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A Decade of
Hardware/
Software Codesign

T he term hardware/software codesign sur-
faced in the early 1990s to describe a con-
fluence of problems in integrated circuit
(IC) design. Microprocessors had been in
use for over a decade at that point, but

microprocessor-based systems were almost exclu-
sively board-level systems. A class of designers who
were largely separate from IC designers integrated
microprocessors with standard hardware compo-
nents on a board. Much of the code was in assem-
bly language.

By the 1990s, it was clear that microprocessor-
based system design would become an important
design discipline for IC designers as well. Large 16-
bit and 32-bit microprocessors had already been
used in board-level designs, and it was apparent that
Moore’s law would eventually lead to chips that
were large enough to include both a CPU and other
subsystems. This raised two classes of problems:
System design methodologies would have to han-
dle large predesigned CPUs, and software would
have to be treated as a first-class component in chip
design.

Researchers developed some basic approaches to
the design of embedded software running on CPUs,
and their work formed the roots of a hardware/soft-
ware codesign methodology. As the “The Impetus
for Codesign” sidebar explains, hardware/software
codesign tries to increase the predictability of
embedded system design by providing analysis
methods that tell designers if a system meets its per-
formance, power, and size goals and synthesis meth-
ods that let researchers and designers rapidly

evaluate many potential design methodologies. 
After a decade of research, hardware/software

codesign has a rich literature that is impossible to
survey exhaustively in one article. Thus, this short
recap merely introduces some of the decade’s major
research themes.

FIRST STEPS
One of the earliest codesign efforts was the SOS

system from Prakash and Parker of the University
of Southern California,1 which could synthesize an
arbitrary multiprocessor topology and schedule and
allocate processes onto the multiprocessor. The sys-
tem formulated the synthesis problem as a mixed
integer-linear program, so it was slow and could
not handle large problems, but it was important
foundational work.

About a year later, the CODES workshop in
Colorado and the CASHE workshop in Austria
introduced several pieces of significant research that
had evolved in parallel. From these, hardware/soft-
ware partitioning emerged as an important first step
in creating models and algorithms. Two early sys-
tems, Vulcan from Stanford2 and Cosyma from the
Technical University of Braunschweig,3 took com-
plementary approaches to this basic problem.

As Figure 1 shows, hardware/software partition-
ing maps a design onto the target architecture. A
system includes a single CPU and one or more appli-
cation-specific ICs connected by a bus. 

In the early designs, the ASIC acted as an accel-
erator4 rather than as a coprocessor in that the CPU’s
execution unit did not dispatch it. Designers gener-
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ally assumed that the CPU and ASIC were to be on
separate chips, although this was not an essential
assumption. The CPU and ASIC communicated by
shared memory or registers. This architecture let the
system allocate computationally intensive tasks to
the ASIC, while allocating work less suited to direct
hardware implementation to the CPU.

The input to both Vulcan and Cosyma was a C-
like program. Based on an analysis of the perfor-
mance and cost of various implementations of the
program, some of the program’s functions were put
in the ASIC while other parts were implemented in
software running on the CPU. Vulcan and Cosyma
designers took a very different route to the end
product, however. Vulcan initially put all the func-
tionality into hardware and moved operations to
the CPU to minimize cost; Cosyma started with all
operations on the CPU and migrated operations to
the ASIC to meet the performance goals.

Designers of both systems had to analyze per-
formance along three dimensions: hardware, soft-
ware, and system. Of these, hardware performance
analysis had the most available infrastructure and
so was the easiest. The goal was to determine the
hardware unit’s maximum clock frequency, but the
analysis had to be quick so that the designer could
evaluate many designs during synthesis. The solu-
tion was to use high-level synthesis techniques to
estimate the longest path through the logic.

Software performance analysis presented more
of a quandary. The problem to be solved was simi-
lar in formulation to a well-known hardware prob-
lem—worst-case execution time—but few re-
searchers had studied this aspect of software per-
formance. One of the few solutions proposed by the
early 1990s was Chang-Yun Park and Alan Shaw’s
path-enumeration algorithm.5 Unfortunately, the
codesign community was not aware of this work,
and Cosyma ended up estimating software perfor-
mance by running test cases on the target proces-
sor, while Vulcan analyzed the program’s control
dataflow.

System performance analysis was also complex.
In general, a CPU-ASIC system is both a multipro-
gramming and a multiprocessing system: It includes
multiple processes that the designer can interleave
on the CPU; it also includes multiple processing ele-
ments so that multiple processes can run simulta-
neously. 

Cosyma and Vulcan both used simplified com-
putational models to make this problem more
tractable. Both assumed that the implementation
was single-threaded—the CPU sat in an idle loop
while the ASIC performed its function. Thus,

designers could determine total system execution
time from the order in which the system executed
processes.

In another significant early paper, Asawaree
Kalavade and Edward A. Lee6 presented a codesign
methodology that emphasized the problems in mul-
tirate signal-processing systems and the roles of
simulation, analysis, and synthesis.

MATURATION
Hardware/software codesign rapidly took off

after the first CODES and CASHE workshops. In
the next few years, researchers tackled several
problems, and their work made it possible to apply
codesign to a wider range of systems.

Early work also dealt with cosimulation and
soon recognized it as an essential component of a
codesign methodology. The challenge is to perform
cosimulation at mixed abstraction levels to execute
enough input vectors to validate the design. With
mixed-level simulation, designers can trade off sim-
ulation performance for accuracy by choosing the
detail level at which to simulate various system
components. 

In 1992, Becker, Singh, and Tell7 developed a
cosimulator that linked a hardware simulator to
executions of application software. The Ptolemy
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The Impetus for Codesign

Board-level systems had used microprocessors, even complex micro-
processors, for at least a decade before hardware/software codesign
emerged as a discipline. Around 1980, for example, automotive engine
controllers appeared—microprocessors that used fairly sophisticated
algorithms to control emissions and fuel economy. 

It is not entirely clear why it took so long for embedded system design
to emerge as an academic discipline. Certainly, moving the locus of CPU-
based designs from boards to chips gave embedded microprocessors
added cachet as an intellectual problem. The cost of design mistakes is
also much higher in chips than on boards. 

Perhaps the main rationale for putting microprocessors into ICs is
that it made the design of complex digital systems predictable. Embed-
ded CPUs let designers separate a complex digital design problem into
two subproblems: design of the embedded CPU hardware and design
of the software running on the CPU. CPU designs can be encapsulated
as intellectual property, and CPUs are by far the most successfully reused
hardware in the world. Software can also, to some extent, be reused
from design to design.
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Figure 1. Target
architecture for
hardware/software
partitioning. The
system includes a
CPU and appli-
cation-specific 
IC (ASIC).
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environment8 was another early system for
simulating signal processing and heteroge-
neous hardware/software systems. This early
work in cosimulation stimulated later work
to understand the relationships among vari-
ous computational models and their unifying
frameworks.

The worst-case execution time problem for
software received a great deal more attention
as codesign became more established. Li,
Malik, and Wolfe9 developed an implicit

path-analysis algorithm that was more efficient
than Park and Shaw’s path-enumeration method.
Li and coworkers subsequently extended their algo-
rithm to model the effect of instruction caches.

Other researchers revisited the system-perfor-
mance problem, adopting models developed for
real-time systems as a partial solution. Rate-mono-
tonic scheduling10 received some attention as a way
to analyze the performance of a set of processes on
a single CPU. Yen and Wolf11 developed a multi-
processor performance algorithm that analyzed the
performance of a set of processes (including data
dependencies) mapped onto a network of proces-
sors, with each processor running a rate-monotonic
scheduler.

Hardware cost estimation also received a great
deal more attention. Frank Vahid and Daniel
Gajski12 used incremental hardware cost estima-
tion to reduce the computational cost of analyzing
hardware performance.

As hardware/software codesign matured, re-
searchers began to explore various computational
models for embedded systems.13,14 C had the ad-
vantage of being widely used but was not ideal for
specifying concurrent systems. On the control side,
M. Chioda and colleagues built on the Esterel
model to develop the codesign finite state machine
(CFSM) model,15 which describes concurrent, com-
municating processes. On the data side, the syn-
chronous dataflow model evolved to describe
multirate data-oriented computations, such as
those in signal processing. 

Other researchers developed methods to target
more general architectures. In 1997, Kalavade and
Lee extended their early work to handle general
architectures.16 Also at that time, Wolf developed a
synthesis method that could handle arbitrary inter-
connection topologies and arbitrary combinations
of CPUs and ASICs.17

Low-power design became a dominant theme
during the 1990s, which prompted research into
techniques for low-power cosynthesis. Fornaciari
and colleagues18 developed a modeling system to

estimate the power consumption of an embedded
system during cosynthesis.

Once the architectural methods had matured,
research turned to system implementation issues,
one of which was interface generation. Daveau and
colleagues19 developed models and algorithms for
implementing interface protocols. 

A challenge in interface generation was how to
synthesize software to run on the embedded system
because software structure could greatly influence
the system’s performance and power consumption.
Much effort went into synthesizing CFSM models,
for example. On the data side, Bhattacharyya and
colleagues20 described methods for generating effi-
cient code from dataflow models.

Work also continued on cosimulation. For exam-
ple, Zivojnovic and Meyr21 developed methods for
compiled cosimulation.

MOVING INTO THE MAINSTREAM
Hardware/software partitioning is now a prac-

tical design task, thanks to reconfigurable com-
puting. Several manufacturers have announced
platform field-programmable gate arrays (FPGAs)
that combine a programmable logic fabric with one
or more CPUs. Designers implement the CPUs on
these chips separately from the programmable
logic. 

The platform FPGA seems to be the chip for
which cosynthesis was created: The chip’s internal
architecture is exactly what hardware/software par-
titioning targets. Researchers must solve several
problems, however, before cosynthesis becomes a
commonplace tool for platform FPGA design.

Making the best use of a platform FPGA requires
identifying an application that maps well onto it. A
key problem in CPU/ASIC architectures is the com-
munication between the CPU and the ASIC. Several
sources of delay can nullify any performance gains
achieved with the ASIC: physical communication
delays, synchronization delays, and so on. A good
application for this style of architecture has opera-
tions that can be moved to the ASIC with relatively
small communication cost and that designers can
easily overlap with useful work on the CPU.

Research must also look at creating interfaces for
both the FPGA fabric and CPU sides of the system.
On the CPU side, drivers are required to turn soft-
ware operations into peeks and pokes on the hard-
ware. On the FPGA fabric side, interfaces to the
system bus must be built. The FPGA fabric and
CPU can communicate directly by shared memory.

There is also still some debate as to what lan-
guage is best for describing the input to hard-
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ware/software partitioning algorithms. Software
languages like C bias the implementation in favor
of software, while hardware languages like Verilog
bias results toward hardware. An alternative might
be to describe the system in two languages—
describe some obvious hardware functions in a
hardware description language and describe the
rest of the functions in a software language.
Consequently, when operations are moved across
the partition, only a relatively small part of the total
specification must be translated.

The system on chip is another venue in which
codesign is increasingly important. Because SoCs
do not have a fixed architecture, a variety of algo-
rithms for analyzing and synthesizing general archi-
tectures are important to SoC cosynthesis. SoC
design is IP-oriented, so designers can use CPUs,
predesigned special-purpose logic, and even FPGA
fabrics as components. Cosynthesis for SoCs
involves determining how best to use large IP
blocks without requiring designers to write their
descriptions directly in terms of these blocks. The
design space is also very large and irregular, mak-
ing design-space exploration more challenging.

One approach to SoC design that has become
popular in the past few years is platform-based
design. A platform is a predesigned architecture
that designers can use to build systems for a given
range of applications. A platform FPGA is an
example of a platform, but a platform also can be
any architecture built from CPUs, custom logic,
and interconnection hardware. 

In many ways, platform-based design is the
antithesis of codesign, since designers use the plat-
form largely as is. However, the platform must at
some point be able to accommodate the desired
range of applications. Codesign is an ideal way to
explore the design space and to create a suitable
platform architecture.

OPEN PROBLEMS
Current embedded computing systems are far

more sophisticated than a decade ago. Many sys-
tems such as automotive engine controllers or per-
sonal digital assistants use a large 32-bit CPU.
Others use several large CPUs. Laser printers, for
example, typically use multiple processors; high-end
cameras use a 32-bit CPU and other processors; a
digital set-top box uses multiple processors. The
Viper22—just one of many modern complex em-
bedded systems—includes two processors, a MIPS
32-bit CPU, and a TriMedia very large instruction
word (VLIW) processor, plus three buses and a vari-
ety of units with special-purpose functions.

Several long-standing problems remain.
Researchers are still working to define and
redefine computational models for jointly
describing hardware and software systems.
System-level performance analysis is a com-
plex problem that analysts must study under
a variety of operating conditions suitable for
various application types. And research con-
tinues to evaluate algorithms for design-space
exploration—work that includes applying
genetic algorithms and other advanced meth-
ods to codesign.

Memory systems continue to be the sub-
ject of research,23 since their design profoundly
influences the system’s performance as well as its
energy consumption. Cache models are one aspect
of particular importance in understanding mem-
ory systems. The better the cache model, the easier
it is to predict how changes to hardware or soft-
ware will influence system performance and power. 

Software optimizations let designers implement
programs the best way possible on the available
cache. With cache synthesis, they can choose a
cache configuration for a particular application.
Many researchers are also starting to think about
alternatives to traditional caches. The scratch-pad
memory, for example, is a software-managed small
memory that provides fast access to data without
the burden of working around a fixed cache-man-
agement policy.

Emerging problems are also likely to keep
researchers busy for quite some time. Besides being
a theoretical topic, the search for computational
models has recently extended to new modeling lan-
guages. SystemC (www.systemc.org) and SpecC
(www.specc.gr.jp/eng/index.html) have emerged as
system-level design languages. The design of lan-
guages like these must consider computational
models, system design methodologies, simulation,
language acceptance, and many other factors.

Researchers are developing methods to analyze
new classes of architectures that are starting to
become common in embedded systems. VLIW
processors, for example, have become popular for
signal processing and networking applications.
Efforts are under way to develop new methods for
performance analysis and code generation with the
aim of making VLIW-based architectures more use-
ful. FPGAs are another example of an architectural
element that needs more study as a medium for
implementing embedded systems.

System-level power management24 is well suited
to codesign because designers can use the applica-
tion’s characteristics to optimize the management
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strategy and its implementation in hardware and
software. Given the prime importance of power
management in digital systems, we can expect to
see even more work in this area in the future.

Another emerging problem is how to evaluate
the effect of networks on chips 25 on codesign. On
the one hand, NoCs provide a more structured sys-
tem that should be easier to analyze. On the other,
NoCs are themselves complex systems that are not
trivial to analyze for performance or power, so
adding them to an architecture makes it that much
harder to analyze.

An increasing number of embedded systems con-
nect to the Internet, which imposes new workloads
and new mixtures of hard and soft deadlines.
Synthesis techniques targeted to Internet-enabled
machines may be necessary to get sufficiently good
results. Internet-enabled applications will also
increase the demand for self-organizing systems that
can adapt to changes in the environment, device fail-
ures, the addition of new devices, and other changes.

Finally, as VLSI systems become more complex,
the role of codesign will expand to include systems
built of many SoCs. Many applications for embed-
ded computers require physically distributed com-
putation to deal with fast response rates. The
automobile is a prime example of a physically dis-
tributed computing platform. Designers must cre-
ate all the chips in these systems together to ensure
that they jointly satisfy the application’s perfor-
mance requirements.

H ardware/software codesign is informed by
multiple disciplines. Computer architecture
tells us about the performance and energy con-

sumption of single CPUs and of multiprocessors.
Real-time system theory helps us to analyze the
deadline-driven performance of embedded systems;
computer-aided design helps in evaluating the hard-
ware cost as well as methods for exploring the
design space. Knowledge about all these disciplines
has helped transform hardware/software codesign
from an art to a science. As ICs become more com-
plex, the technical challenges in codesign will also
increase, making this a vibrant field for a long time
to come. �
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