offset(s1.fi) = offset(s2.fi), where fi is the i-th field of
s1 and s2. MPADS is not concerned about the data type of the
fields because splitting the structures only changes where the data
is located and not how it is used. To identify safe candidates,
MPADS combines the alias sets computed by the alias analysis with
the object layout information from the compiler’s symbol table.
Currently MPADS does not split structures where one of the fields
is itself an aggregated data structure. MPADS can be extended to
handle this case by moving the fields of the nested structure into
the parent.

MPADS’ pointer analysis is an unification-based, field-sensitive,
flow-insensitive and context-insensitive inter-procedural Steensgaard-
style analysis (19). This analysis was chosen because it scales to
large programs. It is important for the alias analysis to be field-
sensitive because structures often contain many fields of different
types and the coarse granularity of a field-insensitivity analysis
could result in many missed opportunities.

The pointer analysis provides more information than simply a
check for safety, it is also used to determine in which pools the can-
didate structures should be allocated (9). Using a unification-based
alias analysis results in all the pointers that access a particular data
structure to be in the same alias set. Different alias sets represent
different objects and must be allocated in different pools.

104

2.3.1 Combining Structure Splitting with Memory Pooling
When structure splitting is combined with memory pooling, calls
to allocation and deallocation functions are still intercepted the
same way as in the implementation of pool allocation but now a
slightly different function must be used. The allocation function
for structure splitting still groups similar objects together, but the
location and pattern of the memory for each field that is allocated
differs from the pool allocation routines.

The main difference between the allocation function for struc-
ture splitting and pool allocation is that the pool allocation library
returns addresses that are separated by the size of the object al-
located while the allocation function for structure splitting returns
addresses separated by the size of the first field of the object.

Consider memory pooling without structure splitting. For in-
stance, assume that the pool size is 4k and that the program is al-
locating a 16-byte structure consisting of four 4-byte fields. A call
to the pool allocation function returns memory address m and al-
locates memory in locations [m, m + 15]. Locations [m, m + 3]
are reserved for the first field, [m + 4, m + 7] for the second field
and so forth. The second call to the pool allocation function returns
m + 16 and allocates [m + 16, m + 31].

Using the same example with structure splitting, each of the four
fields will occupy one quarter of the pool or 1024 bytes. The first
field of the first object is allocated at m and the allocation function
would return the address m. The second, third and fourth fields of
the first object are located at m + 1024, m + 2048 and m + 3072,
respectively. The first field in the second object allocated in the pool
is located at m + 4 with the second, third and fourth fields of the
second object located at m + 1028, m + 2052 and m + 3076,
respectively.

For non-uniform splitting, pools must be aligned by the pool
size and are allocated using the posix memalign system call.
MPADS requires that the pool size be known at compile time
to reduce the cost of address computation. To make the memory
library more flexible, the pool size can be passed as a parameter.
MPADS automatically generates this parameter and uses the same
value for the address calculation.

The APIs for the splitting functions include parameters for the
size of the first field in the structure. The size of the first fields in
the structure must be known for the allocation function to return
the correct address. Further description of pool allocation is given
by Lattner and Adve (9).

• void* split alloc(unsigned int struct id, size t
first field size, size t struct size, size t pool size);

• void* split calloc(unsigned int struct id, size t
first field size, size t num objs, size t struct size,
size t pool size);

• void split free(void* ptr);

2.3.2 Code Transformation
Once the candidates for safe splitting are identified, MPADS re-
places the corresponding calls to memory allocation and dealloca-
tion functions with the calls in the API described above.

To change pointer accesses MPADS recursively traverses the
abstract-syntax-tree representation of the code searching for an in-
direct load or store — a load of an address from the stack followed
by a load or store. Once an indirect load or store is found the com-
piler determines which alias set the pointer is a member of. If the
corresponding alias set has been flagged as a candidate for splitting,
the address calculation used in the indirect load or store is changed
to use either the uniform split or non-uniform splitting addressing
described in sections 2.2.1 and 2.2.2.

The offset for the first field in each structure is always 0 and can
be accessed without a costly address computation. To try to im-
prove the performance of the transformed program MPADS should
put the most frequently accessed field at offset 0. Since profile in-
formation is not available, MPADs assumes that recursive fields
are accessed more frequently and thus MPADS makes a recursive
field the first field. If there are multiple recursive fields MPADS ar-
bitrarily picks one of them to be the first field. Because recursive
fields usually contain addresses, whose size is a power of two, this
strategy also simplifies the division operation in the address com-
putation for non-uniform splitting.

Although MPADS doesn’t require fields to be aligned, some
archictectures require memory access to be aligned. An extension
of MPADS could pad fields so they are aligned.

2.4 Dynamic Memory Footprint vs. Static Memory Footprint
Memory pooling can increase the memory requirements, also
known as the static memory footprint, of the application because
the last allocated pool may not be full. However, the amount of
extra space required will be amortized when many pools are allo-
cated. The static memory footprint of an application have little or
no effect in the application’s memory performance.

The motivation behind data structure splitting is to trade in-
creased space requirements for faster application execution. To im-
prove the cache performance, the developer has to reduce the size of
the dynamic memory footprint. A working definition for dynamic
memory footprint is the number of distinct cache lines (or memory
pages) that the application actually references at runtime. Smaller
working sets allow more data to fit into cache and can reduce the
number of cache misses. The MPADS transformation is designed
to reduce the size of the working set by splitting the data struc-
tures to place fields that are accessed together close to each other
in memory.

2.5 Implementation in the IBM XL Compiler
The MPADS transformation is implemented in the Toronto Portable
Optimizer (TPO) in the IBM XL compiler. MPADS required an
inter-procedural pointer analysis to guarantee safety and thus it is a
natural choice to implement MPADS in the TPO, which performs
whole program optimization and analysis.

The TPO performs two passes over the program, the first pass
collects information and analyzes the code while the second pass
modifies the program. The MPADS framework was easily inte-
grated into the 2 passes that the TPO performs. On the first pass
the pointer analysis is performed and candidate structures are iden-
tified. On the second pass the candidate allocation sites and pointer
de-references are modified.

MPADS added very little additional overhead to the compiler.
The pointer analysis that MPADS uses is already performed by the
TPO as part of the Forma array reshaping transformation (23). Ad-
ditionally, MPADS does not need to make any additional passes
over the code because the pointer analysis provides enough infor-
mation for the actual code transformation process to be done lo-
cally, almost as though it is a peep-hole optimization.

3. Experimental Evaluation
The results of the experimental evaluation of MPADS can be
summarized as follows. For all of the larger benchmarks tested,
MPADS outperforms memory pooling. The memory pooling op-
timization that is being used for comparison is MPADS without
structure splitting: the calls to the memory allocation functions are
replaced but the pointer calculations are not changed (3). For llu,
MPADS cut the execution time in half. However, the results for
the rest of the benchmarks are mixed. Many potential opportunities

105

were abandoned because the pointer analysis did not have enough
precision and thus the transformation did not have as large an im-
pact as expected. As well, the transformation caused one of the
benchmarks, health, to have worse cache behavior and run 9%
slower than the baseline.

3.1 Benchmarks
Benchmarks from 3 sources were used: SPEC 2000, Olden (16) and
LLU (25). The Olden and LLU benchmarks were chosen because
they have been used to evaluate code transformations that aim to
improve cache performance and because they contain pointer-based
data structures (2; 9; 20). The SPEC 2000 benchmarks were chosen
because they are the de facto standard for performance measure-
ment in the industry. None of the benchmarks are multithreaded.

The benchmarks tested are comprised of C and C++ programs
that use linked data structures. The size and layout of the data struc-
tures in the benchmarks varies. Some benchmarks use a standard
linked list while others use structures such as a linked list of linked
lists, or quad-trees. MPADS performs an analysis to identify can-
didates to split and should be able to split the structures regardless
of the layout. Optimization opportunities are not discovered in sev-
eral of the benchmarks. Those benchmarks are not included in the
results because a transformation was not performed on them and
accordingly there is no change in their performance.

Opportunities are identified in only 5 of the SPEC 2000 bench-
marks and the opportunities that were identified were responsible
for referencing only a small fraction of each application’s data. As
a result the transformation did not have a measurable impact on any
of the SPEC 2000 benchmarks. Although MPADS did not identify
any significant opportunities in SPEC we believe that opportunities
exist. Lattner and Adve’s Data Structure Analysis (DSA) has suc-
cessfully identified candidates in SPEC 2000 (11; 12). They use a
context-sensitive, field-sensitive, flow-insensitive unification-based
pointer analysis that is more precise then the Steensgaard’s style
analysis used in MPADS.

3.2 The Potential for Gain
Several simple programs containing data structures that could be
split by MPADS were written for initial testing of the code trans-
formation. Even though the performance gains in these simple pro-
grams is not representative of what should be expected from com-
plete applications, the performance improvements in the POWER4
processor speed improvements shown in Figure 4 are indicative for
the potential for performance improvement due to data structure
splitting.6 The labels in the graph columns describe what these sim-
ple programs do (3).

3.3 Experimental Setup
The benchmarks are evaluated on two different hardware architec-
tures and are compiled with the IBM XL compiler at the highest
optimization level, -O5. The machines used for evaluation are a 1.7
GHz POWER4 machine and a 1.9 GHz POWER5 machine. The
pertinent information about the memory hierarchy configuration of
each machine and the memory latencies are given in Table 1.

All of the timing results are calculated by taking the smallest
running time from 10 runs of the application. The performance met-
rics are gathered using the tcount tool that monitors the hardware
counters and are gathered during a separate run so that they do not
affect the timing results (21).

3.4 Results
Given the tight integration of MPADS in the two passes of TPO
and the use of a pointer analysis that the compiler already performs,

6 POWER5 results show similar trends.

 0

 2

 4

 6

 8

 10

 12

 14

Binary Tree w/o interleaved alloc

Binary Tree w/ interleaved alloc

Linked List 2 w/o interleaved alloc

Linked List 2 w/ interleaved alloc

Linked List 1B

Linked List 1A

Sp
ee

du
p

Pool Allocation
MPADS

Figure 4. Speedup for small programs on a POWER4.

POWER 4 POWER 5
L1 Data 32kb 32kb
Cache 2-way associative 4-way associative

128 byte cache line 128 byte cache line
Latency: 1 cycle Latency: 4 cycles

L2 Cache 1.44Mb shared per chip 1.9Mb shared per chip
8-way associative 10-way associative
128 byte cache line 128 byte cache line
Latency: 8-12 cycles Latency: 14 cycles

L3 Cache 32Mb per chip 32Mb per chip
8-way associative 12-way associative
512 byte cache line 256 byte lines
Latency: 118 cycles Latency: 80 cycles

TLB 1024 entries 1024 entries
4-way set-associative 4-way set-associative
Latency: 250 cycles Latency: 351 cycles

Table 1. Cache Configuration

there was no noticeable increase in compilation time with the intro-
duction of MPADS.

In all bar graphs the Baseline is the program compiled with
the -O5 flag, Pool Allocation is a measurement for the application
compiled with the -O5 flag and the pool allocation optimization,
and MPADS use the MPADS optimization with the -O5 flag.

The MPADS transformation either outperformed or tied the per-
formance of memory pooling on every benchmark. The speedup
for each of the benchmarks after the transformations is given in
Figure 5. Both memory pooling and MPADS had larger impacts on
the POWER4 processor than on the POWER5. On the POWER4,
MPADS improved 5 benchmarks and memory pooling only im-
proved 3. On the POWER5 MPADS and memory pooling only im-
proved 2 benchmarks but MPADS improved LLU by 27% more
then memory pooling.

106

Benchmark Instr. Count (in 100,000,000) CPI
baseline Pool MPADS baseline Pool MPADS

bh 503 0.02 -1.1 1.6 -0.1 0.4
em3d 980 0.1 -6.9 0.6 4.9 13
health 343 5.3 2.3 2.4 -15 -7.4
power 16 -0.1 -0.3 4.6 0.3 5.8
tsp 1215 5.5 -6.2 2.4 -0.7 13
llu 966 1.0 -11 8.9 43 62
Total/avg 17378 2.0 -3.9 5.5 17 29

L1D Misses (in 100,000) L2 Misses in 100,000)
baseline Pool MPADS baseline Pool MPADS

bh 7272 -11 -5.4 442 -2.5 -1.1
em3d 1372 13 13 59 -20 14
health 769 -20 -14 63 0.94 4.1
power 7.1 6.3 -3.6 0.25 12 2.6
tsp 397 -3.8 1.8 64 25 58
llu 18934 13 -46 527 62 42
Total/avg 28751 -2.7 -9.0 1156 13 20

L3 Misses (in 100,000) DTLB Misses (in 100,000)
baseline Pool MPADS baseline Pool MPADS

bh 14.7 22 13 218 -2.3 -2.0
em3d 10.5 -13 7.8 410 12 13
health 39.7 -13 -19 22 8.4 -5.5
power 0.05 8.2 3.4 0.24 -36 0.43
tsp 25 33 61 14 18 11
llu 0.8 19 75 5.4 -5.1 57
Total/avg 91 9.4 24 670 7.4 7.6

Table 2. Hardware counter measurements in POWER 4 architecture. The baseline columns is the number of events, the Pool and MPADS
are percentage decrease in relation to baseline.

Table 2 summarizes the study of performance variations due to
the implementation of pool allocation and MPADS in the POWER
4 architecture. The number of instructions for the baseline is ex-
pressed in 100 millions. The baseline for all other events is ex-
pressed in 100,000s. The numbers under the Pool and MPADS
columns represent the percentage reduction in the number of events
in relation to the baseline for that version of the program. For in-
stance, for the health benchmark the use of pool allocation results
in a decrease of -13% in the number of L3 cache misses, which
means that the pool allocation increases the number of misses in
this program by 13% while MPADS eliminates 8.4% of the DTLB
misses in the same benchmark. The Total/avg row reports the total
number of events in all benchmarks and the corresponding average
variations in this total for pool allocation and MPADS. For CPI the
Total/avg row has the average CPI for baseline, and the average
percentage variation in CPI for the other columns.

The results on the top section of Table 2 are as expected:
MPADs increased the number of instructions executed by 3.9% on
the whole suite of benchmarks because structure splitting increases
the number of instructions executed during the address calculation
of most references, but reduces the average number of clocks per
instruction by 29% because there are fewer stall cycles.

Even though MPADS increased the number of L1D misses for
many benchmarks it still obtained a speed up in this benchmarks.
The number of L2 and L3 misses indicate that MPADS decreased
the number of misses at the lower levels of cache and these reduc-
tions outweighed the increases in L1D misses.

Benchmarks bh, em3d, power and tsp had much smaller
performance improvements on the POWER5 compared to the
POWER4 because there was a much less significant reduction in

misses on the POWER5.7 As a result the number of cycles spent
stalled only sightly decreased on the POWER5 and most of that
gain was eaten up by the overhead of the extra address-calculation
instructions.

The LLU benchmark simulates a linked list and was proposed
as a replacement to the health benchmark that may not be repre-
sentative of a typical linked-list data structure (25). LLU received
the largest speedup from MPADS, 2.07 on the POWER4 and 1.72
on the POWER5. It’s interesting that MPADS increased the num-
ber of L1 cache misses but decreased the number of DTLB, L2 and
L3 cache misses. The L1 misses increased because the benchmark
accesses many of the fields in the list nodes at the same time and
the reorganization of the data caused poorer L1 cache performance.
However, for the larger L2 and L3 caches the data reorganization
allowed them to implicitly prefetch more data and significantly re-
duced the number of cache misses.

3.5 Hardware Prefetching
Most modern processors – including Intel’s Core Duo (22), AMD’s
Athlon (5), Sun’s UltraSPARC (13) and IBM’s POWER series (18)
– use hardware-based stride prefetchers to automatically identify
strided data accesses. Once the prefetch engine has identified a
strided data access, it can efficiently issue prefetch instructions.
Typically, hardware prefetch engines only detect streams within a
page and need to issue a new prefetch stream as the access move
between pages.

The MPADS transformation increases spatial locality and re-
duces the size of the working set. This increased locality causes
fewer prefetch streams to be allocated and fewer prefetches to
be issued. Requiring fewer prefetch streams frees up resources to

7 Due to space constraints the performance counter measurements for the
POWER 5 architecture are not shown in the paper.

107

 0

 0.5

 1

 1.5

 2

llutsppower
health

em3d
bh

Sp
ee

du
p

Pool Allocation
MPADS
Baseline

(a)POWER4

 0

 0.5

 1

 1.5

 2

llutsppower
health

em3d
bh

Sp
ee

du
p

Pool Allocation
MPADS
Baseline

(b)POWER5

Figure 5. Speedup over baseline.

prefetch data accesses that may have been previously ignored. It
also reduces the memory bandwidth requirements and cache pol-
lution — an important feature in multi-core processors that share
lower levels of the memory hierarchy.

Both the POWER4 and POWER5 processors support up to 8
simultaneous prefetch streams. Figure 6 shows that the number
of prefetch streams allocated after the MAPS transformation is
reduced on both the POWER4 and POWER5 processors for most
of the benchmarks — exceptions are em3d and bh on the POWER5.

Figure 7 shows the number of prefetches from L2 to the L1
cache and from main memory into the L2 cache in the POWER4.8

4. Related Work
The area of research most closely related to this work is the area
of automatic data transformations. Automatic data transformations
are appealing because they are transparent to the programmer and

8 The variations are very similar in the POWER5 processor.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

llutsppower
health

em3d
bh

N
um

be
r o

f P
re

fe
tc

h
St

re
am

s A
llo

ca
te

d

Baseline
Pool Allocation

MPADS

(a)POWER4

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

llutsppower
health

em3d
bh

N
um

be
r o

f P
re

fe
tc

h
St

re
am

s A
llo

ca
te

d

Baseline
Pool Allocation

MPADS

(b)POWER5

Figure 6. Number of prefetch streams allocated.

the compiler can often optimize programs better than the average
programmer.

Finding a good data layout is a difficult problem. Even if we
know the order that memory locations are accessed, the problem
of organizing data in memory to minimize the number of cache
misses can’t be solved efficiently or even approximated very well
unless P = NP (14). Thus all of the proposed solutions are heuristics
designed to improve the naive layout that is commonly used in
production compilers.

Lattner and Adve developed one of the first fully automatic and
safe data transformations to successfully transform dynamically al-
located objects for general purpose programs written in type unsafe
languages (9). They created an analysis called Data Structure Anal-
ysis that is based on a context-sensitive pointer analysis. Their pool
allocation automatically identifies safe candidates to transform and
allocates them in pools based on the objects that they were aliased
with. The pool allocation idea forms the base for MPADS pool al-
location and other structure splitting frameworks (6; 17).

108

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

llutsppower
health

em3d
bh

N
um

be
r o

f P
re

fe
tc

he
s t

o
L1

 C
ac

he

Baseline
Pool Allocation

MPADS

(a)from L2 to L1

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

llutsppower
health

em3d
bh

N
um

be
r o

f P
re

fe
tc

he
s t

o
L2

 C
ac

he

Baseline
Pool Allocation

MPADS

(b)from main memory to L2

Figure 7. Number of Prefetches on POWER4.

Lattner and Adve used their Data Structure Analysis and pool
allocation to safely compress pointers in linked data structures (10).
Their system reduces 64-bit pointers to 32-bit pointers by allowing
pointers in the same pool to index other objects in that pool using
an offset from the base of the pool. The system reduces the size of
objects and allows more objects to fit in cache resulting in smaller
working sets and improved application performance. MPADS at-
tempts to reduces the size of the working set by reorganizing how
data is placed in memory, opposed to modifying the size of the data.

Zhong et al. define a model to measure the closeness of refer-
ences in a memory trace, the model is known as reference affin-
ity (24). Zhong et al. show how reference affinity can be used for
structure splitting and array regrouping. Fields with high affinity
are grouped together and then the structure is split into groups. Al-
though they perform structure splitting in a compiler they assume
that the language is type-safe and use programmer intervention to
ensure that the transformation does not alter the semantics of the
program. MPADS does not require a program trace and guarantees
that the transformation is safe. As well, MPADS performs maximal
splitting instead of affinity-based splitting.

A precursor of MPADS is Forma, a maximal splitting frame-
work also implemented in the IBM XL compiler to automatically
and safely reshape single-instantiated arrays (23). The maximal
splitting implemented in Forma is limited to the transformation of
arrays of data structures and does not combine splitting with mem-
ory pooling. Instead of using the affinity-based splitting proposed
by Zhong et al., Forma uses maximal splitting and discovers that
maximal splitting achieves best, or near-best, performance on the
SPEC 2000 and Olden benchmarks.

Rabbah and Palem develop a completely automated data remap-
ping technique that splits pointer-based structures (15). Their sys-
tem uses a trace of all the field accesses in the program to deter-
mine the field-access affinity. This affinity is then used to decide
which structures to split. The candidate structures are then split
maximally, which is similar to MPADS uniform structure splitting
from Section 2.2.1. However, uniform splitting is the only splitting
mechanism supported and the fields must be padded so that they
are all the same length. If many fields in a structure are padded this
can result in the data remapping polluting the cache more than the
original organization. MPADS only uses uniform structure splitting
if all of the fields in the structure are the same size and thus does not
pollute the cache with padding. Rabbah and Palem also use a field-
insensitive pointer analysis whereas MPADS uses a more precise
field-sensitive pointer analysis.

Shin et al. restructure the field layout for dynamically allocated
objects (17). Their field restructuring removes the padding in the
structure, groups fields with high affinity together and performs
affinity-based splitting. To determine which fields are accessed to-
gether the system uses profile information. Shin et al. describe
the technique used to split the structures but do not describe how
to integrate it into a compilation framework nor do they mention
how they guarantee safety. Although their technique is similar to
the Non-Uniform Splitting technique described in Section 2.2.2,
MPADS is different because it is designed to be safely integrated
into a production compiler and performs maximal splitting. As
well, MPADS supports uniform splitting to reduce the address cal-
culation overhead when all of the fields in a structure are the same
length. The numbers obtained by Shin et al.’s structure reshaping
are slightly better than MPADS but they were obtained on a system
with a higher clock speed and smaller caches.

Jeon, Shin and Han expand on Shin et al.’s previous work using
structure splitting to reorganize objects allocated in the heap (6).
The major difference from their previous work is that this system
is implemented in the CIL compiler framework and does not use
profile information. The improvement to the field restructuring is
the addition of a static analysis that uses regular expressions to
represent the field access pattern. The regular expression can then
be used to extract the access pattern and estimate the field affinity.
Once again, affinity-based splitting is performed. The safety of
their system is based on Lattner and Adve’s observation that most
pools are used in a type-consistent style (9). Jeon, Shin and Han rely
on their regular expressions to select candidates if the closure only
contains fields from a single node and this will likely be enough
for the majority of the cases. However, without a pointer analysis it
is impossible to guarantee safety because fields can be accessed
through pointers that may not be captured through their regular
expression framework.

An alternative to the automatic transformations described above
are transformations that require programmer intervention. Truong,
Bodin and Seznec investigate grouping fields that are referenced
together into the same cache line and splitting data structures so that
fields of different instances of a structure are grouped together (20).
Chilimbi, Davidson and Larus modify the internal organization of
fields in a data structure at compile time to improve the locality (1).
The cahce miss rates were reduced by 10-20% and run time was

109

reduced by 6-18% on five of the Java benchmarks that Chilimbi,
Davidson and Larus used.

5. Conclusion
The main accomplishment of this paper is a demonstration that
memory pooling and pointer-analysis-based structure splitting can
be effectively combined in the context of a commercial compiler
infrastructure. While small program examples demonstrated very
high potential for performance gains, realizing significant gains in
the performance of actual programs will required a more precise,
and more expensive, alias analysis than the one currently available
in the compiler. The main gain of the currently implementation
of MPADS is a significant reduction in the number of hardware
prefetch streams that are allocated, with a consequent reduction in
the memory bandwidth utilization and on the polution of the data
cache.

Trademarks
The following terms are trademarks or registered trademarks of In-
ternational Business Machines Corporation in the United States,
other countries, or both: IBM, POWER4, POWER5. Other com-
pany, product, and service names may be trademarks or service
marks of others.

Acknowledgments
This research was partially funded by the IBM Center for Advanced
Studies (CAS) in Toronto and by a grant from the Collaborative
Research and Development (CRD) program of the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

References
[1] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious struc-

ture definition. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999
conference on Programming Language Design and Implementation,
pages 13–24, New York, NY, USA, 1999. ACM Press.

[2] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure
layout. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 confer-
ence on Programming Language Design and Implementation, pages
1–12, New York, NY, USA, 1999. ACM Press.

[3] S. Curial. Safe automatic data splitting for linked data structures.
Master’s thesis, University of Alberta, 2007.

[4] C. Ding and K. Kennedy. Improving cache performance in dynamic
applications through data and computation reorganization at run time.
In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation, pages 229–241,
New York, NY, USA, 1999. ACM Press.

[5] Jack Huynh. The AMD AthlonTM MP Processor. AMD White Paper,
May 2003. http://www.cpuplanet.com/img/pdf/athlon mp512l2.pdf.

[6] J. Jeon, K. Shin, and H. Han. Layout transformations for heap objects
using static access patterns. In Compiler Construction, pages 187–
201, March 2007.

[7] M. Kandemir and I. Kadayif. Compiler-directed selection of dynamic
memory layouts. In CODES ’01: Proceedings of the ninth interna-
tional symposium on Hardware/software codesign, pages 219–224,
New York, NY, USA, 2001. ACM Press.

[8] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[9] C. Lattner and V. Adve. Automatic pool allocation: improving perfor-
mance by controlling data structure layout in the heap. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 129–142, New York, NY,
USA, 2005. ACM Press.

[10] C. Lattner and V. S. Adve. Transparent pointer compression for linked
data structures. In MSP ’05: Proceedings of the 2005 workshop on
Memory system performance, pages 24–35, New York, NY, USA,
2005. ACM Press.

[11] Chris Lattner and Vikram Adve. Data structure analysis: A fast and
scalable context-sensitive heap analysis. Tech. Report UIUCDCS-
R-2003-2340, Computer Science Dept., Univ. of Illinois at Urbana-
Champaign, Apr 2003.

[12] Patrick Meredith, Balpreet Pankaj, Swarup Sahoo, Chris Lattner, and
Vikram Adve. How successful is data structure analysis in isolat-
ing and analyzing linked data structures? Tech. Report UIUCDCS-
R-2005-2658, Computer Science Dept., Univ. of Illinois at Urbana-
Champaign, Nov 2005.

[13] Sun Microsystems. UltraSPARC III User’s Manual, 2004.
[14] E. Petrank and D. Rawitz. The hardness of cache conscious data

placement. In POPL, pages 275 – 307, Portland, OR, USA, January
2002.

[15] R. M. Rabbah and K. V. Palem. Data remapping for design space
optimization of embedded memory systems. ACM Transactions on
Embedded Computing Systems, 2(2):1–32, May 2003.

[16] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Support-
ing dynamic data structures on distributed-memory machines. ACM
Trans. Program. Lang. Syst., 17(2):233–263, 1995.

[17] K. Shin, J. Kim, S. Kim, and H. Han. Restructuring field layouts
for embedded memory systems. In DATE ’06: Proceedings of the
conference on Design, automation and test in Europe, pages 937–
942, 3001 Leuven, Belgium, Belgium, 2006. European Design and
Automation Association.

[18] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner. POWER5 system microarchitecture. IBM Journal of Research
and Development, 49(4/5), 2005.

[19] B. Steensgaard. Points-to analysis in almost linear time. In POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 32–41, New York, NY,
USA, 1996. ACM Press.

[20] D. N. Truong, F. Bodin, and A. Seznec. Improving cache behavior
of dynamically allocated data structures. In Seventh International
Conference on Parallel Architectures and Compilation Techniques
(PACT’98), pages 322–329, 1998.

[21] D. Vianney, A. Mericas, B. Maron, T. Chen, S. Kunkel, and B. Ol-
szewski. CPI analysis on POWER5, part 1: Tools for measuring
performance. http://www-128.ibm.com/developerworks/library/pa-
cpipower1/, April 2006.

[22] Ofri Wechsler. Inside Intel Core Microarchitecture: Set-
ting new standards for energy-efficient performance.
Technology@Intel Magazine, pages 1–11, March 2006.
http://support.intel.com/technology/magazine/computing/core-
architecture-0306.pdf.

[23] P. Zhao, S. Cui, Y. Gao, R. Silvera, and J. N. Amaral. Forma: A
framework for safe automatic array reshaping. ACM Transactions on
Programming Languages and Systems, 30:2:1–2:30, November 2007.

[24] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping
and structure splitting using whole-program reference affinity. In
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation, pages 255–266,
New York, NY, USA, 2004. ACM Press.

[25] Craig B. Zilles. Benchmark health considered harmful. SIGARCH
Comput. Archit. News, 29(3):4–5, 2001.

110

