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Abstract. Certain high-performance applications like multimedia and
gaming have performance requirements beyond reducing program execu-
tion time. These applications have repetitive components whose desired
performance characteristics are more naturally expressed using soft real-
time theory with its probabilistic guarantees. However, for large com-
plex gaming and multimedia applications, programmers typically avoid
real-time constructs as they significantly constrain how the program-
mer can express functionality. Instead, such applications are developed
as monolithic programs using conventional languages like C/C++. Here
the soft real-time behavior of the application becomes an emergent qual-
ity rather than being enforced by design. Programmers must then tweak
parameters/algorithms until the application’s soft real-time behavior be-
comes acceptable. There are currently no analysis techniques that di-
rectly extract the soft real-time execution characteristics of monolithic
applications written without the use of real-time constructs. We intro-
duce a domain-agnostic profiling methodology that identifies program
execution-contexts whose variant behavior most significantly affects the
soft real-time characteristics of the application.

1 Introduction

Important classes of high-performance applications, such as gaming and mul-
timedia have performance requirements beyond minimizing program execution
time. These applications have Quality-of-Service (QoS) requirements on repeti-
tive application components, such as a live-video encoding application that at-
tempts to maximally compress the input image stream while maintaining a suffi-
ciently smooth frame-rate. Other examples include real-time object tracking and
recognition kernels at the heart of many military and commercial applications.

Typically, games, streaming live-video encoders and video players attempt to
maintain a reasonably high frame-rate for a smooth user experience. However,
they frequently drop the frame-rate by a small amount and occasionally by a
large amount if the computation requirements suddenly peak or compute re-
sources get taken away. Therefore, the QoS requirements of such applications is



best described using a combination of i) soft real-time theory with its probabilis-
tic guarantees, and ii) the runtime sophistication of certain application-specific
artifacts, such as the degree of compression achieved on a raw video stream, or
the realism of Artificial Intelligence or physics modeling in games. During the
design optimization stage, programmers like to tweak algorithms and parameter
values in order to maximize the runtime sophistication of their application while
minimally compromising the desired real-time characteristics. In this paper, we
exclusively focus on characterizing the soft real-time behavior of an application,
in the absence of any knowledge about the application’s functionality or its do-
main. We limit our technique to informing the programmer about an applica-
tion’s soft real-time behavior, and leave it to the programmer to decide how best
to tweak algorithms based on application and domain specific knowledge.

Monolithic Applications Programmers often use specialized real-time languages
and libraries to either guarantee that real-time requirements are met (hard real-
time, for safety critical applications), or are met as close as possible (soft real-
time). Such programming requires that the application be broken up into real-
time constructs such as tasks, ordering dependencies be established between
tasks, and completion deadlines (probabilistic or hard) be set on the tasks.
However, when developing large applications like gaming and video, program-
mers typically eschew the benefits of formal real-time methods and languages,
instead using conventional C/C++ development flows for their significant high-
productivity advantages. The soft real-time behavior of the resulting monolithic
application becomes entirely an emergent quality rather than being enforced by
design. Programmers are then left to use ad-hoc means to understand what
application components are responsible for undesirable soft real-time behavior.

In order to rectify the lack of suitable analysis tools for such applications,
we propose a profile-driven methodology for characterizing the soft real-time be-
havior of conventionally written monolithic applications. The primary objective
of our profiling methodology is the identification of application components that
exhibit the maximum variability in their execution time. Such components are
the ones most likely to affect the meeting of implied execution deadlines (such
as desired frame-rates).

Application Structure A soft real-time application typically processes a sequence
of data items, such as a sequence of image-frames for MPEG video encoding.
There are soft real-time requirements limiting the average execution time and
variability in execution time for functions that process the data sequence. A
programmer unfamiliar with the application stands to gain important insights
about the application’s design and functionality if the most significant functions
processing the data sequence are pointed out. Our profile analysis framework
automatically identifies those functions whose repetitious behavior most signif-
icantly contributes variance to their enclosing scopes. Consequently, the set of
functions identified by the profile analysis can be expected to closely match the
set of functions that process the data sequence. The primary intuition behind
this reasoning is as follows: the application needs soft real-time requirements



to be enforced primarily because processing each data item, or parts of a data
item, does not take constant time. Isovic, et al. [1] show that there is a significant
amount of variation in decoding times for realistic video streams and argue that
standard scheduling algorithms that assume average values and limited variation
in frame decoding times will lead to poor video quality.

More generally, a soft real-time application may exhibit variability at many
levels: from the highest-level of processing a data-item, to lower-levels of process-
ing pieces of the data-item. Examples of this are image-frames at the highest-
level in video-encoding, and motion-estimation over 8-pixel × 8-pixel blocks of
the image-frame. The execution-time of motion-estimation may vary dramati-
cally from block-to-block even within the same image-frame, depending on how
wide the motion-estimation searches to find a closely matching block. There is a
large body of research showing how the search-space of motion-estimation can be
limited based on the types of input video expected or the search-space dynami-
cally adapted in order to more consistently achieve the desired frame-rate. Our
profiling framework helps the programmer identify functions contributing signif-
icant variability at all levels of processing in the application, and empowers the
programmer to make decisions about whether, where and to what extent algo-
rithmic or configuration-parameter tweaking needs to be done, such as adjusting
parameters that constrain the size of the motion-estimation search window.

1.1 Research questions

We posed the following open research questions in order to drive the design of
our profile analysis framework:

Question 1. Component discovery Can recurrent behavior identified during
profiling of function calls be used to identify individual components of an appli-
cation’s soft real-time functionality?

Question 2. Structure discovery Can the identified recurrent behavior be
used to reconstruct the soft real-time structure of the application? The structure
would be composed of components of soft real-time functionality.

Question 3. Context-sensitivity discovery Can the context-dependent vari-
ability in the behavior of soft real-time components be detected? The behavior
of a component may differ significantly depending on where it is invoked.

Question 4. Generality How reliably can behavior discovered during profiling
be expected to generalize to future runs of the application on arbitrary inputs?

1.2 Contributions

We make the following specific contributions in this paper.

– We describe a tractable approach for succinctly capturing the behavior of
millions of profile events in terms of tens of soft real-time components. The



discovered components are functions that introduce significant variability
to the application’s real-time behavior, and hence are most important to
be brought to the attention of a programmer interested in improving soft
real-time behavior.

– We demonstrate that function call-chain segments capture the context-sensitivity
of a component’s soft real-time behavior. We motivate how the length of call-
chain segments gives them varying ability to differentiate between multiple
contexts of execution of a component. We provide algorithms that choose the
correct segment lengths in order to produce highly succinct profile results
that differentiate only between those contexts where behavior is significantly
different.

– We illustrate the use of specific statistical theory for constructing algorithms
that find patterns of behavior (dominant components and corresponding
execution-contexts). Due to probabilistic guarantees provided by the statisti-
cal theory, the produced patterns generalize well for describing the behavior
of the application executing on arbritrary input data.

We validate the correctness of the identified components by profiling well-
known multimedia applications. Extensive prior research exists about the soft
real-time behavior of these applications. The components reported by our pro-
filing methodology match closely with those described in prior research as the
main causes of soft real-time variance in these applications.

Among the questions listed above, only the structure discovery question is
not satisfactorily answered by our current methodology. Although the discov-
ered components and their call-chain contexts do allow the programmer to infer
the structure, this inference is not sufficiently precise and may not work in all
circumstances. In section 6 we provide insights on how our technique can be
improved to accomodate structure discovery as well.

Overview Section 2 introduces the profile representation constructed from the
raw stream of profile events. Section 3 introduces the relevant statistical theory
and describes the analysis performed on the constructed profile representation
for detecting patterns. Section 4 provides experimental validation.

2 Profile Representation

We profile-instrument the application and use the generated profile events to
construct a Calling Context Tree (CCT). Ammons, et al. [2] showed that a CCT
representation succinctly captures the dynamic structure of the function calls
executed by the application. It preserves the full call-chain context of invoca-
tion and merges information along multiple identical paths into a single path.
This makes the CCT an ideal representation for investigating context-sensitive
behavior.

We automatically profile-instrument a C/C++ application using the LLVM
[3] compiler infrastructure. We execute the application on test inputs and use
the generated sequence of profile-events to construct the CCT as described in [2].



During CCT construction, we annotate statistics on each CCT node. These
statistics are used by subsequent analysis for detecting patterns. Figure 1 shows
an example program, the corresponding CCT and annotated node statistics. Func-
tion A was invoked from two call-sites within the parent function main. This leads
to two children nodes for function A. Since function B was never invoked under
the left A node, it only gets a NULL edge at its call-site in A. The next subsection
describes the node annotations required for our variant call-context analysis.

  

void main() {
  for(i=0;i<100;++i) {
    if(i%5 == 0)
      A(0, i); //Lexical id=0
    A(1, i); //Lexical id=1
  }
}

void A(int flag, int i) {
  if(flag != 0)
    B(i); //Lexical id=0
  // other statements
}

void B(int i) {
  for(j=0;j<i;++j) {
    S1;
  }
}
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Fig. 1. Sample Program and CCT with Annotated Node Statistics

2.1 Node Annotations

Each node is annotated with the following statistics about the execution of the
function-call corresponding to it:

1. invocation count N : The number of times the corresponding function-call
was invoked.

2. mean X̄: The mean execution time across all invocations of the function-call
corresponding to the node. This includes the execution time of all children
function-calls.

3. variance σ2: The statistical variance in the execution time of the function-
call across all invocations. Variance is the square of the standard deviation
σ. Using σ2 = E(X2)− X̄2, a single pass over the profile data constructs the
CCT and computes all node annotations including variance.

2.2 Measuring Execution Time

We need to use some notion of elapsed time to time-stamp each function entry
and exit event. Ideally, we would like to use wall-clock time with the application



running on the target platform. Initially, we need to profile-instrument each
function entry and exit since we don’t know which ones will be significant for
determining an application’s variant behavior. However, this approach will suffer
such a large runtime overhead that wall-clock measurements will be rendered
meaningless for capturing the application’s real-time behavior.

In order to avoid introducing significant distortions to the application’s real-
time behavior, we chose to use dynamic-instruction-counts to estimate elapsed
time. While measuring dynamic-instruction-count does not account for micro-
architectural effects and system level stalls (such as cache misses), it does al-
low us to robustly compare execution times in the order-of-magnitude sense for
function-call instances in the CCT. Our primary motivation is to determine which
function call instances (CCT nodes) are highly variant with respect to their mean
execution times, and which function call instances are orders-of-magnitude more
variant than others. Time-stamping profile events with dynamic-instruction-
counts suffices for this purpose, while at the same time remaining unaffected
by the overheads of profile-instrumentation. The LLVM compiler pass inserts
code to update a global counter for the dynamic-instuction-count. This counter
is sampled when dumping profile events during program execution.

Once the pattern generation analysis has been performed using dynamic-
instruction-counts to measure elapsed time, the function names that cumulatively
(i.e., over all CCT instances of same function) consume significant execution time
are known. In subsequent iterations of profiling, real wall-clock time can be
used to dump profile events only for those functions that were previously seen
to consume significant time cumulatively. This would dramatically lower the
runtime overhead of profile-instrumentation since lower-level functions that do
not affect the overall analysis would not get profile-instrumented at all. The
resulting wall-clock measurements can then be expected to closely match the
real-world execution timing of the application.

3 Detecting Patterns of Behavior

Once the CCT has been constructed and its node annotations calculated, the
CCT is traversed in pre-order for analysis. Nodes whose total execution time
constitutes a miniscule fraction (say, < 0.02%) of the total execution time of
the program and their children subtrees, are deemed as insignificant. All other
nodes are deemed significant. Since CCT nodes subsume the execution time of
their children nodes, once a node is found to be insignificant, the nodes in its
children subtree are guaranteed to be insignificant as well.

Since insignificant nodes individually constitute a miniscule portion of the
program’s execution time, any patterns of behavior detected for them would
quite likely provide very limited benefits in optimizing the design of the whole
application. Therefore insignificant nodes are ignored from all further analysis.
This dramatically reduces the part of the CCT that needs to be examined by any
subsequent analysis, leading to considerable savings in analysis time. For each
application, the programmer can experimentally tweak the cutoff percentage



used to determine significant nodes. A good methodology for this would be to
start with a relatively large setting (say, < 0.1%) and successively reduce it until
the profiling results stabilize. Stabilization suggests that further inclusion of less
significant nodes does not affect the analysis.

3.1 Tagging Nodes

We examine the annotations of nodes to determine if the corresponding nodes
exhibit high-variance in execution-time within the context of the caller function
(parent node). This is captured by the variance P.σ2. We use Chebyshev’s in-
equality [6] given below to determine meaningful thresholds to compare a node’s
variance. Chebyshev’s inequality establishes conservative probability bounds
on a given collection of data samples while making no assumptions about the
underlying probability distribution that generated the data.

Pr(|X − µ| ≥ kσ) ≤ 1
k2

(1)

In our experiments, we define a node to be high-variant if its execution time
cannot be guaranteed to lie within 200% of its mean with atleast 96% probability.
This implies 1

k2 = 1−0.96 = 0.04 and kσ = 2×µ. Therefore σ
µ ≥ 0.4 becomes the

condition for high-variance. Consequently we use the Coefficient-of-Variability
metric for classifying the variant-nature of nodes: CoV = σ

µ . The choice of the
variance-window around the mean and the probability of samples falling within
it can be tweaked by the user based on the method described above. As the
programmer pushes the probability guarantee of samples falling within the kσ
variance window to 100%, 1

k2 → 0 and k → ∞. This implies that the window
kσ →∞ would trivially encompass all possible execution-times. Therefore, it is
practical to keep the probability not too close to 100%, and for almost all soft-
real-time applications a probability guarantee of 96% would suffice, though this
can be adjusted to the guarantees desired for any given application. Qualitatively,
kσ = 200% × µ suggests a highly variant behavior as the execution-time can
increase to over thrice the mean execution time (and reduce all the way down to
0). Based on how stringent the soft real-time requirements are for an application,
the programmer can adjust the threshold that defines high variant behavior.

Once the CCT is constructed from the profile data, it is pre-order traversed
in linear-time and individual nodes may be tagged as being high-variant. As
mentioned earlier, the traversal is restricted to significant nodes.

3.2 Signature Generation for Patterns

The previous subsection described how significant nodes in the CCT were individ-
ually tagged if they exhibited statistical high-variance. The next step is to find
patterns of call-chains whose presence on the call-stack can be used to predict
the occurence of the high-variance behavior found at the tagged nodes. For a
given tagged node P , we restrict the call-chain pattern to be some contiguous
segment of the call-chain that starts at main (the CCT root node) and ends at P .



The names of the sequence of function-calls in the call-chain segment become
the detection pattern arising from the tagged node. This particular detection
pattern might occur at other places in the significant part of the CCT. Quite
possibly, the occurence of this detection pattern elsewhere in the CCT does not
match the statistical behavior, i.e., mean and CoV values, that were observed at
the tagged node. Therefore, our key criteria in generating the detection pattern
is the following:

All occurences in the significant CCT of a detection pattern arising from
a high-variance tagged node must exhibit the same statistical behavior
that was observed at the tagged node.

Notice that this condition is trivially satisfied if we allow our detection pat-
tern to extend all the way to main from the tagged node, since this pattern
cannot occur anywhere else due to its full call-context being a unique path in
the CCT. In many applications, patterns extending to main are likely to gen-
eralize very poorly to the regression execution of the application on arbitrary
input data. Regression execution refers to the real-world-deployed execution of
the application, as opposed to the profile execution of the application that pro-
duced the profile sequence used for constructing the CCT. In many applications,
we expect the behavior of the function call at the top of the stack to be cor-
related with only the function-calls just below it in the call-stack. This short
call-sequence would be expected to produce the same statistical behavior re-
gardless of where it was invoked from within the program (i.e., regardless of
what sits below it in the call-stack). In this paper we focus our attention on
detecting just such call-sequences. We call these Minimal Distinguishing Call
Sequences (MDC sequences) corresponding to any particular statistical behavior.
These are the shortest length detection sequences whose occurence predicts the
behavior at the tagged node, with no false positive or false negative predictions
in the CCT. A pattern with MDC is illustrated in Figure 2.

Fig. 2. Minimal Distinguishing Call-Context Pattern



Given a tagged node P , Algorithm 1 produces the MDC sequence for P that
is just long enough to distinguish the occurence of P from the occurence of
any other significant node that has the same function-name as P but does not
match the statistical behavior of P (the other set). This is done by starting the
MDC sequence with a call-chain consisting of just P , and then adding successive
parent nodes of P to the call-chain until the MDC sequence becomes different
from every one of the same length call-chains originating from nodes in the
other set. Therefore, by construction, using steps 6 - 9 of Algorithm 1, the MDC
sequence cannot occur at any CCT nodes that do not satisfy the statistics of P
(matching mean and CoV). However, the same MDC sequence may still occur at
multiple nodes in the CCT that do satisfy the statistics for P (at some nodes in
the match set in step 5). There is no need for P ’s MDC sequence to distinguish
against these nodes as they all have the same statistics and correspond to the
call of the same function as for P . Since all nodes in the match set will have
the same other set, the algorithm is optimized to generate the other set only
once, and apply it for all nodes in the match set even though only P was passed
as input. The algorithm outputs the MDC sequence for each node in match set
(called the Distinguishing Context for P ).

Algorithm 1: Minimal Distinguishing Call Sequence Generation
Input: CCT C, Tagged CCT Node P
Output: Distinguishing Context DC for P : set of pairs of form <MDC sequence,

node of occurence>
begin1

DC ←− ∅;2

func name←− Name of function corresponding to node P ;3

all set←−4

get all significant node occurences of function in CCT (func name, C);
match set←− identify all nodes with matching statistics(P, all set);5

other set←− all set−match set ; // identify nodes with same name6

whose statistics don’t match P’s

for each CCT node m in match set do7

MDC←− [< func name, lexical-id of m in its parent >] ; // initialize8

MDC as call-chain of length 1

Extend MDC sequence with parent nodes of m (and their lexical-ids) until9

the detection pattern MDC is different from call-chains of same length
arising from every node in other set;
DC ←− DC ∪ {< MDC, m >};10

end11

3.3 Grouping and Distinguishing between Similar Patterns

In the previous discussion, we were assuming that the programmer desired to
distinguish between tagged nodes whenever their statistics (mean, CoV) didn’t



match exactly. However, exact matching of statistics may lead to very long detec-
tion patterns that generalize poorly to regression runs. For example, if multiple
high-variant tagged nodes with very different means require long call-chains to
distinguish between each of them, then it may be preferable to actually have a
shorter call-chain pattern that does not distinguish between the tagged nodes.

Furthermore, if the same detection sequence occurs at multiple tagged nodes
in the significant CCT and the nodes have matching statistics, we would like to
combine the multiple occurences of the detection sequence into a single detec-
tion sequence. Such detection sequences are likely to generalize very well to the
regression run of the application, and are therefore quite important to detect.

In order to address the preceding two concerns in a unified framework, we first
use Algorithm 1 to generate short patterns using only the “broad-brush” notions
of high-variance, without distinguishing between tagged nodes using their statis-
tics (mean, CoV). Then we group patterns with identical call-contexts (arising
from different tagged nodes) and use pattern-similarity-trees (PST) to start dif-
ferentiating between them based on their statistics. The initial group forms the
root of a PST. We apply a Similarity-Measure (SM) function on the group to see if
it requires further differentiation. If the patterns in the group have widely differ-
ent means or CoVs, and the programmer wants this to be a differentiating factor,
then the similarity check with the appropriate SM will fail. In our experimental
evaluation, we use an SM that checks if the corresponding means and CoVs of
the two patterns being compared are within 10% of each other; the programmer
can choose to plug in a different SM, say one that checks only on means.

Once the SM test fails on a group, all the patterns in the group are extended by
one more parent function from their corresponding call-chains (tagged CCT nodes
are kept associated with patterns they generate). This will cause the resulting
longer patterns to start to differ from each other. Again identical longer patterns
are grouped together as multiple children groups under the original group. This
process of tree-subdivision is continued separately for each generated group until
the SM function succeeds in all current leaf nodes. At this point, each of the leaf
groups in the PST contain one or more identical patterns. The patterns across
different leaf groups are however guaranteed to be different in some part of their
prefixes. And patterns in different leaf groups may be of different lengths, even
though the corresponding starting patterns in the root PST node were of the
same length. All the identical patterns in the same leaf-node are collapsed into
a single detection-pattern. For example, an SM function that differentiates on
σ but not on means (or only weakly on means), will produce leaf nodes that
contain patterns with a single σ but a collection of widely varying means.

3.4 Ranking Impact of Patterns

The previous steps produce numerous patterns (11 to 46 patterns for our bench-
marks) characterizing the variability in the application at multiple levels. It is
highly desirable to rank the patterns in order to focus the programmer’s atten-
tion on the ones that are most likely to contribute variability to the program. For
this purpose we introduce a metric that we call the Variability Impact Metric or



VIM. The Chebyshev inequality introduced earlier points us towards a suitable
definition for VIM. While the CoV = σ

µ indicates whether the variations are large
with respect to the mean, the kσ term in the Chebyshev inequality indicates
the absolute amount of variability. The variability per invocation multiplied by
the total invocation count of that pattern gives the total amount of variability
contributed by the innermost function in the pattern to its immediate parent.
Therefore, we define VIM as follows, with N being the invocation count of the
innermost function in the pattern:

VIM = kσN (2)

While this metric indicates how much variance is contributed by the inner-
most function F to its immediate parent C (referring to the pattern in Figure 2),
it is not necessarily implied that the pattern’s variance contribution propagates
up the call-chain to A or B. For example, if B invokes C from inside a loop, then
the VIM for C will measure the variance impact to iterations of the loop, not to
B directly. In fact, it is possible that B is not variant at all if each iteration of
C consumes correspondingly lower time if the loop-count is high, and vice-versa
when the loop-count is low, leading to a constant execution-time for the loop
across all invocations of B. A similar situation can occur without loops if B
invokes C inside a very infrequently executed branch.

Despite the limitation described above, the profile analysis technique is excel-
lent for eliminating unlikely contributors of variance. Therefore, the correct way
to interpret the produced patterns is to think of them as highly likely contribu-
tors of variance. This immediately allows the programmer to narrowly focus on
very limited parts of the application in order to identify the causes of violations
to the soft real-time requirements. The programmer would of course have to ex-
amine relative invocation counts along a given pattern’s call-chain to infer how
far up the call-chain an innermost function is likely to be contributing variance.

4 Experimental Evaluation

Table 1. Patterns Found in Benchmarks

Benchmark Profiling on D1: Pat. Generation Regression on D2

# of Pass time # of Pattern # of Pass time Pattern Pat Set
steps (seconds) patterns Set size steps (seconds) Set size overlap

H.263enc 30000000 397 9 7 60000000 1245 7 100%

H.263dec 25000000 341 30 5 60000000 2194 6 100%

findTux 30000000 402 60 3 40000000 2833 3 100%

mpeg2enc 30000000 387 44 5 60000000 2943 5 100%

mpeg2dec 30000000 402 20 5 60000000 1657 5 80%

The Statistical Analyzer tool has been written in Python. We did not use
any high-performance numerical or scientific libraries (such as NumPy, SciPy) in



the Python implementation. We profile instrumented a number of applications
in the MediaBench II Video suite and a real-time object-recognition benchmark
(mimas-findTux) from the Mimas Computer Vision application-suite [18]. We
generate profile data (sequence of profile events) for each benchmark using the
input data sets provided with the benchmark suites, or some larger external data
sets if the profiles are too short. Specifically, we use two different input data-sets
for each benchmark, referred to as D1 and D2.

We run profile analysis on D1 to create patterns and then use D2 for the regres-
sion run that we use to validate the statistics of the patterns found previously.
The regression run simulates the application call-stack using the profile events.
No CCT is constructed and no analysis is performed in the regression phase. We
use a generic finite-state-machine sequence detector to detect the occurence of
the patterns at the top-of-the-stack. Such a sequence detector needs to check
the call-stack for the possible occurence of every patterns on every profile event.
This is the cause of the significant slow-down seen in Table 1 in the pass times
for the regression runs compared to the profile runs. We would like to emphasize
that the profile analysis time consists entirely of the time to read and parse the
profile file from disk. The actual time for all of the analysis combined (variance
tagging, minimum call-context detection, etc) consumes a fraction of a second.

Table 1 shows the length of the D1 profile (in terms of number of entry /
exit events) used to generate patterns, the number of high-variance patterns
found, and the length of the D2 profile used during regression to simulate the
real-world execution of an application. The Pass Time refers to the duration of
time needed to complete profile analysis or regression.

Clearly during regression the input data set is different, which will lead to cor-
responding changes in the call-chains invoked, their frequencies and their variant
behaviors. However, in our validation we strive to demonstrate that the patterns
capture the statistical behavior of the application at a more fundamental level,
which tends to remain relatively constant across different data-sets. In order to
demonstrate this, we introduce the notion of a Pattern Set both for Profiling
and Regression. We define the Pattern Set to consist of a subset of patterns that
are found to be most impactful as measured by their Variability-Impact-Metric
(VIM). Specifically, we limit the Pattern Set to only those patterns whose VIM is
atleast 10% of the VIM of the pattern with the highest VIM. This is done sepa-
rately for Profiling and Regression, leading to the construction of two potentially
disjoint sets. Table 1 shows that in fact the Regression Pattern Set very closely
mirrors the Profiling Pattern Set (Pattern Set Overlap column). This implies
that the same set of patterns that were found to be most impactful during Pro-
filing tend to remain most impactful during Regression. The Pattern Set spans
an order-of-magnitude of the largest VIM values (i.e., 10×). We chose to define
the Pattern Set as such because we expect the data-set induced variations to
cause relative fluctuations due to changes in length of data (number of events)
and type of data (for example, encoding video with constant background versus
moving background, different frame-dimensions, etc). Despite these variations in
characteristics of input data, the most impactful patterns found on D1 tend to



remain most impactful on D2 as well, validating our intuition that our patterns
capture variant behavior in a statistically sound manner. In mpeg2dec, the VIM
of one pattern was just slightly smaller during regression causing it to be dropped
from the Regression pattern set. Similarly, a pattern that had barely missed in-
clusion in the Profiling pattern set got included in the Regression pattern set.
However, both these patterns have similar VIMs (in the order-of-magnitude of
sense). Therefore, despite a Pattern Set Overlap of only 80%, this result also
shows that Profiling and Regression Pattern Sets match closely for mpeg2dec.
In H.263dec, there was a pattern that barely missed inclusion in the Profiling
Pattern Set, but got included in the Regression Pattern Set.

Figure 3 shows the distribution of the mean and CoV values for all the
patterns discovered, on a per-benchmark basis. For each benchmark, the left-
segment in the scatter-plot shows the distribution found during Profiling (on
D1), and the right-segment shows during Regression (on D2). No VIM based dis-
tinction is made between patterns; the least varying pattern with low invocation-
count is given a point just like the most impactful pattern. For all benchmarks
the distributions between Profiling and Regression are very similar, except for a
uniform linear shift and uniform scaling of one distribution with respect to the
other. When we look at Figure 4 plotted using only patterns in the Profiling
and Regression Pattern Sets, we again see a close similarity between Profiling
and Regression distributions, indicating that the dominant patterns are funda-
mentally associated with the application behavior, regardless of data-sets. For
example, encoding raw video with a larger image frame-size quadratically in-
creases the mean and possibly the CoV of a motion-estimation pattern, but
motion-estimation remains dominant independent of the image frame-size.

The following is representative across the benchmarks of the compaction of
information achieved in going from raw profile data to the final profile results:
800MB to 1.3 GB of raw profile event data reduced to a CCT with 600 to 800
nodes, out of which 200 to 350 nodes were found significant, out of which 16
to 116 nodes were tagged high-variant, which were grouped down to 9 to 60
patterns with identical contexts and similar means and CoVs (using pattern
similarity tree), finally out which 3 to 7 were dominant patterns (pattern set).

4.1 Case Study: H.263enc

Figure 5 shows the Profiling Pattern Set for the H.263enc benchmark, sorted
from the most impactful to the least. The VIM found for each pattern is shown
for the Profiling and Regression phases. Function-names are shown in boxes and
the edge-annotations give the lexical-id (lexical position) of the call-site of
the callee (sink of arrow) within the body of the caller (source of arrow). The
italicized number on top of each box gives the number of times the corresponding
function was invoked as part of the pattern. A pattern’s invocation-count corre-
sponds to the invocation-count of the function in the left-most box. This is the
innermost function of the pattern, and the entire pattern occurs only when the
entire call-chain segment occurs on the stack. Therefore, the invocation-count of
the innermost function is the invocation count of the pattern.
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Fig. 3. Comparison of mean and CoV scatter-plots between Profiling D1 and Regression
D2 using all patterns
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Fig. 4. Comparison of mean and CoV scatter-plots between Profiling D1 and Regression
D2 using Pattern Set



Fig. 5. Pattern Set for H.263enc

The patterns in Figure 5 were automatically discovered by the profile anal-
ysis framework with no guidance from the user, and no application or domain
knowledge. Yet, these patterns closely mirror conventional wisdom about the
parts of video-encoding applications that are the most important with regards
to meeting or violating soft real-time requirements. Motion-estimation related
macroblock search-spaces are known to be the most variant parts of video en-
coding [16], since the search space can be quite large and it is hard to know up
front how quickly the search will terminate.

Note that the middle three patterns and the bottom three patterns are iden-
tical except for a difference in lexical-ids. In both cases, the multiple identical
patterns have very similar statistical characteristics (VIMs and also from their po-
sitions in the scatter plots). These could have been combined into a single pattern
in both cases, but our analysis framework distinguishes based on lexical-ids
within patterns. The downside here is having three patterns where one would
suffice, but in general this produces greater resolving power between identical
call-chains whose behavior varies between call-sites, such as with mpeg2enc.

5 Related Work

Existing application profiling techniques look for program hot-spots and hot-
paths [4, 5, 9]. These techniques attempt to find performance bottlenecks in an
application, and do not attempt to identify variant behavior impacting an ap-
plication’s soft real-time characteristics.

Calder et al. have used statistical techniques to characterize large scale pro-
gram behavior using few recurrent intervals of code [7] and to find phase change
points in the dynamic execution of a program [8]. However, their work was not



intended for mining soft real-time characteristics of an application, and cannot
be adapted for such. In particular, they seek out intervals in [7] with closely
matching set of dynamic basic-blocks, whereas we seek out call-contexts where
the same function exhibits highly variant execution time.

Variability Characterization Curves (VCCs) and Approximate VCCs [10]
have been used to characterize the variability in the workloads of multimedia
applications. Such analysis techniques require domain-specific knowledge of the
application before they can be applied. Similarly, there are custom techniques
for improving the QoS of each type of application, such as by Roitzsch et al
[15] that develop a higher-level representation model of a generic MPEG de-
coder, and based on this predict video decoding times with high accuracy. In
contrast, our framework characterizes the variant behavior in the application in
a completely domain-independent manner, with no assistance from the user.

For applications written using real-time constructs/formalisms such as tasks
and deadlines, there is an established body of formal techniques [11, 12] that
analyze or ensure the real-time characteristics of the application. For monolithic
applications written without the use of these abstractions, our framework is
unique in its ability to characterize their soft real-time behavior.

Worst-Case-Execution-Time (WCET) [13] is an analysis methodology ap-
plicable to monolithic applications, and has been incorporated into commercial
products such as from AbsInt [17]. However, for non-safety-critical, compute-
intensive applications like gaming and video, knowledge of the likely range of
real-time behavior is more important for driving design optimization than knowl-
edge of worst case behavior. The likely range (detected by our technique) can
be substantially removed from the worst case, thereby diminishing the value of
characterizing the worst case behavior for such applications.

In contrast with prior work [14] on identifying variant behavior in monolithic
applications, the techniques in this paper establish statistically robust probabil-
ity bounds on variant behavior and produce concise results prioritized by their
impact on soft real-time behavior.

6 Conclusion

In this paper we demonstrated that analyzing a profile sequence of time-stamped
function entry and exit events can be used to i) identify the dominant soft real-
time components of functionality in an application, ii) determine the context-
sensitivity of the behavior of the identified components, and iii) concisely convey
the components and their context sensitivity to the programmer using patterns
consisting of minimal-length call-chain segments. Further, we established that
the dominant patterns detected during profile analysis continue to remain dom-
inant in regression runs of the application on input data sets that have different
characteristics (differences in frame-dimensions, encoding format, degree of mo-
tion in input videos). This experimental validation coupled with a sound foun-
dation of our algorithms in statistical theory suggests that our analysis detects
fundamental aspects of an application. Lastly, we find that patterns identified



by our profile analysis in well-known multimedia applications correspond closely
with extensive prior research studying the causes of soft real-time variance in
these applications. In conclusion, our technique concisely captures the true soft
real-time characteristics of a monolithic application, for which existing real-time
analysis techniques are inapplicable.

Future Work Call-chain segments were found useful in defining contexts for
components, but call-chains do not sufficiently capture which components con-
tain other components, and more importantly, whether contained components
contributed significant variance to any parent component. We are currently de-
veloping a concise hierarchical representation for capturing the cause-effect and
containment structure between components.
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