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Abstract

Automatic object inlining [19, 20] transforms heap data
structures by fusing parent and child objects together. It can
improve runtime by reducing object allocation and pointer
dereference costs. We report continuing work studying ob-
ject inlining optimizations. In particular, we present a new
semantic derivation of the correctness conditions for object
inlining, and program analysis which extends our previous
work. And we present an object inlining transformation, fo-
cusing on a new algorithm which optimizes class �eld layout
to minimize code expansion. Finally, we detail a fuller eval-
uation on eleven programs and libraries (including Xpdf, the
25,000 line Portable Document Format (PDF) �le browser)
that utilizes hardware measures of impact on the memory
system.

We show that our analysis scales e�ectively to large pro-
grams, �nding many inlinable �elds (45 in xpdf) at accept-
able cost, and we show that, on some programs, it �nds
nearly all �elds for which object inlining is correct, and av-
erages 40% of such �elds across our benchmarks. We imple-
ment our analyses in an advanced analysis infrastructure,
and we show that, compared to traditional 1-CFA, that
infrastructure provides better results and lower and more
scalable cost. Across all programs, analysis identi�ed about
30% of objects as inlinable on average. Our transformation
increases code size by only 20% while inlining this 30% of
�elds. Inlining these objects eliminated on average 28% of
�eld reads, 58% of object creations, 12% of all loads. Fur-
ther, the optimized programs have signi�cantly improved
memory reference behavior, producing 25% fewer L1 data
cache misses and 25% fewer read stalls. On average the
runtime improved by 14%.

1 Introduction

Object-oriented languages and frameworks aid the construc-
tion of large software systems by enabling extensive soft-
ware reuse, generic programming, and composition of com-
ponents. These techniques use abstraction|layers of ob-

�Work done as a Ph.D. student at the University of Illinois at
Urbana-Champaign

jects and interface methods|to allow clean composition of
modules. As a result, such techniques produce programs
with deeply layered interfaces, unspecialized data structures,
and large numbers of small objects and methods. Such tech-
niques are well represented in contemporary object oriented
languages [11, 43, 40, 41], component software frameworks
[27] and libraries [24, 39].

Providing isolation between software modules requires an
interface semantics that hides implementation details. Di-
rect implementations of such a semantics can be disastrous
for performance. For example, in an object-oriented lan-
guage such as Java, simply retrieving a value can go from a
load instruction to a dynamically-dispatched message send
on a heap object. Interface overheads are often exhibited as
slower and more frequent procedure calls and pointer deref-
erences. The overheads induced by indirect method calls
are well-studied [3, 1, 9, 31, 35, 28, 29, 16, 36], and both
static and dynamic optimizations developed by our group
and others in the community can dramatically reduce such
procedure calling overhead.

But modular software design also incurs ineÆciencies in
data structure design and layout, because it encourages com-
posing generic structures rather than building custom opti-
mized ones. General data structure libraries such as the
Java standard library and NIHCL [24] are examples of this
phenomenon. Such overheads have been addressed before:
allocations by sophisticated memory management [4, 21] and
by storage analyses [7, 42], and dereferences by prefetching
[33] and by redundant load and store elimination [18], which
uses sophisticated alias analyses [23, 17].

We are exploring the problem of increased object indirec-
tion by developing automatic object inlining optimizations.
These techniques preserve the programming model's mod-
ularity and semantics while automatically transforming the
programs' data structures into a more eÆcient implementa-
tion. Object inlining fuses objects together when they have
a parent-child relationship, reducing object allocation, ac-
cess and dereference cost, and generally improving program
memory behavior. The contributions of this paper build
on our previous work [20, 19], but provide a signi�cant ad-
vance in capability. Speci�cally, this paper incorporates the
following novel contributions:

1. A formal description object inlining analysis, with nec-
essary and suÆcient conditions for semantics preserva-
tion. This description exposed several signi�cant limi-
tations in our previous formulation, enabling their cor-
rection.
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2. A new algorithm for the object layout problem which
arises when objects are inlined. We evaluate this al-
gorithm empirically, and show that it is e�ective in
maintaining layout conformance, limiting the required
method cloning to only 20%, despite inlining 30% of all
objects.

3. A detailed empirical evaluation including large pro-
grams (up to 25,000 lines) which shows surprisingly
large numbers of �elds to be inlinable (12 - 40% of all
object �elds) and consistent runtime performance im-
provements ranging from 4 - 29% with a mean of 14%.
We also characterize compiler optimization cost and
e�ectiveness. We believe these are the largest object-
oriented programs which have ever been subjected to
this type of aggressive whole-program analysis.

4. A detailed understanding of how these high level op-
timizations a�ect performance thru memory perfor-
mance statistics obtained from hardware performance
counters. These statistics show clearly that the key fac-
tor is improved program memory behavior which pro-
duces a 25% reduction in cache misses and 25% reduc-
tion in both read and write stalls.

We start in Section 2 with examples illustrating object
inlining and motivate the program information required to
perform object inlining. Next, we present the semantic un-
derpinning of our object inlining optimization in Section 4;
the analysis derived from this base is de�ned in Section 5.
We discuss issues of the transformations in Section 6. We
show empirical results in Section 7, summarize related work
in Section 8 and �nally conclude in Section 9.

2 A Program Example

To illustrate the e�ect of object inlining, Figures 1 and 2
show an inventory program1 before and after object inlin-
ing.2 The original program (Figure 1) contains two classes,
an Item class (which records an item's product id, depart-
ment, and value) and an ItemList class (a generic linked-
list with a total method which computes inventories' total
value). The inventory itself is global variable, inventory,
of a list of Items. The inlined program (Figure 2) contains
just one class, ItemListAndItem, with all methods.

To be sure the object inlining transformation is semantics
preserving, we must be sure that each datum associates each
ItemList with exactly one Item. In addition, since we are
potentially modifying the data layout, we must be able to
locate all program points where the ItemList and Item state
is used. With safety ensured, the inlining transformation
consists of three steps:

1. build class with state from Item and ItemList,

2. delete creations of Item and ItemList and replace with
creation of the fused ItemListAndItem, and

3. modify uses of Item state to use fused object state.

In the following sections, we discuss how to employ this
technique rigorously and in a general setting.

1A real inventory control program would likely use databases
rather than linked lists. This example is for illustrative purposes
only.

2Note that the transformation is not done source to source, this
example is just for expository purposes.

class Item {
int product_id;
int department;
float value;

Item(int p, int d, float v) {
product_id = p;
department = d;
value = v;}

double value() { return value; }
};

class ItemList {
Item *datum;
ItemList *next;

ItemList(ItemList *d, ItemList *n)
datum = d;
next = n; }

double value() {
if (!next)
return datum->value();

else
return
datum->value()+next->value();

}
};

ItemList *inventory = NULL;

void AddItem(int id, int d, float v) {
Item *item = new Item;
item->Item(id, d, v);
ItemList *l = new ItemList;
l->ItemList(item, inventory);
inventory = l; }

Figure 1: Inventory Program (before Object Inlining)

3 Concert Compiler

Our object inlining analysis and optimization implementa-
tion is done using the Illinois Concert System [10], a vehi-
cle for research into advanced implementations for object-
oriented languages. It implements the language ICC++ [11],
a language with C++-like syntax and Java-like semantics,
which we use for our benchmarks. It also provides an ag-
gressive analysis framework [35, 34], with two novel features:
iterative adaptive analysis repeatedly analyzes a program,
incrementally adding context sensitivity as needed for infor-
mation precision; this allows aggressive analysis to be per-
formed eÆciently. In Section 7.5, we will evaluate object
inlining implemented in both this advanced framework and
traditional Control-Flow Analysis. Concert also provides an
advanced cloning mechanism [36].

4 De�nition

This section presents a formal de�nition of object inlining
in terms of program semantics, and a discussion of when it
is semantics preserving.

4.1 Semantics

We �rst detail our semantic model of program execution,
and then de�ne the execution trace, a representation of entire
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class ItemListAndItem {
ItemList *next;
int product_id;
int department;
float value;

Item(int p, int d, float v) {
product_id = p;
department = d;
value = v; }

ItemList(ItemList *d, ItemList *n)
next = n; }

double Item::value() { return value; }

double ItemList::value() {
if (!next)
return this->Item::value();

else
return
this->Item::value()+next->ItemList::();

}
};

ItemList *inventory = NULL;

ItemList *AddItem(int id, int d, float v) {
ItemListAndItem *l = new ItemListAndItem;
l->Item(id, d, v);
l->ItemList(item, inventory);
inventory = l; }

Figure 2: Inventory Program (after Object Inlining)

program executions.

4.1.1 Semantic Model

Our semantic model has three elements: state, the dynamic
and heap state at runtime; nodes, the basic actions per-
formable by any program; and regions which group nodes
according to their control dependence. A program consists
of a set of methods, each of which has a set of nodes arranged
in a tree of regions. All values in a program are write once,
that is, the graphs are in SSA3 form, with  and � nodes
associated with their governing conditionals. Our semantics
de�nes the execution of such a program.

State There are two pieces of state, the bindings and the
heap, which are each organized as a table indexed by an
identi�er (a variable name for binding state and an object
name, �eld name pair for heap state) and a node. The node
represents the time of the binding: indexing at a node n re-
turns the most recent binding performed before n executes.

� A binding represents the value of local variables, i.e. it
maps a variable name to a runtime value such as an
integer or an object name. It is indexed by the name
of the local variable and the time | i.e. the node |
of the binding, as follows:

B(name; ni)

� The global heap represents the state of all the allocated
objects. State is essentially a global hash table H map-
ping object name plus �eld name to runtime value. As

3We actually use Static Single Use [34], a form of gated SSA such
that any temporary is used in exactly one region.

with bindings, it is sensitive to time, i.e. the node being
executed. The reference function takes an object name
or local variable that is bound to an object, the �eld
being referenced, and the statement being executed.

H(object; field; ni)

Nodes Nodes represent the actions performed by pro-
grams. Nodes are de�ned by two features: kind denotes
the action to be performed, e.g. a function call or an assign-
ment. And values are the values being acted upon, e.g. the
arguments to a function call, or the value being assigned.
The values are mapped by the runtime state B to runtime
entities such as objects, integers, oats, booleans, charac-
ters. Figure 3 de�nes the semantics of each node kind (t
will be discussed below); we use ni to indicate the ith node
to execute, which is needed because our state must be time-
sensitive.

Regions Regions represent control ow; a region is de�ned
as the set of nodes that execute under a given control con-
dition. Thus, a region is the child of an if or a while node,
and contains the nodes that execute under that conditional.
Since conditional nodes are themselves in regions, a method
is a tree of regions, rooted in a special region representing
method entry. Within a region, the nodes execute subject
to an ordering relation � that represents data dependencies
and any other orderings needed to satisfy program seman-
tics. The semantics Sr(r) of region r is shown in Figure 4.

done  
let R fn j@ni

ni �r ng
while R do

let n 2 R
Sn(n)
R R� fng
done (done [ fng)
foreach n in children(r) do

if @ni
((ni �r n) ^ (ni =2 done))
R R [ fng

Figure 4: De�nition of Sr(r): Semantics of Program Re-
gions

4.1.2 Execution Traces

Execution traces allow us to reason about entire program ex-
ecutions. Execution is represented as the ordered sequence
of nodes executed during a program execution, with actual
runtime values bound to variables by B, and the � and  
nodes of SSA form turned into the appropriate moves. Since
an execution trace represents the actions performed during
an execution, conditional nodes are not included.

De�nition 1 (Execution Trace). An execution trace e of
program p is a triple hhn1; n2; : : : ; nii;B;Hi, which consists
of the following elements:

� hn1; n2; : : : ; nii is an ordered sequence of nodes repre-
senting the operations performed during the execution
of p. Nodes in the sequence of trace e may be referred
to as #e (k) = nk; the index of a node is "e (ni) = i

� B represents the bindings during the execution; the
bindings of a given trace e is referred to as Be
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kind form semantics

move kx = yk B(x; ni+1) B(y; ni); t t :: ni
write ko.f = vk H(o; f; ni+1) B(v; ni); t t :: ni
read kv = o.fk B(v; ni+1) H(o; f; ni)t t :: ni

send ko.fun(a1; a2; : : : ; aj)k

8v B(v; ni+1) ?
81�k�jB(Dispatch(o; fun; ni)!(k); ni+1) B(ak; ni)
B(continuation; ni+1) = ni
Sr(entry(Dispatch(o; fun; ni)))
t t :: ni

return kreturn vk
8vB(v; ni+1) B(v;B(continuation; ni))
B(Be(continuation; ni) (0); ni+1) B(v; ni)
t t :: ni

if kif (v)k

if Be(v) 6= 0
8
p=k (vt, vf) = vk2psi(ni)

B(vt; ni+1) B(v; ni); t t :: kvt = vk

Srchild(ni; true)
8
p=kv = �(vt, vf)k2phi(ni)

B(v; ni) B(vt; ni+1); t t :: kv = vtk

else
8
p=k (vt, vf) = vk2psi(ni)

B(vf ; ni+1) B(v; ni); t t :: kvf = vk

Srchild(ni; false)
8
p=kv = �(vt, vf)k2phi(ni)

B(v; ni) B(vf ; ni+1); t t :: kv = vfk

while kwhile (v)k

8
p=kv = �(vt, vf)k2phi(ni)

B(v; ni) B(vf ; ni+1); t t :: kv = vfk

while Be(v) 6= 0
Srchild(ni; true)
8
p=kv = �(vt, vf)k2phi(ni)

B(v; ni) B(vt; ni+1); t t :: kv = vtk

Figure 3: De�nition of Sn(ni): Execution Semantics of Program Nodes. The extended semantics for trace generation Tn(ni)
are shown by operations on t.

� H represents the heap during execution; the heap of a
given trace e is referred to as He.

The state in an execution trace represents the state built by
the semantics of Section 4.1.1, and, in that �gure, the node
sequence is represented by t, with each rule extending t as
appropriate.

4.2 Object Inlining

Object inlining replaces uses of child objects with uses of
corresponding parents. It is well-de�ned only for what we
call a one-to-one �eld, which we de�ne below. Then, we
de�ne what object inlining actually does at execution time,
and then claim and prove the conditions under which it is
semantics preserving.

De�nition 2 (Dynamic One-to-One Field). A �eld f

is a dynamic one-to-one �eld, written
f
�!, for a given ex-

ecution of program p if every parent object corresponds to
exactly one child object thru that f . This is de�ned formally
as follows:

(n1 = ko1.f = v1k ^ n2 = ko2.f = v2k)!

(B(o1; n1) = B(o2; n2)$ B(v1; n1) = B(v2; n2))

De�nition 3 (Dynamic Field Inlining). A dynamic

�eld inlining I
f of f is de�ned if and only if f is a

dynamic one-to-one �eld for a given execution. It involves
substituting corresponding parent objects for child objects
wherever they appear in the execution. This is formalized

as applying following transformation to all values in the
binding and heap environments for each node that executes.

I
f (v) 

�
B(p; n) ((n = kp.f = ck) ^ (v = B(c; n)))
v otherwise

Altering object references at random in a given program
does not, in general, preserve the meaning of that program.
However, dynamic �eld inlining does preserve program se-
mantics when it is applied to a one-to-one �eld, as we prove
below.4

Lemma 1 (Dynamic �eld inlining preserves sharing).
Sharing patterns in references to child objects are unchanged
when dynamic �eld inlining is applied to a dynamic one-
to-one �eld. That is, two child state access nodes reference
the same object �eld after the transformation if and only if
they did so beforehand. More formally:

8f 8n1=kv1 = o1.fk;n2=ko2.f = v2k2ep

I
f (B (o1; n1)) = I

f (B (o2; n2)), B (o1; n1) = B (o2; n2)

Proof. Details omitted, but follows directly from De�ni-
tions 2 and 3, since If is a one-to-one mapping except that
it maps pairs of parent and child objects both the parent.
Since a one-to-one mapping preserves equality, Lemma 1 is
clearly correct unless o1; o2 are a parent, child pair, but that
cannot be the case, as they could not share f, due to our
�-renaming.

4Since our model of state uses an object name, �eld name pair as
a key, merging parent and child objects that share a �eld name would
cause ambiguity when naming heap storage. Before object inlining,
we �rst perform an �-renaming to prevent such name collisions.
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Theorem 1 (Dynamic Inlining State Consistency).

After dynamic �eld inlining If of f , all reads of any object
�eld return the value of the dynamically previous write to
that object �eld. More formally,

8fnijni=kv = c.xkgI
f
v (B(v; ni+1)) = I

f
v(H(c; x; ni))

Proof. By Lemma 1, for any �eld access x:f , exactly the
same sets of statements read and write that �eld after If as
did so before it. Thus, the same value vs was dynamically
last assigned into x:f after If as before it. Also, the bindings
of vs; v were both transformed by If , so, given that they
were the same before, for that is the semantics of a �eld
read, they must also be the same afterward. Hence, state
access is still consistent.

Theorem 2 (Inlined Field Redundancy). After dy-

namic �eld inlining I
f , in any statement of the form

n = kv = o.fk before dynamic �eld inlining, v = o. That
is to say

8fnjn=kv = o.fkgBe(v; n) = Be(o; n)

Proof. By De�nition 3, all statements of the form ko.f = ck
get transformed into ko.f = ok, since it is exactly such
statements that de�ne the mapping If . Then, by Theo-
rem 1, for all statements of the form kv = o.fk, Be(v; n) =
Be(o; n).

By Lemma 1 and Theorem 1, we have that the program
is observationally equivalent after object inlining is applied
to a one-to-one �eld, and by Theorem 2, the inlined �eld
is no longer needed. Hence, by removing that �eld, we get
a program that does the same thing but does not have the
extra reads and writes for the inlined �eld.

5 Analysis

We present a compiler analysis that identi�es safely inlin-
able object �elds in two steps: �rst, we must prove that a
candidate �eld for inlining is one-to-one. Second, we must
precisely �nd all program points where child objects are
used, so they can be redirected to their corresponding par-
ent. The analysis for both problems appears simple, but de-
pends critically on the context-sensitive and data-sensitive
iterative inter-procedural analysis provided by the Concert
system (mentioned in Section 3.). Without the advanced
capabilities of the Concert system, we would be unable to
conveniently express the complex analysis, precisely re�ne
and track the data and control ows as required, and do so
with practical eÆciency.

5.1 Determining One-to-One Fields

Our algorithm to prove a �eld f associated parents and chil-
dren in a one-to-one manner consists of two steps: 1) veri-
fying that the given parent and child object creations and a
corresponding �eld always execute together, and 2) checking
that created objects assigned by the corresponding assign-
ment.

5.1.1 Verifying Common Execution

Common execution ensures both parent and child are cre-
ated together, and is ensured if the parent and child creation
nodes exist in the same inter-procedural control dependence
region (ip-region). These ip-regions generalize traditional
control dependence regions[5, 15] to be inter-procedural.
More precisely, an ip-region is governed by a conditional,
and its members are a set of <node, edge stack> pairs where
nodes are the program nodes dependent on the governing
conditional, and the edge stack is the method calls between
the conditional and the node. Because nodes can be in a
method which is called from many places, nodes can in gen-
eral belong to multiple ip-regions or to the same region more
than once. However, they will have a di�erent edge stack in
each ip-region. Figure 5 shows pseudocode for computing
the set of ip-regions to which a node belongs.

CalcRegions(n)
; parent is control parent of node
if parent(n) is conditional then

; governing conditional determines ip region
return parent(n)

else
; must be in entry region of function
; so use the ip regions of the callers
foreach c in callers(method(n)) collect

; record governing conditionals and call paths
c :: CalcRegions(c)

Figure 5: Algorithm to Compute Node's IP Region

If the creation nodes of the parent and child objects exist
in the same ip-region, then we have veri�ed their common
execution.

5.1.2 Verifying Data Flow

Verifying data ow ensures that the parent and child objects
ow unambiguously to the assignment of the child to �eld f .
Veri�cation involves checking that the values at the creations
and at the assignment must be aliased, for which any of a
number of alias analysis algorithms [30, 14, 37, 32] can be
applied. We exploit the iteratively re�ned inter-procedural
analysis framework of Concert, and simply follow data ow
between creations and assignments, checking that there are
no merges, as shown algorithmically in Figure 6. Upon re-
quest, the Concert system iteratively re�nes the analysis re-
sults, expending e�ort only along the paths of interest, and
while they are still potentially unaliased.

CheckNoMerges(v1, v2)
; all v such that v1 is the only data predecessor (�
indicates data ow)

let V  

8>>><
>>>:
v

���������

v = v1_0
B@9vi

vi � v^
vi 2 V ^

@vj

�
vj � v^
vj 6= vi

�
1
CA

9>>>=
>>>;

return v2 2 V

Figure 6: Algorithm to Check for Data Flow Merges
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5.1.3 Computing One-to-One Fields

One-to-one �elds are computed with the two algorithms
above as shown in Figure 7. If a �eld satis�es the one-
to-one and precise data-ow criteria, it is a safe candidate
for inlining. The code below is slightly simpli�ed: there is
also a check that, for a given one-to-one pair of creations for
a �eld f , no other creations get assigned into f for the given
parent creation.

CheckOneToOneField(f)
; check each assignment to f
foreach a is ko.f = vk do

; check each ip-region of the creators of o
; Creators are possibly creating news
foreach p in CalcRegions(Creators(o))

; �nd corresponding child creation, if any
unless find p CalcRegions(Creators(v))

return false
; check each ip-region of the creators of v
foreach c in CalcRegions(Creators(v))

; �nd corresponding parent creation, if any
unless find c CalcRegions(Creators(o))

return false
return true

Figure 7: Checking for One-to-One Fields

5.2 Finding Field Uses Precisely

Given one-to-one �elds, a safe inlining transformation re-
quires precise identi�cation of all uses of the child. Our
data-ow analysis is conceptually straightforward, but de-
pends heavily on the Concert infrastructure to provide pre-
cise data ow paths at acceptable cost. Essentially, we track
data ow from the parent and child at each one-to-one �eld
assignment back to their respective creation points. From
there, we track data ow forward to all uses of the child
object �elds.

De�nition 4 (Tags). In the actual implementation, we
three types of value Tags as indicated, and are propagated
as shown in Figure 8.

Forward Tags The forward tags of a value v, written
T
!(v), tag child �eld reads with the parent

Backward Tags The backward tags of a value v, written
T
 (v), tag creation nodes with parent

Forward Backward Tags The forward backward tags of a
value v, written T$(v), tag child �eld reads and writes
with parent (before object is assigned to the parent)

The algorithm collects all of the child object uses which
are forward from the child to parent assignment using the
forward tags, and all of the child object uses which are for-
ward from the child object creation point to the child to
parent assignment using the forward-backward tags. This is
all of the uses of the child object.

6 Transformation

Given inlinable �elds, we perform the object inlining trans-
formation in three steps:

1. Build new fused classes based on inlinable �elds

CheckPreciseUses(f)
; backward tags: all values that must ow to f
let B  fv jv = f _ (9vi 2 B v � vi ^ @vj (v � vj ^ vj 6= vi))g
; forward tags: all values to which f might ow
let F  fv jv = f _ 9vi vi 2 F ^ vi � v g
; forward backward tags: all values to which B might ow
let FB  fv jv 2 B _ 9vi vi 2 F ^ vi � v g
; found precisely in set closed under �
let U  (F [B [ FB)
return @vi; vj (vi � vj ^ vj 2 U ^ vi =2 U) ^
@vi; vj (vj � vi ^ vj 2 U ^ vi =2 U)

Figure 8: Checking for Precise Uses of Fields

2. Replace object creations with fused object creations

3. Replace child state accesses with fused object accesses

With the results of the analysis described in Section 5,
Steps 2 and 3 are straightforward, since the analysis pre-
cisely computes exactly the sets of creations and uses to
transform. So, we focus on building the new fused classes.

6.1 Building Fused Classes

Given the original classes, object inlining identi�es a set of
inlinable �elds. The inlining of those �elds de�nes a new set
of classes, where each inlining operation collects the �elds
of two classes into a new fused object class. For instance,
the example in Section 2 collected the �elds from Item and
ItemList into a single new object class, ItemListAndItem.

Choosing object layouts in the fused classes is critical
as it determines the code size increase that object inlining
incurs. The fused object classes combine data from distinct
source program class de�nitions, and must also combine the
methods associated with those source program classes. If
the methods are to be shared, the layout of the �elds must
conform (i.e. be at the same location in the object) in all
the classes in which the �elds appear. If not, the methods
must be cloned, increasing the program code size.5

We choose object layouts by the algorithm shown in Fig-
ure 10, using an approach that roughly speaking tries to
collect the fused object classes into trees (analogous to sin-
gle inheritance hierarchies). If the classes can be organized
into a tree|where nodes are classes, and children contain
supersets of �elds in their parent|then a conformant layout
can then be obtained by doing a pre-order traversal of the
tree with respect to each class. Our strategy for laying out
inlined classes is based on this observation, and we diverge
from this approach only when non-conformance is required.

prduct_id

department

value prduct_id

department

value

next

datum

prduct_id

department

value

next

datum

next

Figure 9: The Possible Layouts of Example

The key observation is that non-conformance can only
arise when two �elds appear in overlapping subsets of
classes, neither being a subset of the other. This induces
two distinct sets of constraints on the �eld placement in the

5This is in part because we use a JVM-like object reference model
which forbids internal pointers.
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object (as the sets of classes could be connected to the hi-
erarchy in two places). In such cases, we replicate the �eld,
which implies cloning all methods which access that �eld,
and attach the subsets to distinct parts of the class hier-
archy. There remains a subtle choice for where to attach
the classes in the overlap region, where the choice deter-
mines which of the two non-overlapping subsets the overlap
region will conform with. This choice is illustrated in Fig-
ure 9, where there are two choices for laying out the parent,
child and fused classes from Section 2. Because the cost of
cloning is not known until we have all object layouts, we do
not have enough information to choose well, and defer this
choice, constructing both alternatives.

; input: each set 2 sets is a �eld and the classes it is in
; output: a forest denoting the layouts of all classes
FindLayout(sets)
; current set of classes
let classes 

S
s2sets

Classes(s)
; �nd �elds that appear in all classes
let top fs js 2 sets ^ Classs(s) = classesg
; if any, put at the front of the layout
if jtopj 6= 0 then

return MakeTree(top;F indLayout(sets� top))
else

; builds sets of �elds that appear together in some class
let sets ffs1; s2; : : : g jClasses(s1) \ Classes(s2)g
; disjoint �elds laid out independently
if jsetsj > 1 then

return MakeForest(map FindLayout sets)
; otherwise, there is a conict
else

; s1; s2 cannot be laid out conformantly
let s1; s2 such that Classes(s1) \ Classes(s2) ^
Classes(s1) � Classes(s2) ^ Classes(s2) �
Classes(s1)
; three choices to resolve conict

let cut 

8<
:

Classes(s1)� Classes(s2)
Classes(s2)� Classes(s1)
Classes(s1) \ Classes(s2)

; �nd layouts after splitting conicting �elds
return FindLayout(sets � fs1; s2g [
fs1 � cut; s2 � cut; s1 \ cut; s2 \ cutg)

Figure 10: Layout Classes to Minimize Non-Conformance

The class layout algorithm produces a set of candidate
layout trees, from which we must choose a single one. To
do so, we calculate the cloning cost of each layout, and take
the one which produces the fewest method clones (smallest
code size increase). The amount of cloning required is deter-
mined by the complete for each class, the actual use of the
non-conformant �elds, and the speci�c cloning and method
dispatch mechanisms.

7 Evaluation

We evaluate the e�ectiveness of object inlining, present-
ing compile-time and runtime results for a range of object-
oriented program types and sizes.

7.1 Metrics

We present compile-time and runtime metrics to assess ob-
ject inlining. compile-time metrics measure analysis power,

analysis cost, and cloning cost. Runtime metrics measure
analysis power, �eld reads, �eld writes, object allocations,
and overall running time.

Analysis Power Analysis power is the number of inlinable
�elds, which we measure at both compile- and run-time. At
compile time, we count the number of declared object �elds
found to be inlinable by our analysis. Partially-inlinable
�elds are counted fractionally, e.g. a �eld inlinable in 3 of
4 cases is 0.75 �elds. We also present this number normal-
ized to the number of declared �elds in the programs, to
provide calibration and a measure of scaling; we also cali-
brate by comparing with the number of �elds declared in-
line in our C++ benchmark programs. At runtime, we as-
sess analysis power against our semantic criteria for inlinable
�elds. We present two dynamic ratios: the �rst is the num-
ber of compile-time inlinable �elds|the sum of the number
of compile-time inlinable �elds over all allocated objects|
normalized to the ideal number of inlinable �elds|the sum
over all allocated objects of the number of �elds that sat-
isfy our inlinability semantics; this gives the fraction of all
inlinable objects that our analysis found. The second is the
number of reads of inlinable �elds divided by the number of
reads of ideally inlinable �elds; this gives the fraction of the
pointer read overhead our analysis can remove.

Analysis Cost Analysis cost covers the amount of work
done and size of data structures needed by the analysis sys-
tem. In our constraint-based analysis system, the best unit
of work is constraint propagations and for data size we use
the common contexts per method metric. These are nor-
malized by program size, measured as the number of values
and methods in the internal form, to assess scalability. In
order to place the power and cost of our analysis in per-
spective, we compare it with the traditional 1-CFA analysis
framework.

Cloning Cost Code specialization required by object inlin-
ing is measured by counting method clones required. We
normalize by the number of methods.

Field Reads and Writes Object inlining should reduce the
number of object dereferences required to execute the pro-
gram. We measure �eld reads directly and total loads, data
cache misses and read stall cycles using hardware perfor-
mance counters, capturing e�ectiveness in reducing object
dereferences.

Object Allocations Object inlining should reduce the num-
ber of objects allocated. This metric captures the dynamic
counts of allocation operations.

Program Runtime Object inlining should improve pro-
gram runtime by improving program memory behavior. We
measure overall runtime, and also the number of instructions
executed, to analyze where performance improvements come
from.

7.2 Benchmarks

We selected object-oriented programs and libraries for eval-
uation; we want a range of data structures and programming
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idioms, and a range of program sizes. To ensure this, we set-
tled upon three class libraries, the SmallTalk-like NIHCL,
the more static OATH, and AI, containing various intelli-
gent search routines. All three libraries have test applica-
tions. We also choose a range of object-oriented programs.
These benchmarks are summarized in Table 1. We break
out application and library sizes because, even though our
whole-program compiler makes no distinction, much library
code is unused in a given application, and hence the amount
of live code is much less than a simple sum of program and
library size would suggest.

benchmark lines inlinable data structures

oopack 760 complex numbers

AI library (3000 lines) programs
demo3 300 lists, search nodes, arrays
demo4 300 lists, search nodes, arrays
demo6 200 lists, arrays

NIHCL library (20000 lines) programs
bag 100 bag, set, array, iterator
dict 100 assoc, bag, set, array, iterator
orderedcltn 100 collections, array, iterator
sets 100 set, array, iterator

OATH library (18000 lines) programs
dll0 150 arrays, smart pointers

large programs
otest 30000 lists, arrays, wrappers, parser
xpdf 25000 streams, arrays, child

Table 1: Benchmarks with Inlinable Data Structures

7.3 Experimental Setup

We compiled each benchmark with and without object inlin-
ing for both our adaptive analysis and traditional 1-CFA us-
ing the Concert Compiler, and the Concert-generated C++
code with g++ (egcs-2.91.66) with full optimization (-O3).
These two options are labelled `inlining' and `base' in our re-
sults. For calibration, we compiled the original C++ codes
with g++ -O3, giving g++ the whole program at once. We
used a 266MHz Pentium with 64MB of RAM, running Red-
Hat Linux 6. Our low-level measurements used the PMC
software from NASA Ames.

Since the benchmark programs are C++ codes, they typ-
ically have �elds manually inlined. Since Concert supports
a Java-like uniform reference model, all objects are accessed
via pointers, even if declared inline allocated. Concert gen-
erates appropriate code to preserve the original C++ seman-
tics using a reference model. Concert with object inlining
fuses multiple objects together, preserving the uniform ref-
erence model implementation even when inline allocating
objects.

7.4 Calibration Results

To provide calibration for the performance of the Concert
compiler, with and without object inlining, we compiled our
benchmark programs using g++ and compared the perfor-
mance to that of the programs compiled by Concert. Fig-
ure 11 presents Concert performance normalized to G++,
and shows competitive performance.
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Figure 11: Performance comparison of Concert and G++

7.5 Object Inlining Analysis Results

Analysis Power. Table 2 shows our compile-time analysis
results; most programs have a surprisingly large number of
inlinable �elds: typically more than one third of �elds are
inlinable, and the result scales almost uniformly with pro-
gram size. The total number of �elds with object type is
the left-hand column labelled \All." There are four columns
labelled \Inlinable": the �rst (labelled \Hand") is the num-
ber of �elds explicitly inlined in the C++ source code, the
second is a count of the automatically inlinable �elds as
found by our analysis using Concert's advanced framework,
the third (labelled \1-CFA") is the number of �elds found
inlinable using our analysis in a traditional 1-CFA analy-
sis framework, and the fourth (labelled \%") is the number
of inlinable �elds found by our analysis as a percentage of
the total �elds. Our adaptive analysis always does better,
usually much better, than 1-CFA; in addition, in all cases
except xpdf, it �nds substantially more inlinable �elds than
were declared by hand in C++. These results are signi�-
cantly better than our previous ones, for example otest has
15.7 inlinable �elds compared to 9 in our prior study [20].
Fields that can be inlined in some cases but not in others
are counted as a fraction, based on the number of situations
in which they can be inlined.

Fields
Inlinable

Benchmark All Hand Precise 1-CFA %

oopack v1p7 4 0 0.5 0 12
demo3 13 3 5 0 38
demo4 14 3 6 0 42
demo6 14 5 6 0 42

dll0 17 2 2.74667 1 16
bag 30 6 11.2022 8.5 37
dict 31 6 11.4189 6.5 36

orderedcltn 27 4 10.4732 7.5 38
sets 27 4 10.381 7.5 38
otest 38 5 15.7167 10.5 41
xpdf 133 54 45.25 23.4348 34

Table 2: Automatically Identi�ed Inlinable Object Fields

Figure 12 assesses the e�ectiveness of our compiler anal-
ysis at �nding semantically inlinable �elds; since they are
based on program semantics, these measurements are of
counts of dynamic objects at runtime. The graph shows
two bars for each program: the �rst bar is the fraction of
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all objects that satisfy the semantic criteria for inlinability
that are found to be inlinable by our analysis. This mea-
sures directly how good an approximation of our inlinability
semantics our analysis is. The second bar shows the fraction
of all possible reads of inlinable �elds that our static analysis
�nds; this is simply the number of reads of statically inlin-
able �elds as a fraction of the number of reads of ideally
inlinable �elds. The results vary, and are generally better
for the small programs. But even for the large programs,
the fraction is often more than one third, with the averages
across all programs being roughly 40%.
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Figure 12: Fraction of Semantic Ideal for Static Analysis

Analysis Cost. Figures 13 and 14 reveal that our object
inlining optimization has reasonable analysis cost, and that
cost does not increase rapidly with program size (as nor-
malized by the number of values in the program source).
Overall, the cost of our analysis is less when using Concert's
advanced analysis framework than when traditional 1-CFA,
despite getting better results, and the Concert framework
scales with program size much better than 1-CFA. We be-
lieve that Concert's demand-driven analysis system allows
practical scalability to much larger programs. Figure 13
counts average contexts per method, for our adaptive anal-
ysis and 1-CFA. This captures the space requirements of our
analysis. All of the numbers for our analysis are relatively
low, with the maximum being about 2.4 contexts per value
for xpdf. There is no discernible trend of cost with program
size for our analysis; indeed, the largest program, xpdf, has
one of the lowest costs. 1-CFA, on the other hand, shows
dramatic cost growth for the largest programs, otest and
xpdf.

Figure 14 shows the total work done by the analysis sys-
tem for our analysis in both Concert and 1-CFA frameworks;
it shows the number of constraint propagations normalized
by program size. As our program analysis is constraint-
based, constraint propagations capture amount of work the
analysis system does. Concert's demand-driven re�nement
allows signi�cant directed analysis which can follow the criti-
cal program structure, but allows it to be done at reasonable
cost. Overall, the amount of work does grow as program size
grows, although the largest program, xpdf, has one of the
lowest costs. The dominant e�ect is of program structure,
and the need for analysis to unravel it. For example, dict
has an especially complex structure, with mutually recursive
assignments thru state, and that causes it to have consider-
ably more work than any other program. For 1-CFA, cost
once again grows substantially for the largest program, xpdf.
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Figure 13: Context Sensitivity required for Object Inlining.
Analysis data size to �nd inlinable �elds.

Since, as we have seen above, our analysis �nds strictly
more �elds than 1-CFA, and usually many more, at a com-
petitive or lower cost, we shall present the rest of our results
of our own adaptive analysis only.
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Figure 14: Analysis Cost. Shows analysis computational to
identify the inlinable �elds (normalized to program size).

Cloning Cost. Figure 15 shows that object inlining has
modest and scalable cloning requirements; the number of re-
quired clones is below 1.5 per method for all programs except
demo6, and the second largest code, otest, has the smallest
number of required clones, at 1.04 per method. These small
numbers are despite polymorphic inlining in which the same
class is inlined into multiple �elds; the number of clones is
small because our object layout algorithm is able to arrange
that almost all of these cases have conformant object layout.

7.6 Object Inlining Impact Results

Field Accesses Figures 16 and 17 and show that object
inlining substantially reduces the dynamic count of �eld ac-
cesses. This yields signi�cant improvements in memory per-
formance. Figure 16 has four bars for each program; from
left to right, they are object �eld reads, all program data
loads, L1 data cache misses, and data dependence induced
read stalls. The numbers show the fraction of operations
from the base program remaining in the inlined one. Field
reads are reduced by 4% to 46% with an average reduction
of 28%. Data loads are reduced from 3% to 26%, with an

353



 field reads
 data loads
 L1 read misses
 L1 read stalls

| | | | | | ||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 fr
ac

tio
n 

re
m

ai
ni

ng

oopack_v1p7

demo3

demo4

demo6

bag
dict

orderedcltn

sets
dll0

otest
xpdf

average 

Figure 16: Field Read Counts and L1 cache misses with and without Object Inlining
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Figure 15: Cloning Costs of Object Inlining. Shows the
number of additional methods which must be cloned as a
result of the object inlining optimization.

average reduction of 12%. Data cache misses and read stalls
are reduced by an average of 25%.

Figure 17 shows the reductions in memory writes due
to object inlining. It has two columns: on the left is the
fraction of �eld writes remaining after object inlining, and
on the right is the fraction of write stall cycles remaining.
The fraction of writes removed is 15% and the fraction of
write stalls removed averages 27% excluding oopack which
is anomalous and increases by 12 times due to removing the
heap accesses from a tight loop, causing the remaining writes
to run much faster. However, the overall program runtime
does improve.

Object Allocations Figure 18 shows that object inlining
greatly reduces the number of objects allocated: it removes
nearly half of all objects in all cases but one, and removes an
average of 58%. Furthermore, the number of bytes allocated
drops by 35% on average as well, due to the reduced ob-
ject overhead of fewer objects and the space saved by elided
pointer �elds. These results are signi�cantly better than our
previous results, which showed about 40% of objects being
removed on a suite of smaller programs.

Program Runtime The improvements in memory system
performance due to object inlining make a signi�cant im-
provement in overall program performance, as shown in Fig-
ure 19. Figure 19 has two bars per program: the �rst is the
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Figure 17: Field Write Operations with and without Object
Inlining. Shows the signi�cant bene�ts of object inlining on
�eld writes.

instruction count and the second is runtime, both normal-
ized to the program without object inlining. The reduction
in instruction count is generally less than that in runtime,
and the di�erence is explained by the reductions in read and
write stalls shown above.

Our empirical results indicate that object inlining is suc-
cessful in its objectives of reducing �eld reads and object
allocations, removing 28% and 58% respectively. This, in
turn, reduces cache misses by nearly one-third. And object
inlining does make a signi�cant improvement in overall pro-
gram behavior: data reads are reduced by 12% and runtime
by 14% on average.

8 Related Work

Our Previous Work. The idea of doing inline allocation
automatically is by no means new [6], but previous systems
have had insuÆcient analysis power achieve general auto-
matic object inlining. For example, [8] presents a trans-
formation that inlines the object state in stack frames, but
they do not present automatic analysis suÆcient to make it
fully automatic. We introduced a basic object inlining anal-
ysis and optimization in [19] and presented a more extensive
evaluation of it in [20]. Here we present a formal semantics
for the analysis which we used to eliminate several limita-
tions of the previous work. In [19], we described a simple
mechanism for object layout which did not handle all cases,
and caused a lot of cloning, particularly in large programs.
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Figure 18: Object Allocations with and without Object In-
lining. Shows how object inlining can dramatically reduce
the number of objects which must be allocated.
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Figure 19: Program Runtime with and without Object Inlin-
ing. Shows signi�cant overall runtime improvements based
on object inlining.

In this paper, we have described an algorithm which glob-
ally optimizes the object layouts, keeping code size increases
low. Finally, here we present a more comprehensive evalu-
ation with much larger programs. This evaluation presents
detailed low-level architecture data such as cache misses to
more fully explore the operation of object inlining in prac-
tice. Finally, our overall results are signi�cantly better than
previous studies, including improvements the analysis e�ec-
tiveness and impact on performance.

Object Oriented Systems. The impetus for object inlin-
ing is to match the performance of languages with explicit
inlining like C++ [22] and Oberon-2 [43]. While we reap
much of the performance bene�t of custom object layouts,
our approach allows programmer to write programs with a
simple uniform object model, with compiler to do the data
structure customization depending on use.

Recently, [12, 13], Chilimbi et al. presented several tech-
niques for optimizing layout and allocation of objects to
improve cache performance. Speci�cally, reordering �elds
within classes, controlling the co-allocation of objects, and
splitting single objects to concentrate \hot" �elds. Our op-
timizations are most similar to Chilimbi's �eld and object
organization work, but our object transformation does not
use pro�le information, and focuses on putting entire ob-
jects together, rather than splitting out the cold parts. Our

work is quite di�erent philosophically from the runtime co-
allocation and object transformation work of Chilimbi which
requires detailed programmer information for correctness.
In contrast, our transformations are fully automatic, requir-
ing no programmer intervention.

Unboxing. Much work on optimization of heap objects has
focused on recursive data structures. In contrast, the pri-
mary source of object inlining found by our analysis is static
indirection chains and pointer hierarchies induced by code
reuse, modules, and generic class libraries. For example, op-
timization of recursive data structures in the functional pro-
gramming community, unboxing (e.g. [25]), generates spe-
cialized representations to elide pointer dereferences. The
analyses used for unboxing polymorphic structures resem-
ble our analysis to track object uses, but the lack of state
update simpli�es the analysis problems. Shao et al. [38]
present an analysis for unrolling linked lists, but only for
the functional subset of ML { inline allocating tail pointers
to some �xed depth.

Fortran. Optimizing array layout for cache performance
[2, 44, 26] also involves transforming data layout. Fortran
arrays are structurally immutable, which provides the same
simpli�cations as are found in functional languages. Hence,
the challenges in analyzing heap allocated object structures
where data ow and aliasing are the major problems is sig-
ni�cantly di�erent.

9 Conclusions

We have presented further developments to the object inlin-
ing optimization we presented in [19, 20]: we developed a
formal model of object inlining, and derived from that cor-
rectness conditions for object inlining; we presented an al-
gorithm for laying out the fused classes that object inlining
creates; and we carried out a more thoroughgoing evalua-
tion of object inlining, measuring a range compile-time and
runtime characteristics on a wider range of programs than
before. Our results indicate that our newly-formulated anal-
ysis and transformation perform well and scalably|�nding
about 30% of �elds inlinable|at moderate cost. We found
our analysis had both better results and lower and more
scalable cost than a traditional 1-CFA analysis. And the
runtime impact is signi�cant: on average, 28% of �eld reads,
58% of object creations, 12% of all loads, 25% of all L1 data
cache misses and 25% of read stalls are removed. This im-
proved runtime by an average of 14%.
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